
Case-Based System of User Interface Reverse Engineering

Pavel Myznikov
Novosibrisk State University
1 Pirogova str., Novosibirsk

630090, Russia
miznikov72@gmail.com

Abstract

The paper is devoted to the implementation of case-based
reasoning in reverse engineering of graphical user interfaces.
In particular, web interfaces are considered. We suggest au-
tomating HTML/CSS markup building with aggregation of
code samples from previous cases. The proposal is based
on the hypothesis that analogy is employed to conceptualize
HTML markup construction. The article considers the origi-
nal theory of building an image structure, the modification of
the case-based reasoning approach and the results of practical
experiments.

Introduction
Web-technology is one of the most developed areas of mod-
ern computer science. It is used not only in website develop-
ment but also as an important node of any IT-infrastructure.
Consequently, the whole information technology industry
uses web-development in one form or another.

Nevertheless, automation of web-development itself re-
mains incomplete. One of the key tasks – creation of
html/css markups – does not have an extensive solution
yet. Some properties of this process prevents using clas-
sical methods of automation. These properties are: non-
formalized requirements for a layout, variability of indus-
trial standards for code writing, and, finally, cross-browser
and cross-platform compatibility.

The impact of automation of html/css markups building
is not limited to speeding up a process of web-applications
development. It also makes the development more flexible
allowing to scale results, verify hypotheses and help testing
applications.

We can expand the results of the work to a more general
domain: any kind of technologies where markup languages
are used for building GUI.

A methodological basis of the work is the Case-Based
Reasoning (CBR) approach (Kolodner 1992). Briefly de-
scribing its essence, one can say it is a way of solving prob-

Copyright c© 2020 held by the author(s). In A. Martin, K. Hinkel-
mann, H.-G. Fill, A. Gerber, D. Lenat, R. Stolle, F. van Harmelen
(Eds.), Proceedings of the AAAI 2020 Spring Symposium on Com-
bining Machine Learning and Knowledge Engineering in Practice
(AAAI-MAKE 2020). Stanford University, Palo Alto, California,
USA, March 23-25, 2020. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

lems with adaptation of similar problems from the past to a
current situation. This approach has been chosen due to the
hypothesis that formalization of images (which is, in fact,
creation of html markup) using transductive reasoning, or
reasoning by analogy, produces a result, the most similar to
what a human does. Also, such a scheme can solve the prob-
lems with the automation described above.

The state of the art solutions offer to generate code with-
out human involvement. They work as black boxes, where
the final result totally depends on the collected dataset. The
CBR approach is to fill this gap with the acquisition of ex-
perts’ knowledge in case storage. The ultimate role of CBR,
therefore, is to help specialists to formalize their knowledge
in a relatively small dataset and then automatically combine
complex interfaces in such a way as if the specialists did it
manually.

Related work
To fill a gap in knowledge for readers who are not familiar
with the field, we overview two types of related work. The
first one is the papers about interfaces reverse engineering:
they are the benchmarks which we compare our approach
with. The second one is an outline of CBR. Since this is a
core of the given approach, this information is crucial for
understanding the paper.

Interfaces reverse engineering
We consider two types of interfaces that are typical objects
of the reverse engineering task: mobile interfaces and web
interfaces.

Mobile interfaces Mobile development is supposed to be
a more common area for interfaces reengineering than web.
It can be explained by the fact that mobile interfaces are usu-
ally relatively simplier and more unified, while web pages
have a great variance of different layouts. Here we point at a
few mobile interface reverse engineering researches that we
consider as robust baselines in terms of comparing OCR and
code generation parts.

The framework of (Nguyen and Csallner 2015), RE-
MAUI, is conceptually similar to our approach, especially
in the OCR part. REMAUI is also faced with the problem of
false-positive candidates and contains a merging step while

parsing an input. In both questions, they use a set of heuris-
tics specific to a mobile domain. Surely, there is a difference.
Firstly, our OCR algorithm is mainly focused on image de-
tection rather than text detection. Secondly, we suggest an-
other model of hierarchy building. However, we can state
that the idea of filtering candidates in the OCR stage was
added to our framework after familiarization with their pa-
per.

Based on REMAUI, (Natarajan and Csallner 2018) de-
veloped a tool – P2A – for generating a code for animated
mobile application. This is the next step of the problem: not
only to recognize a layout but also to find a relation between
two similar interfaces screenshot. What is important is that
this tool implies an interaction with a user while performing
a task as well as our approach. The difference is that we sug-
gest a long-term setting of the system in the beginning but
the absence of it later, while P2A offers a user’s involvement
in each session of image processing.

The work of (Chen and Burrell 2001) is devoted to solv-
ing a very specific subtask of mobile interface reverse en-
gineering: automatic conversion of an Android application
into an iOS application and vice versa based on interface
screenshots. Having such restricted input and output of the
task, the authors were able to implement a more powerful
model. Namely, they reduced the task to component detec-
tion and component classification, where for the second part
convolutional neural networks were used.

Web interfaces Further, we would like to focus on web
reverse engineering, because in the case of solving this task,
a possible outcome can be more considerable, as web tech-
nologies are applied in an extremely wide range of domains.
Researches in this field are not so numerous, however.

Asiroglu in (Asiroglu et al. 2019) presented a quite un-
usual reverse engineering case. Their tool accepts a hand-
drawn sketch and generates an HTML document using a
deep convolutional neural network. Such an application
seems very helpful in the industry. Unfortunately, it cannot
be used in solving the given research problem, because in
our case, we should detect exact features of the interface,
e.g. color, font, size, etc., while that tool perceives a com-
mon idea of an interface.

The most recent successful case of solving the problem in
the industry is the result of UIzard Technologies company
(Beltramelli 2017) with the title “pix2code”. The authors
note the similarity of the task of generating a code based
on an interface screenshot with the task of generating a text
in a natural language based on an image. Consequently, they
use a similar method: the basis of the solution is a cascade
of long-short term memory recurrent neural networks. At the
moment, this project is only on a proof-of-concept stage, so
it is too early to make valid conclusions about the viability
of the idea.

As you can see above, there are many points of view on
the interface reverse engineering problem. Each of them is
suitable for specific conditions and goals. The contribution
of the given paper is building a reverse engineering frame-
work more as an expert system rather than an automation
tool. It means that compared with alternatives, it can eventu-

ally generate less accurate results in terms of pixel-to-pixel
similarity, but an important thing is that specialists can con-
tribute their knowledge in a case storage, thereby managing
a style or methodology that they expect to see in the final
result.

Case-Based Reasoning
As mentioned above, case-based reasoning is a core of the
approach. This section outlines basics of CBR.

The origin of CBR is the work of Roger Schank (Schank
1982). His idea is representing knowledge as memory or-
ganization packets (MOPs) that hold results of a person’s
experience. When a person solves a problem, he or she uses
MOPs to reapply a previously successful solution scheme in
a new similar context. This approach contradicts the rule-
based approach, where a person uses predefined scripts for
all cases. You can find more information in (Watson and
Marir 1994).

A lot of works devoted to this approach were written
in the 1990s (Kolodner 1992; Watson and Marir 1994;
Aamodt and Plaza 1994; Ram and Santamarı́a 1997). In
the 2000s case-based reasoning was implemented in differ-
ent domains: medicine (Gómez-Vallejo et al. 2016; Delir
Haghighi et al. 2013), business (Chou 2009; Chang, Liu,
and Lai 2008; Carrascosa et al. 2008), finance (Sartori, Maz-
zucchelli, and Gregorio 2016; Sun et al. 2014), government
(Lary et al. 2016), education (Zeyen, Müller, and Bergmann
2017), information technologies (De Renzis et al. 2016;
Navarro-Cáceres et al. 2018; He 2013), systems design
(Shen et al. 2017), geosciences (Lary et al. 2016).

In short, CBR is a method of solving a problem by adap-
tation of solutions to similar problems in the past to a current
situation.

The core concept in CBR is a case. A case is a threesome
of elements:

• Problem is a state of the world when the case occurs.
• Solution is a suitable answer for the problem in the given

context.
• Outcome is a state of the world after the problem is

solved.

The process of finding the solution is called a CBR-cycle
that consists of 4 stages (Kolodner 1992):

1. Retrieve. The best matching case is extracted from the
case base.

2. Reuse. The solution to the case retrieved is adapted to
solve the current problem.

3. Revise. The adapted solution is tested: if it is not satis-
factory, then either additional cases are retrieved, or the
retrieved solution must be adapted again.

4. Retain. The case with the give solution is added to the
case base.

Task definition
When defining the task, we aim to reproduce the way that a
human performs HTML markup building. All criteria, con-

Figure 1: CBR cycle according to Aamodt and Plaza
(Aamodt and Plaza 1994)

strains and conditions given below are based on how the in-
dustry operates. For more information, see (Ali 2017).

The following life-cycle of interaction with the system is
suggested. In the very beginning, an expert (or a group of ex-
perts) populates a case storage with code templates to setup
the system. Or, they can use a ready case storage populated
with someone else. This step is required to be done only
once. Then, the system is used to get a design of interface
as an input and generate code automatically. At this point,
we don’t expect an absolutely accurate result. A specialist,
in the end, makes final improvements in the code, or uses it
as a basis for more high-level tasks.

Consequently, the main requirements to an image pro-
cessing part are that the algorithm must recognize an image
structure, find as many features (color, type, margins, etc.)
of objects as possible, and generate the code implementing
the structure recognized. Wherein, it is not necessary to

• recognize all features
• recreate the picture pixel-to-pixel

The introduction and related work sections contain con-
ditions that should be considered in solving the task. It is
necessary to make a set of requirements for the system such
that it would be possible to get positive results in these con-
ditions.

• Condition 1. Non-formalized requirements. An image
itself does not contain complete information about what
should be a final HTML-markup. Therefore, it must be
available to include additional knowledge about the re-
quirements for the system.

• Condition 2. Variability of industrial standards to
writing the code. There are a few methodologies
of HTML-markups (adaptive, BEM (block-element-
modificator), bootstrap and so on). Moreover, as a rule,
each developer’s team has its own standards. Thus, the
system must generate code in several styles and standards.

• Condition 3. Cross-browser and cross-platform com-
patibility. HTML-code must be not only valid, but also

Figure 2: Scheme of generation HTML code based on a
bitmap. 1. Extraction elements. 2. Building a hierarchy of
elements. 3a and 3b. Transforming a hierarchy to html doc-
ument using a case storage. 4. Assembling final files.

identically processed in all modern browsers and operat-
ing systems.
In addition, we set input constraints on the current stage.

An image must not include
• gradient background
• animation elements
• popup elements

In the future, we intend to make an algorithm working
beyond these conditions.

Architecture
The basis of the architecture is an attempt to recreate the
process of writing code by a human. The hypothesis is, a
human uses transductive reasoning when formalizing visual
information: one extracts structures of different levels from
an image and describes this structure by analogy with one’s
own or others’ previous experience.

In particular, such a situation is observed in writing
HTML-code. Meeting an unknown layout pattern, a special-
ist finds in the literature, how to implement it on HTML.
Further, referrals to directories are becoming less and less,
but the principle remains the same: facing another pattern, a
human extracts from memory a suitable example and adapts
it to a current situation.

The process is implemented in the following way (Fig. 2):
1. The elements are extracted from the image (text, pictures,

blocks, etc.).
2. The extracted images are combined in a tree-like structure

according to a special algorithm.
3. A prefix tree traversal is performed; on each iteration,

there is a request to the case base to find a suitable HTML
description of an architectural pattern in the tree node.

4. Artifacts received on the previous step are saved in files.
The next sections are devoted to the description of these

steps.

Image structure building
The goal of this step is to receive a so-called structure of
a bitmap, i.e. a mathematical object describing a mutual
arrangement of image parts. In (Myznikov 2018), we de-
scribed an approach to solving this problem. We detect bor-
ders of objects (embedded images, texts, background) and
then use a greedy algorithm to build a hierarchy of these
objects (see algorithms 1 and 2). The hierarchy then is pro-
cessed with the CBR cycle (see the next section).

Algorithm 1 Algorithm of hierarchy construction
Require: nodes – set of elements ordered by horizontal and

vertical axes of the top left coordinate
Ensure: |nodes| == 1 and nodes1 is a root node of the

tree containing all elements from the origin set
1: while |nodes| > 1 do
2: for orient← [HOR,VERT] do
3: i← 0
4: while i < |nodes| do
5: suitNode← findNode(nodesi, orient)
6: if suitNode is not NULL then
7: if nodei is composite then
8: nodesi.addChild(suitNode)
9: else

10: newNode← new Node
11: newNode.addChild(nodesi)
12: newNode.addChild(suitNode)
13: newNode.orientation← orient
14: nodesi ← newNode

15: nodes← nodes \ suitNode
16: i← i + 1

Development of the CBR-system
Remember that generation of code is performed with the
prefix tree traversal, where a tree is an image structure. On
each iteration, the CBR-cycle runs. We need to define the
problem, solution, and outcome in the context of the task. In
other words, to describe a case format.
• Problem is a features vector of a node and its children.
• Solution is templates of HTML and CSS code, that im-

plement markup of the structure described.
• Outcome is HTML/CSS code generated from the tem-

plate applied to a specific context.
Thus, when each node of a tree is processed, a “problem”

is formed: description of the current element and elements
on a lower level in an image structure. In storage, there are
cases in which problems are typical cases of elements lay-
out, and solutions are typical ways of markup. The task of a
CBR-cycle is to get HTML/CSS code to build a markup of
a current structure using the solution stored. Let us describe
the cycle in detail. As a notation, denote the case processed
as new case. Further terms will be included as they appear.

Algorithm 2 Search for a suitable node (findNode)
Require: nodei – a node for that a suitable node is be-

ing found, nodex1 , nodey1 – a left top coordinate,
nodex2 , nodey2 – a right bottom coordinate

Require: orientation – a direction of joining nodes
Ensure: nodej is a node demanded or NULL if there is no

such a node
1: if orientation is HOR then
2: nodej ← the next node to the right of the nodei
3: else if orientation is VERT then
4: nodej ← the next node to the bottom of the nodei
5: x1 ← min(nodex

1

i , nodex
1

j)

6: y1 ← min(nodey
1

i , nodey
1

j)

7: x2 ← max(nodex
2

i , nodex
2

j)

8: y2 ← max(nodey
2

i , nodey
2

j))

9: R← rectangle (x1, y1) (x2, y2)
10: for all nodek ∈ nodes do
11: if nodek ∩R 6= ∅ then
12: nodej ← NULL

Retrieval phase A new case has a problem but no solu-
tion and outcome. The task of this stage is to retrieve cases,
which are the most similar to the problem of a new case. In
general, it is a task of n-class classification, where n is the
number of cases in storage. On the proof-of-concept stage,
we choose the method of k-nearest neighbors with Euclid
distance. For this purpose, we vectorize and normalize prob-
lems. This means that first, all categorial features are trans-
formed to a numerical type, second, absolute values are re-
placed with relative ones by the formula: xi = xi

xmax−xmin
.

Then, calculate a distance between the given vector and vec-
tors in a case base d(x, y) =

√∑n
i=1(xi − yi)2 and select

the case, where distance is minimal. In terms of CBR, this
case is called retrieved.

Adaptation phase The adaptation stage is performed with
an algorithm, receiving a problem of a new case and a solu-
tion of a retrieved case and returning an outcome. A case
containing a problem of a new case, solution of a retrieved
case and the generated outcome is a solved case, and the
solution is called suggested.

In the current work, a derivative type of adaptation is sug-
gested, that means an old solution is to be regenerated in
new conditions. Since a solution is a code template, a re-
sult is built with using templating language. The difficulty
is that the results of different cases may conflict with each
other during the processing. It is especially true for conflicts
in CSS code: situations when different results describe the
same class differently. That is why conflict resolution is an
important part of the adaptation stage.

The base of conflict resolution is a resolving of three
cases: 1) absence of conflict; 2) a complete conflict, that is
classes describe incompatible styles; 3) one class is a special
case of another. The following strategies are applied accord-
ingly: 1) the code is saved as is; 2) different classes with
own styles are created, and appropriate replacements in an

Table 1: Differences of local and global storages

Local storage Global storage
Stored in RAM Stored in external mem-

ory
Destroyed after a docu-
ment is processed

Exists regardless of
documents processing

Filled during a docu-
ment processing

Filled with a special
procedure before docu-
ments processing

Cases have a higher pri-
ority when extracting

Cases have a lower pri-
ority when extracting

HTML-document are made; 3) a new class is added to a
styles set, which is a special case, and appropriate inserts
in an HTML-document are made.

Evaluation phase In the classic CBR, an evaluation step
serves as validation of the suggested result. A case that
passed the test is called tested, and the solution is approved.
Regarding this work, the task of evaluation of the quality of
HTML/CSS code deserves a separate study. In the current
state of the research, this step is skipped, and validation of
the result is resolved for the whole document and not on each
iteration of a CBR-cycle.

Updating phase The goal of the last step of the cycle is
to save an approved solution in case storage so that it can
be reused in the future. In the current work, this step differs
from the classic approach. Unlike using a centralized case
storage, the CBR-system developed maintains a “global”
and few “local” case storages (see table 1). The global case
storage is used for all images. The local ones are used only
in processing a specific document. We can say that a “local”
storage is a context of a document: it contains the results of
solved problems during its processing.

Specifically, a tested case is always saved only into a local
storage. Wherein, on a retrieval step, a search is performed
in both global and local repositories, where local ones have
priority. This approach has several advantages:

1. A risk of different code generation for the same blocks of
an image is decreased. The system may process identical
blocks differently, because noise on an image can affect
retrieval of a suitable case. At the same time, the size lim-
itation of a local storage prevents generating redundant
solutions.

2. System performance is increased:
(a) a global storage is located in external memory, while a

local one is in RAM; as a result, the number of requests
to a hard disk reduces

(b) graphical user interfaces have a property to contain a
lot of similar blocks; when processing the next block, a
search in a relatively small local storage, which already
contains a suitable case, is performed much faster than
a repeating search in a global storage; also, an adapta-
tion stage requires less resources than initial adaptation
of an “unprepared” case.

3. There is no “clogging” of a global storage with specific
cases, which, first, positively influences the size of global
storage, and second, it reduces a level of overfitting of the
system.

In other words, a global storage serves as a source of cases
that have solutions of code generation of a typical layout.
Then, local storage is used for accurate and rapid adaptation
of these solutions in the context of a specific document.

Case storage population The case storage is populated by
experts with a share of automation. Namely, a set of cases
with their problem parts is built automatically, and corre-
sponding solution parts are filled by specialists. The follow-
ing are the steps for generating cases:

1. A list of real websites is collected.

2. DOM-trees of random pages are saved.

3. Trees are split by sub-trees with prefix traversal of a whole
tree and selecting each node with its children.

4. A given set of sub-trees is clustered with DBSCAN algo-
rithm, when tree-edit distance is used to define the simi-
larity between objects. (See tree-edit distance overview in
the section below.)

5. From each cluster, a random object is selected. The se-
lected objects form the case storage, where each object is
a problem part of a single case.

While managing parameters eps and min samples of DB-
SCAN, one can control the size of a case storage. The bigger
the case storage, the more accurate the system, but there is
more work for experts. One must find a right balance be-
tween these two criteria to set up the system adequately to
the existing conditions. Then, when the set of cases with
their problems is built, experts can populate it with solutions
- HTML/CSS codes.

Results and further work
Before the experiment evaluation, let us illustrate how the
system works in practice.

As an example, let us consider a page of Novosibirsk State
University site.

As an output of the first stage of image processing, ele-
ments were extracted and grouped into nodes (Fig. 3). Then,
the algorithm (described earlier in the paper) created a tree-
like structure (Fig. 4). We estimate that the result is of good
quality, because despite of some mistakes (wrong font was
selected, some pictures were missing, tiny errors in size ex-
isted), the system managed to solve the main task: to recreate
a structure of elements and generate human-like code (Fig.
5).

Evaluation method
The question of evaluation is open. What should we compare
to estimate the result? One option is to compare images: an
initial screenshot and a screenshot of the interface generated
by the system. It is probably the most obvious way but as we
stated in the task definition part, we do not aim to recreate an

Figure 3: The first step of processing: elements detection.
The processed image (left) and selected elements and nodes
(right). The nodes are bounded with colored boxes.

Figure 4: The second step of processing: structure build-
ing. The tree represents hierarchical relations between ele-
ments.

Figure 5: The final result. A web-page image generated by
the system.

Figure 6: Top-left parts of the input image (left) and the gen-
erated result (right). Some features like margins, fonts and
others have been incorrectly reproduced. But in general, the
layout is generated correctly.

interface by pixel-to-pixel: it is much more important to rec-
ognize the idea of the layout. Another option is to compare
source codes. We can collect a base of real applications with
their source codes, make screenshots, generate a code, and
find the difference between the texts. This way is too sensi-
tive to implementation specificity. There are numerous ways
to write a code for the same interface and there is no argu-
ment to consider the result incorrect if the generated code
differs from the real one.

We believe the best way is to compare tree models of the
source codes, because a tree model represent the way how a
code is organized. We collect the data with crawling web
pages so that among the screenshots we get HTML code
and extract the DOM model from them. As a rule (except
some tricky cases), the DOM model adequately describes
elements structure. The idea is to map structures received by
our algorithm with DOM trees and roughly estimate their
similarity. Such a procedure allows us to evaluate our ap-
proach, although we understand that it is limited only on
a specific subset of images (only web interfaces) and also
some technical tricks of web technologies can affect the cor-
rectness of DOM trees and thereby decrease the estimates.
Nevertheless, it is the best way of evaluating the method so
far, which can prove the viability of the solution and outline
the next steps.

Selection of a measure
The crucial thing is the selection of a quality measure. There
are few approaches to comparing trees: some of them count
operations needed for the transformation of one tree to an-
other; others compare the longest common paths from a root
to a tree node; also there are variable-length doesn’t care
(VLDC) based methods.

We select two measures: edit distance and bottom-up dis-
tance.

Tree edit distance. The review of edit distance methods
can be found in the survey of Philip Bille. This is how he
defines the problem:

Given T is a labelled ordered tree (ordered means that
order among siblings matters). Define tree operations as fol-
lows:

• Relabel. Change the label of a node.

• Delete. Delete a non-root node v in T with parent v’ keep-
ing children of v order.

• Insert. Insert a node v as a child of v’ in T making v the
parent of a consecutive subsequence of the children of v’.

Assume there is an edit cost is c : V × V → R. c(v, w)
denotes relabel, c(v,⊥) denotes delete and c(⊥, w) denotes
insert operations. Given an edit script S between T1 and T2

is a sequence of edit operations s1, s2, . . . , sn, si ∈ V × V
and cost of S is d(S) =

∑n
i=1 c(si). Denote an optimal

edit script between T1 and T2 is Sopt(T1, T2) : d(Sopt) =
minSt d(St) and d(Sopt) is a tree edit distance. (Bille 2005)

Based on the survey (Bille 2005), we considered that the
best solution of the tree edit distance problem for our case is
the Klein’s algorithm (Klein 1998), which requires a worst
case time bound of O(|T1|2|T2| log |T2|) and a space bound
of O(|T1||T2|).

In our case, we suggest the following edit cost function.
First, we denote a fixed finite alphabet Σ containing values
for labels:

Σ = {t, p, i}
where t stands for an element with text, p stands for an ele-
ment with an embedded picture, and i stands for an internal
node.

We denote edit cost as follows:

c(v, w) =

1, if v 6= ⊥ ∧ w = ⊥
0.8, if v = ⊥ ∧ w 6= ⊥
0.1, if v 6= ⊥ ∧ w 6= ⊥ ∧ v, w ∈ {p, t}
0, otherwise

(1)

Also, denote that a tree received by our algorithm would
be the first parameter, and a tree from a data set would be
the second one.

This edit cost function penalizes the method the most if
a resulted tree misses any node, a little less if it contains an
extra node and very little if it mixes up a text with a picture.
You can mention that it does not penalize for mixing up an
internal node with no internal, because in this case the al-
gorithm either misses or adds an extra node, which already
implies a big penalty.

Bottom-up distance. This method is presented in the
work of Valentie (Valiente). The complexity of the algo-
rithm is O(|T1||T2| log(T1 + T2)). For two trees T1 and T2

the bottom-up distance equals 1−f/max(|T1|, |T1|), where
f is the size of the largest common forest in T1 and T2. We
slightly change this formula and make it asymmetric:

basym(T1, T2) = 1− f/|T2| (2)
Edit and bottom-up distances as defined above can be

roughly interpreted as “precision” and “recall” respectively
in terms of machine learning evaluation. Technically, they
are not the same, but it gives us a good idea of how to read
an experiment results. Indeed, for a tree that correctly rep-
resents a part of another tree but completely does not con-
tain another part, edit distance would be relatively low, while
bottom-up distance would be relatively high. Otherwise, if a
tree contains all nodes of another tree, but the structure is
different and some extra nodes exist, edit distance would be

relatively high and bottom-up distance would be relatively
low.

To estimate the approach from different points of view we
use both measures as well as the F -score that generalizes a
common penalty. The problem of aggregating the scores is
that they have different scales: [0,+∞) for an edit distance
and [0, 1] for a bottom-up one. We solve this problem by
transforming an edit distance measure. In the beginning, we
normalize its value by the size of a sample tree:

dnorm(T1, T2) =
d(Sopt(T1, T2))

|T2|
(3)

It allows us to compare edit distance for trees of different
sizes but the measure is still not limited from above. There-
fore, we apply the logarithm to the measure:

dlog(T1, T2) = − log(
1

1 + dnorm(T1, T2)
) (4)

As d is always positive, the domain of dlog is [0, 1). More-
over, the logarithmic form of the measure perfectly suites
our idea about estimating the method: we assume that the
more trees differ, the less important the exact value of the
difference.

Finally, we can denote the F -measure. In order to move
from cost scores to measure quality, we subtract distances
from one.

F = 2
(1− b) · (1− dlog)

(1− b) + (1− dlog)
= 2

(1− b) · (1− dlog)

2− b− dlog
(5)

Data set collection
We used Alexa service 1 to get a list of 1000 the most
popular websites. Then we made screenshots of the main
and two random pages of each website. Also, we crawled
HTML/CSS codes of each page and transformed them into
trees using DOM parser in Python. Due to technical restric-
tions in some cases, we were only able to collect a dataset of
2640 examples.

In addition, to make the experiment more useful and get
more insights we scored each web page with a measure
“Text-to-Image ratio”:

tti =
T

T + I
(6)

where T is the number of nodes with text content and I is
the number of nodes with embedded pictures.

The reason why we use this score is to estimate how a
share of text and images affects the result and to define the
next steps. It is important to understand which part of the
method is the most problematic, and where efforts should be
focused to increase the quality as much as possible.

Experimental results
In general, results are as follows (see Table 2):

1https://www.alexa.com/topsites

Table 2: The experiment results

Mean Variance
Edit distance 0.28 0.028

Bottom-up distance 0.15 0.043
F score 0.78 0.033

Figure 7: Mean and variance of edit and bottom-up distances
depending on “Text-to-Image ratio”

The mean of F-score is 0.78, and the variance is 0.033,
which appears to be a good result. Note, that the bottom-
up distance is much better than the edit distance. It means
that the recognition part, on average, works better than the
structure building part.

Let us analyze the dependence of scores on “Text-to-
Image ratio” (figures 7 and 8).

We see that the biggest issues are with the cases when an
image has both text and embedded pictures, approximately
in a proportion of seven to three. Comparing extreme cases,
when an image consists of mainly embedded pictures or
mainly text, in the first case the approach works far better
than in the second one. Herewith, edit distance is decreasing
when moving from mixed cases to more text-based, while
for the bottom-up distance this effect is not so strong.

Also note the heteroskedasticity of the data: the variance
is bigger in “mixed” cases and smaller in extreme cases.
That is, the method is more unpredictable when a picture
has diverse content.

Based on these outputs, we make the following conclu-
sions:

• The method demonstrated satisfactory results.

• The results can be advanced by applying forces in the fol-
lowing areas:

– enhancement of the text detection part

– improvement of the processing of the cases when an
image has diverse content

Figure 8: F-score mean and variance depending on “Text-to-
Image ratio”

Next steps

In addition to making improvements from the previous sec-
tion, the next steps include:

1. Development of a procedure of automatic filling of case
storage.

The current paper considers the development of a sys-
tem where case storage is populated manually by experts.
As explained above, this approach has strong advantages.
However, in general, we would like to collect cases auto-
matically, because it would be less time-consuming and
less prone to human errors. Our suggestion is to analyze
existing web-sites elements with one of the methods of
clustering and use centers of clusters as reference cases.

2. Development of a better similarity measure.

One of the crucial elements of a case-based reasoning so-
lution is the selection of an appropriate similarity mea-
sure. The current version uses a simple KNN principle.
Consequently, there is room for optimizing the measure
construction, because the nearest neighbors algorithm is
insensitive to categorical features. As categorical features
are the majority of elements properties processed, we are
planning to use classifier models based on decision trees.

3. Development of a revise stage in the CBR-cycle.

When building a CBR cycle, the revising stage has been
skipped, because the evaluation of HTML document cor-
rectness is an unsolved problem. This question should be
investigated to make the cycle complete.

In conclusion, we developed a system that generates
markup language source code for a given interface screen-
shot. The feature of the approach is using experts’ knowl-
edge that is kept in a specific case storage. The experiments
demonstrated the satisfactory quality of the current solution
and provided grounds for the further development.

References
Aamodt, A., and Plaza, E. 1994. CBR: foundational issues,
methodological variations and system approaches. AI Com-
munications 7(1):39–59.
Ali, K. 2017. A study of software development life cy-
cle process models. International Journal of Advanced Re-
search in Computer Science 8(1).
Asiroglu, B.; Mete, B. R.; Yildiz, E.; Nalcakan, Y.; Sezen,
A.; Dagtekin, M.; and Ensari, T. 2019. Automatic
HTML Code Generation from Mock-Up Images Using Ma-
chine Learning Techniques. In 2019 Scientific Meeting on
Electrical-Electronics & Biomedical Engineering and Com-
puter Science (EBBT), 1–4. IEEE.
Beltramelli, T. 2017. pix2code: Generating Code from a
Graphical User Interface Screenshot. 1–9.
Bille, P. 2005. A survey on tree edit distance and related
problems. Theoretical Computer Science 337(1-3):217–239.
Carrascosa, C.; Bajo, J.; Julian, V.; Corchado, J.; and Botti,
V. 2008. Hybrid multi-agent architecture as a real-time
problem-solving model. Expert Systems with Applications
34(1):2–17.
Chang, P.-C.; Liu, C.-H.; and Lai, R. K. 2008. A fuzzy
case-based reasoning model for sales forecasting in print
circuit board industries. Expert Systems with Applications
34(3):2049–2058.
Chen, D., and Burrell, P. 2001. Case-Based Reasoning Sys-
tem and Artificial Neural Networks : A Review. Neural
Comput & Applic 10:264–276.
Chou, J.-S. 2009. Web-based CBR system applied to early
cost budgeting for pavement maintenance project. Expert
Systems with Applications 36(2):2947–2960.
De Renzis, A.; Garriga, M.; Flores, A.; Cechich, A.; and
Zunino, A. 2016. Case-based Reasoning for Web Service
Discovery and Selection. Electronic Notes in Theoretical
Computer Science 321:89–112.
Delir Haghighi, P.; Burstein, F.; Zaslavsky, A.; and Arbon,
P. 2013. Development and evaluation of ontology for intel-
ligent decision support in medical emergency management
for mass gatherings. Decision Support Systems 54(2):1192–
1204.
Gómez-Vallejo, H.; Uriel-Latorre, B.; Sande-Meijide, M.;
Villamarı́n-Bello, B.; Pavón, R.; Fdez-Riverola, F.; and
Glez-Peña, D. 2016. A case-based reasoning system for
aiding detection and classification of nosocomial infections.
Decision Support Systems 84:104–116.
He, W. 2013. Improving user experience with case-based
reasoning systems using text mining and Web 2.0. Expert
Systems with Applications 40(2):500–507.
Klein, P. N. 1998. Computing the edit-distance between
unrooted ordered trees. In ESA.
Kolodner, J. L. 1992. An introduction to case-based reason-
ing. Artificial Intelligence Review 6(1):3–34.
Lary, D. J.; Alavi, A. H.; Gandomi, A. H.; and Walker, A. L.
2016. Machine learning in geosciences and remote sensing.
Geoscience Frontiers 7(1):3–10.

Myznikov, P. 2018. Development of the Case-Based Ap-
proach of Web Interfaces Reverse Reengineering. Vestnik
NSU. Series: Information Technologies 16(4):115–126.
Natarajan, S., and Csallner, C. 2018. P2A: A Tool for Con-
verting Pixels to Animated Mobile Application User Inter-
faces. In 2018 IEEE/ACM 5th International Conference on
Mobile Software Engineering and Systems (MOBILESoft),
224–235. Gothenburg, Sweden: IEEE.
Navarro-Cáceres, M.; Rodrı́guez, S.; Bajo, J.; and Corchado,
J. M. 2018. Applying case-based reasoning in social com-
puting to transform colors into music. Engineering Applica-
tions of Artificial Intelligence 72:1–9.
Nguyen, T. A., and Csallner, C. 2015. Reverse engineer-
ing mobile application user interfaces with remaui (t). In
2015 30th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), 248–259.
Ram, A., and Santamarı́a, J. 1997. Continuous case-based
reasoning. Artificial Intelligence 90(1-2):25–77.
Sartori, F.; Mazzucchelli, A.; and Gregorio, A. D. 2016.
Bankruptcy forecasting using case-based reasoning: The
CRePERIE approach. Expert Systems with Applications
64:400–411.
Schank, R. 1982. Dynamic memory: A theory of reminding
and learning in computers and people. Cambridge: Cam-
bridge University Press.
Shen, L.; Yan, H.; Fan, H.; Wu, Y.; and Zhang, Y. 2017. An
integrated system of text mining technique and case-based
reasoning (TM-CBR) for supporting green building design.
Building and Environment 124:388–401.
Sun, J.; Li, H.; Huang, Q. H.; and He, K. Y. 2014. Predict-
ing financial distress and corporate failure: A review from
the state-of-the-art definitions, modeling, sampling, and fea-
turing approaches. Knowledge-Based Systems 57:41–56.
Valiente, G. An efficient bottom-up distance between trees.
In Proceedings Eighth Symposium on String Processing and
Information Retrieval, 212–219. IEEE.
Watson, I. A. N., and Marir, F. 1994. Case-based reasoning
: A review. The Knowledge Engineering Review 9(4):327–
354.
Zeyen, C.; Müller, G.; and Bergmann, R. 2017. Conver-
sational Process-Oriented Case-Based Reasoning. Springer,
Cham. 403–419.

