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Abstract

Principal Component Analysis (PCA) is quite popular for
fault detection and diagnosis in industrial applications. PCA
assumes linear relationships among the features and serves to
represent them as a linear combination. However, a typical
industrial application can have non-linearity due to operation
at multiple operating regions or inherent non-linear relation-
ships among the features. This paper proposes a novel cluster-
ing based Multi-PCA approach which can divide the overall
non-linearity into simpler linearity’s which can subsequently
be modelled by multiple PCA models. The clustering is done
with the use of domain knowledge where the fact that an op-
eration of an asset at different operating points can lead to
multimodal distribution of the variables. The proposed ap-
proach is structured systematically with the following steps
1) Feature set selection 2) Hierarchical Density Based Spa-
tial Clustering (HDBSCAN) and 3) Fitting a PCA model in
each cluster. The proposed approach retains the computa-
tional simplicity of the PCA compared to models based on
other non-linear modelling approaches such as neural net-
work based autoencoders. Finally the paper also proposes a
simplified Root Cause Analysis (RCA) algorithm for identi-
fying the cause of the fault.

1 Introduction
Industrial assets such as motors, pumps, fans, turbines etc.
are subject to faults and failures due to operation at excess
load conditions or due to aging effects. Identifying that an
industrial asset is drifting towards an abnormal condition is
the key to avoid unplanned downtime of an industry due
to asset failure. In literature, there are two important ap-
proaches to tackle this challenge of detecting abnormal as-
set health. The first approach is based on detailed know-how
and physics of the asset and second approach is black box.
The first approach works well for simpler assets such as a
motor, as the underlying physics is well established. How-
ever, this approach is not easily scalable and it requires one
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to develop physics based models for every asset. Addition-
ally, as industrial assets become complex, such an approach
is difficult to implement. Hence, there is a significant shift
to apply data driven approaches for asset health monitoring.
Due to availability of low cost sensors and digital technol-
ogy, lots of data can be collected from an industrial asset and
approaches based on machine learning principles can be ap-
plied to learn the model for the asset, in a semi-automated
manner. Such an approach is easily scalable and can be ap-
plied to a variety of machines.

Some of the earliest fault detection techniques were
model based. One such popular algorithm was based around
analytic redundancy, wherein a comparison between the in-
puts of the monitored system and the output obtained from
an analytical mathematical model was carried out to detect
the presence of a fault (M. Frank 1990). However this com-
parison was a naive estimate and failed to capture faulty con-
ditions in high dimensional spaces. Following which several
approaches based on multivariate-statistical process control
methods (MacGregor and Kourti 1995); (Kresta and Mar-
lin 1991); (Macgregor 1994) were presented for the diagno-
sis of complex physical processes. The usage of state ob-
servers by modelling faults as state variable changes (Iser-
mann 2005) provided a better strategy for aberration detec-
tion compared to statistical processes albeit at higher com-
putational cost.

A pressing need to capture and localize abnormalities
at reduced computational rates brought about the usage of
Principal Component Analysis (PCA). PCA defines a new
outlook to the data and aims to capture hidden structure
underneath data redundancy and noise (Pearson 1901). An
abundant list of algorithms based around the PCA is evi-
dent in literature. One such approach involves using the Q
and T2 statistic (Villegas, Fuente, and Rodrı́guez 2010) for
fault detection. This methodology was subsequently simu-
lated for fault detection in a waste water treatment plant
(Garcia-Alvarez 2009) wherein the authors showcase results
which capture local linear structure only. An improvement to
the conventional PCA model was brought about by introduc-
ing the dynamic PCA (DPCA) (Russell, Chiang, and Braatz
2000) which is established by considering the dependency
of current observations on previous time instances as well.
A non-linear modification to the PCA involved the combina-
tion of using the Kronecker product, wavelet decomposition



(a) Clustered Data

(b) PCA applied to each cluster

Figure 1: Multiple PCA applied on clustered data

and sliding median filter for determination of a fault in non-
linear data-sets (Zhang, Li, and Hu 2012).

All of these methods suffer from the inability of the
Hotelling’s T 2 to identify and isolate the responsible feature
(The Hotelling’s T 2 test is simply a multivariate counterpart
of the T-test). Further the fault detection index used is ex-
tremely sensitive to anomalies, making them susceptible to
false positives. In order to fix this problem, a new fault de-
tection index based on the sum of the squares of the last few
principal components weighted by the inverse of their vari-
ances was developed which yielded a good detection rate in
the dependent as well as independent variables (Benaicha et
al. 2010). This work also points out that hierarchical con-
tribution plots provide sufficient partitioning to localize any
anomaly, provided the stochastic nature of bloc size is evalu-
ated by a definite formula. A latest development pertinent to
the PCA involves decomposing variables using the Empiri-
cal Mode Decomposition (EMD) (Du and Du 2018). Fault

detection is subsequently carried out by applying PCA to
the decomposed variables and detecting small shifts in data
using a Cumulative Sum control cart (CUMSUM).

Kernel PCA (Schölkopf, Smola, and Müller 1996) ex-
tends the idea to the non-linear case wherein the kernel trick
is used to learn a linear representation in non-linear space.
While these models have been deployed with significant
success to capture non-linearity’s their success is correlated
with the assumption of the data generating process. Most of-
ten, an RBF kernel is used so as to encode maximum uncer-
tainty about the data generating distribution and justifiably
so because the central limit theorem points to the behav-
ior of several random variables to be Gaussian distributed.
However, this may not be the case for several real world pro-
cesses. Therefore selecting the correct kernel may prove to
be an exhaustive process which scales exponentially with
more data and even after, may produce poor results. Our
method circumvents both these problems while remaining
inexpensive.

Artificial Neural Nets (ANN) have also been employed
for aberration detection. One such work carries out anomaly
detection and root cause analysis using a Bayesian network
(Amin 2018). A similar analysis which borrows the tech-
nique of decomposing the T 2 statistic proved to be ex-
tremely effective for non-linear fault diagnosis (Verron, Li,
and Tiplica 2010).

While most of the proposals in literature are promising,
the need to maintain a balanced stance on computational
simplicity while simultaneously having to achieve signifi-
cant sensitivity for fault detection is still a problem that re-
mains unsolved. A simple yet robust solution that the PCA
offers is limited in scope due to it’s linear nature (Villegas,
Fuente, and Rodrı́guez 2010), (Garcia-Alvarez 2009), (Rus-
sell, Chiang, and Braatz 2000).

Our main contribution is an extension of the classical
PCA framework for non-linear systems. We propose a sys-
tematic approach to capture non-linearity through several
linear models (by applying several PCA models on chunks
of localized data) while retaining the computational simplic-
ity of the single PCA. This paper successfully demonstrates
the proposed approach on an industrial asset having several
years of historical data.

The Multi-PCA (Fig.1) offers a simple solution of break-
ing the non linearity through clustering and then building
a PCA model for each cluster. This approach results in a
framework that can detect the faults with reasonable accu-
racy. The concept proposed by Liling Ma et al. (Ma et al.
2004) presents a similar idea of using multiple PCA mod-
els. In this case however, process monitoring is achieved by
weighing each of the sub-PCA models using the K-means
clustering technique and creating a decision boundary based
on Hotelling’s T 2 statistic. K-means clustering is biased
to choose local data points because it splits the space into
Voronoi cells. Moreover, it performs poorly when tasked
with finding clusters in data inherent with varying densi-
ties and is acutely affected by the choice of K. K-means
clustering does not in any way identify noise prevalent in
the data and assigns them to a cluster regardless of its influ-
ence. As opposed to the naive clustering processes adopted



in (Ma et al. 2004), the Multi-PCA approach proposed in this
paper, employs the Hierarchical density based Spacial clus-
tering (HDBSCAN) algorithm (McInnes, Healy, and Astels
2017), which is radically inexpensive and robust. The elbow
method developed about the mean square error serves as
a sufficient statistic for setting the hyper parameters of the
HDBSCAN, following which the Multi-PCA modelling ap-
proach is applied to the clustered space. While in (Ma et al.
2004) the SOFM (self-organizing feature map) neural net-
work (Kohonen and Honkela 2007) calculates fault thresh-
olds using the multiple PCA components, we showcase that
determining thresholds from reconstructions of projected
data provides similar results at a fraction of the computa-
tional cost.

We also present a novel feature selection strategy to select
essential features for clustering. It is to be noted that our
model can only detect known fault states that the Multi-PCA
model encounters during training. Hence it is necessary to
provide a wide array of fault cases to the model.

2 Preliminaries
This section explains Multiple Principal component analysis
(Multi-PCA), describes it’s algorithmic flow chart for fault
detection and provides an overview of the Hierarchical Den-
sity Based Spacial Clustering algorithm along with illustra-
tion of the feature selection methodology for the process of
clustering.

2.1 Multiple Principal Component Analysis
The Principal Component Analysis (PCA) (Pearson 1901) is
an orthogonal transformation that carries out dimensionality
reduction by converting a multivariate space into a subspace
which preserves maximum variance of the original space in
minimum number of dimensions. PCA can be thought of as
looking at data from it’s most informative viewpoint in the
transformed space.

The Multi-PCA borrows this characteristic and extends it
to non-linear data by clustering the data space into several
clusters and applying an independent PCA on each (Fig.1).
The essence of clustering the data space is to account for
several operating regions prevalent in the steady state data
of the plant.

To formally describe the process of fault detection us-
ing the Multi-PCA, consider a standardized (zero mean
and unit variance) data matrix X ∈ Rnxm (representing
the steady state model of the plant), where n indicates
the number of samples and m denotes the number of fea-
ture variables. Clustering the data space X leads to clusters
x1,x2,x3, ...,xq ∈ X where q is equal to the number of
clusters. Assuming each component (xi ‖ i = 1,2, ..,q) to
be independent of each other, the co-variance matrices Ci of
xi ∀ i = 1, 2, .., q describing the variance between the fea-
tures can be constructed as:

Ci =
1

1− ni
xt
ixi ∀ i = 1, 2, . . . , q (1)

the singular value decomposition of Ci ∈ Rmxm is given
as:

Ci = Vi ∗Λi ∗Vt
i ∀ i = 1, 2, . . . , q (2)

where Λi is a diagonal matrix containing the eigenvalues
of Ci in descending order(λ1 > λ2 > . . . > λm). Λ is
obtained by solving the characteristic equation:

Wi − λI = 0 (3)

where Wi = Ci ∗Ct
i , ∀ i = 1, 2, .., q and the columns

of Vi are the eigenvectors of Ci. The transformation matrix
for each cluster Pi is formulated by choosing a eigenvectors
(columns of Ci) corresponding with a eigenvalues.

Ti = xi Pi ∀ i = 1, 2, .., q (4)

equation 4 describes the transformation of each cluster to
a reduced dimension and Pi denotes the transformation ma-
trix for it’s respective cluster. A standard measure used to
calculate a i.e. number of principal components, based on
desired variance is specified by the cumulative percent vari-
ance (CPV) formulation:

CPV(a) =

∑a
j=1 λ

j

trace(Ci)
∗ 100 (5)

2.2 Sequence of events for Multi-PCA fault
detection

We use the trends of Hotelling’s T 2 and Q statistics to an-
alyze abnormality in the data and tailor it to cater for fault
detection in the case of Multi-PCA.

Figure 2: Multi-PCA fault detection

Steady state sensor data collected from an industrial as-
set is normalized and treated as training data. Fault data
recorded during the malfunction of the industrial asset
serves as test case to detect anomalies using the Multi-PCA
model.

The model is formulated based on the training data alone,
consider X to be the training data and Xf to be the fault data.
X is clustered into different operating regions by the Hier-
archical Density based Spacial Clustering Algorithm (sub-
section 2.3) yielding clusters with unique cluster Id’s. The
K-Nearest Neighbors (KNN) classifier is now employed to
classify test data points into one of the cluster Id’s based on



majority voting of the data points by considering it’s K near-
est neighbor’s. KNN is based on the Eucledian distance and
provides a simple, inexpensive and robust solution to desig-
nate data points into different clusters.

Following this, principal components are determined in-
dependently for each cluster in the training data (Eq. 4).
Let j denote the output clusters from KNN for the test data,
j ∈ (⊆ q) | (q) itself i.e, j can either contain a few or all
the clusters of the training data set X. Equation 4 can now
be extended as:

Tjf = yjf Pj ∀ j = 1,2, . . . ,q or < q (6)

where, yjf are the test data clusters classified by KNN and
Pj = Pi ‖ ∀ j ∈ i. Equation 6 transforms the data onto the
new space based on the steady state transformation matrices
Pi. Inverse transformations are applied to revert the training
and the fault data back to ’m’ dimensional space.

ŷjf = Tjf Pt
j ∀ j = 1,2, . . . ,q or < q (7)

the inverse transforms of eq. 7 carries with it the error of
projection. This error is expected to be large for the faulty
case and is computed for each cluster as:

Ef = Yjf − Ŷjf ∀ j = 1, 2, .., q (8)

The threshold is set based on the validation set. KNN is
used to classify the validation data points into clusters, each
of these clusters are projected onto their respective steady
state PCA model and are reconstructed back. The recon-
structed data is compared with the original validation data
set to produce a sample error. A threshold of 3 standard devi-
ations from the mean of the sample error is set, which serves
as the decision boundary to detect anomalies. Fig.2 depicts
the algorithm.

2.3 Hierarchical Density Based Spacial
Clustering Algorithm (HDBSCAN)

The concept of Multi-PCA requires clustering the data into
different operating zones (Fig. 1). Literature presents several
algorithms for clustering, however each of these have a trade
off to account for in terms of computation cost and data size.
Figure 3 presented in (McInnes, Healy, and Astels 2017) de-
picts the superior performance of the HDBSCAN over the
current state of art algorithms.

HDBSCAN transforms a N-dimensional space according
to the density of the data by defining a new distance metric.
It’s hyper-parameters include minimum cluster size and min-
imum samples which were decided through the elbow tech-
nique. Using the distance matrix thus obtained it constructs
a minimum spanning tree based on Prim’s algorithm (Prim
1957). A dendrogram is formed by arranging the edges of
the spanning tree in the increasing order of their distance and
thereby creating clusters for each edge group. The important
clusters are retained by a measure of λ = 1

distance giving an
indication of ”how long” the clusters retain themselves.

HDBSCAN scales well to large datasets and is effective
at global clustering. The algorithm also detects outliers in
the data and classifies them as noise. These outliers are data

Figure 3: Comparison of clustering algorithms

points that are obtained as a result of sensor faults and sig-
nify noise in the dataset. For example: A faulty tachome-
ter may output a negative value of speed or a very large
value that is improbable. HDBSCAN was found to iden-
tify such stray data points and these points were removed.
HDBSCAN thus provided a way to account for sensor re-
lated noise and drift.

2.4 Feature selection for clustering
Clustering of a multidimensional dataset requires feature se-
lection. Correlated features do not aid the clustering method-
ology. They increase computational time without improving
cluster quality. A need to present only important features
to the clustering methodology has led to several algorithms
developed in literature. Michael Fop and Thomas Brendan
(Fop and Murphy 2017) present several approaches involv-
ing Gaussian mixture models and latent class analysis mod-
els. Dirichlet process mixture models were also proposed for
variable selection (Kim, Tadesse, and Vannucci 2006). As
opposed to finding a common feature subset that is relevant
to all clusters, Yuanhong Li et al. (Li, Dong, and Hua 2008)
developed a localized feature selection method for cluster-
ing.

The proposed method of feature selection is based on in-
specting the density plots of each variable and looking for
features exhibiting distinct operating regions (multi-modal
distributions). This method provided sufficient simplifica-
tion and served as a robust criterion for selecting distinct
variables for clustering. The idea behind such a feature se-
lection method is that, if an asset operates at N distinct op-
erating regimes, then one can expect N distinct peaks in its
density plot.

Variables with two or more operating regions are chosen
for clustering, while the rest are rendered redundant in this
particular analysis. An illustration is shown in Fig.4

3 Case Study
We assess the performance of the proposed Multi-PCA
through a comparison with the Single PCA approach em-
ploying the methodology aforementioned.



Figure 4: Density plots of two variables, one with two oper-
ating regions (L) and one with only a single operating zone
(R)

3.1 Data Description
Gas turbine data of a power generation plant comprising of
forty five features sampled over one minute intervals was
the dataset used for this case study. The training data used
to develop the steady state model X, is a matrix of dimen-
sions 37200x45 with total 37200 samples each having 45
variables. The data also has information about the dates on
which the faults are reported. Six test files are prepared as
test cases to detect anomalies corresponding to the 6 faults.
Each fault file contains data 24 hours prior to the fault re-
porting time. Hence each fault file acts as a test case for
the proposed algorithm and ideally should detect possible
anomalies.

We demonstrate the effectiveness of the proposed Multi-
PCA algorithm over a single PCA algorithm. Table: 1 sum-
marizes the various test case results for both algorithms. In
some test cases, both single PCA and Multi PCA algorithms
detect faults. Whereas in other test cases (Cases: 1, 3, 5, and
6) only Multi-PCA approach was able to detect the fault.
Also, in all test cases, Multi-PCA was able to detect faults.

In order to prove the point further, fault case F5 is ana-
lyzed in detail. For F5, both the single PCA and the Multi-
PCA models are created based on the training data, and the
projected test data is reconstructed back. In Fig.8 the ac-
tual and reconstructed signal of a variable called turbine
speed is depicted. Fig.8a is the original turbine speed sig-
nal, whereas Fig.8b indicates the reconstructed signal using
the single PCA model and Fig.8c indicates the reconstructed
speed signal using the Multi PCA model. It is clear from
Fig.8 that the Multi-PCA approach is able to reconstruct the
signal very well and closely matches with that of the training
data signal. This is a possibility since the Multi-PCA divides
the data into multiple regimes whereas a Single PCA fits to
the entire data distribution. Also, feature selection (section
2.4) plays the role of a naive correlation detector and in the
case of F5, it identifies seven variables out of forty five to be
uncorrelated.

The Hierarchical clustering algorithm (section 2.3) uses
only these seven variables to cluster the data into two clus-
ters, while simultaneously detecting outliers prevalent in the
data; Fig.5 depicts clustering of the Turbine Flow Speed
variable. We use the uncorrelated features to ensure that re-
dundant features do not interfere with the process of cluster-
ing. Once the single PCA and Multi-PCA models are built,
F5 data is projected onto its respective principal compo-
nents, are reconstructed back and MSE per sample is com-

Figure 5: Clustered data (Turbine Flow Speed)

puted. The results are as shown in Fig.6 and Fig.7. As per
Fig.6, the mean squared errors (MSE) vary in range of 0-
600 indicating that the single PCA is not able to capture all
variation in the data. The MSE threshold is set at 100 (based
on the validation data) to decide if a data point is normal or
not. In the case of F5, using the single PCA model, major-
ity of the sample errors are within the threshold, providing
an incorrect indication that the gas turbine is in normal op-
eration. Therefore, the single PCA model is not confident
to mark the data set as faulty. Whereas, in the case of the
Multi-PCA approach (Fig.7), a good fit to the data in both
clusters (clustered by HDBSCAN) is achieved. This snug fit
places the majority of the sample errors above the calculated
validation threshold (different from that of the single PCA),
conclusively indicating a fault in F5.

Figure 6: Fault assessment using a single PCA (SPCA)

In order to test the proposed algorithm’s ability to detect
normal operation of the gas turbine, a new test file was pre-
pared using 24 hours of the data from normal operation of
the gas turbine. This construed data set was not used during
training of the Multi-PCA algorithm. Results for this case
are as shown in Fig.9, the test file was found to contain three
clusters when clustered with a set of ten uncorrelated fea-
tures and the reconstructed sample errors for each cluster
indicated normal operation of the gas turbine as majority of
the test samples were well below the threshold values of the
corresponding cluster. This result showcases the lack of bias



(a) MPCA fault detection in cluster 1 (Fault data)

(b) MPCA fault detection in cluster 2 (Fault data)

Figure 7: Fault assessment using Multi PCA

of the Multi-PCA model towards faults while successively
demonstrating its ability to classify anomalies well.

Another experiment was conducted in order to test the
Multi-PCA against sensor bias faults. A bias was deliber-
ately added to two variables in the steady state dataset which
is representative of the normal operation of the gas turbine.
The Multi-PCA algorithm was used to detect a fault in such
data. The results of this test is shown in Fig.10. The Multi-
PCA algorithm indicates abnormal behavior as the MSE per
sample is greater than the threshold value for majority of
the data points. The threshold at which a bias triggers the
fault was found to be approximately three percent above the
steady state value of the variables.

Test Case SPCA MPCA Fault Detec-
tion

F1. 168.361 119.915 MPCA
F2. 349.667 145.337 Both
F3. 95.498 62.419 MPCA
F4. 1252.578 247.136 Both
F5. 121.629 79.065 MPCA
F6. 71.819 38.1672 MPCA

Table 1: Comparison of errors between Single PCA and
Multi-PCA

(a) Actual Fault data (Flow Speed variable) (F5)

(b) Reconstruction of Flow Speed by Single PCA

(c) Reconstruction of Flow Speed by Multi-PCA

Figure 8: Comparison of reconstructions by the single PCA
and Multi-PCA

3.2 Root cause analysis results
Root cause analysis provides insight into which particular
variable is contributing to the anomaly. RCA provides a con-
tribution plot which indicates how each variable is contribut-
ing in magnitude to the anomaly. Fault F5 is used to demon-
strate the root cause analysis performed using Multi-PCA
approach and results for the same are as depicted in Fig.11.

The scatter plot (top left corner) is a plot of the sample
error for F5. The bar graph indicates the magnitude of con-
tribution of any variables to the fault and weighs them in
decreasing order. The top five variables contributing to the
fault are identified (Note that the contributing variables are



(a) MPCA fault detection in cluster 1

(b) MPCA fault detection in cluster 2

(c) MPCA fault detection in cluster 3

Figure 9: Test for false positives in the Multi-PCA

(a) MPCA fault detection in cluster 1

(b) MPCA fault detection in cluster 2

(c) MPCA fault detection in cluster 3

Figure 10: Test case with Deliberate Bias added (Multi-
PCA)



(a) RCA

(b) Variable 24 in train and test dataset

Figure 11: Root Cause Analysis for fault F5

those of the raw dataset (Rm) and not of the principal com-
ponents; All aspects of fault detection are carried out in the
raw un-transformed space itself). In order to provide further
insight to the subject matter expert (SME), the steady state
signal and the aberrant signal are compared as shown in the
bottom section of Fig.11. RCA presents the user with a tool
to interactively detect the variables contributing to a fault.

4 CONCLUSION
This paper has successfully demonstrated the superiority of
the Multi-PCA approach over the single PCA in an indus-
trial case study of a gas turbine. The Multi-PCA approach is
able to detect all six faults of the gas turbine. The Multi-PCA
approach is also able to detect sensor bias issues in a dataset.
This novel approach of feature selection, data clustering fol-
lowed by PCA model building was found to be quite robust
for industrial applications.
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