
ARO: A Memory-Based Approach to Environments with Perceptual Aliasing

Ryan Regier, Owen Price, Alex Hadi, Zachary Faltersack and Andrew Nuxoll
University of Portland

5000 North Willamette Boulevard
Portland, Oregon 97203

engineering@up.edu

Abstract

In order to integrate machine learning and knowledge engi-
neering, it is necessary to store both learned and engineered
knowledge in a common format that can be used by an agent
to make intelligent decisions. Such integration is much more
useful in data sparse environments, where traditional machine
learning techniques fail. To this end, we define a rule struc-
ture that stores patterns of cause and effect. These rules can
easily embed expert knowledge on causal relationships. We
will then present ARO, an algorithm for learning and using
rules to navigate data sparse environments. Our results show
that ARO is more effective than other known solutions to
this problem. ARO has the additional advantages that it more
easily integrates with knowledge engineering techniques and
uses no hyperparameters.

Background
In environments with an abundance of data, machine learn-
ing agents are effective at learning patterns, even those not
known by experts in the domain. However, in data-sparse en-
vironments, traditional machine learning agents fail (Chris-
man 1992). We believe that this kind of environment could
be ideal for the integration of knowledge engineering with
machine learning techniques. One such environment is the
Blind Finite State Machine environment. In this environ-
ment, the agent navigates a finite state machine (FSM)
(Hopcroft, Motwani, and Ullman 2006) to reach a goal state.
The machine is designed so that the agent can reach the goal
from any state (no dead ends) but otherwise the transition ta-
ble is randomly generated. Upon reaching the goal the agent
is immediately moved to a randomly selected, non-goal state
and informed of its success. Thus the agent knows when it
reaches the goal but can never actually take an action in the
goal state.

The task seems trivial at first. However, it is greatly com-
plicated because the agent is only aware of the following:

• the FSM alphabet (available actions)

• a goal sensor indicating when it reaches the goal

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Specifically, the agent is not aware of the following:

• the number of states

• what state it currently is in

• the transition table of the FSM

The agent repeatedly performs the task in a given FSM and
its success is measured by how many actions it takes to reach
the goal at each iteration.

In such an environment, a traditional machine learning
agent, e.g., Q-Learning (Sutton, Barto, and others 1998), is
unable to learn effective behavior. Such an agent attempts
to learn the action that yields the maximum expected utility
for each possible sensory input. However, in this environ-
ment, all states (except the goal state) appear identical to the
agent. Furthermore, there is no reward function to indicate
to the agent that it has performed particularly poor actions
such as looping. So, the agent can only learn a single “best”
action to take in any non-goal state.

The situation changes once the agent is given additional
sensors beyond the goal sensor. Consider an environment
like Blind FSM but the agent also has a binary sensor that
tells it when it is currently in an odd-numbered state or an
even-numbered state (presuming the states were arbitrarily
enumerated). We shall henceforth refer to this as the OS-
FSM (Odd-Sensor Finite State Machine) environment. Tra-
ditional machine learning algorithms still perform poorly in
OSFSM since they can only distinguish three categories of
states: odd-numbered, even-numbered or the goal. However,
as more and more sensors are provided a traditional machine
learning algorithm becomes more and more effective. Thus,
there is a continuum from complete state aliasing (e.g., the
Blind FSM environment) to a fully observable environment.

To be successful in the Blind FSM or OSFSM environ-
ments, an agent must map sequences of experiences to ac-
tions. An experience, in this case, is the agent’s sensory in-
put and the action it selected. For example, the agent could
learn that if it takes actions a1, a2, ..., an in sequence and
does not reach the goal then it can subsequently reach the
goal in a single step by taking action an+1. Furthermore,
the agent could learn that certain sequences of actions have
more utility than others regardless of what non-goal state it
is currently at. In effect, the agent must de-alias states by



using its recent memories as an identifier.
We expect that the agent would need a significant amount

of experience in order to achieve this de-aliasing. If the agent
visits the same state through two different paths, the agent
may be unable to tell that the states are the same and must
learn separate policies for each. Overall, the agent may need
to learn substantially more policies than the number of states
in order to successfully navigate such an environment. Be-
cause of this hindrance, being able to incorporate existing
knowledge into the agent, such as through knowledge engi-
neering, could significantly improve the speed at which the
agent learns.

In previous research, an algorithm called MaRz (Ro-
driguez et al. 2017) has shown success in Blind FSM en-
vironments. MaRz performs an A*-Search (Russell and
Norvig 2009) over possible sequences of actions to find the
shortest universal sequence. A universal sequence is a se-
quence of actions that causes the agent to reach the goal from
any non-goal state, and such a sequence must always exist
in an FSM where every state has a path to goal.

However, MaRz cannot incorporate observations into its
algorithm, limiting its scope. Furthermore, the best candi-
date we see for using knowledge engineering in the MaRz al-
gorithm is through the heuristic function for the search. But
the method for converting expert domain knowledge into a
search heuristic seems non-trivial.

Other algorithms called Near Sequence Memory (NSM),
Utile Suffix Memory (USM) and Noisy Utile Suffix Mem-
ory (NUSM) have been shown to be effective in these kinds
of environments (McCallum 1995b; 1995a; Shani and Braf-
man 2005). These operate by looking for the closest past ex-
periences to the most recent events in memory. Then, these
algorithms determine which action taken in these past expe-
riences was most effective for reaching the goal. Sometimes,
the agent will randomly explore instead.

Similarly to MaRz, these algorithms do not have a clear
path to integrating expert knowledge. Since all “knowledge”
these algorithms learn is stored as chains of memories, it ap-
pears expert knowledge would have to be stored in a similar
fashion in order for these algorithms to use it. A more con-
venient algorithm would expect expert knowledge to be in
the format of a set of declarative facts.

In contrast to these other algorithms, ARO generates and
employs facts similarly to what an expert may provide, mak-
ing the learned experience of the agent and the experience of
an expert interchangeable. To this end, we will define a rule,
which records a known probabilistic pattern of cause and
effect. This more naturally fits what expert knowledge may
appear as. For example:

• Performing action a will cause x.

• If you just performed action a0 and then you saw x, then
you can perform action a1 to complete the task.

• If you see x, then performing action a will cause y or z to
occur at random.

All of these examples may be formatted as rules. We will
formally define rules later in this paper, but for now it is
imperative to more formally define the environments.

Environment
We will now formally classify the environment for ARO. We
define the environment by a tuple (M,G,O, f). The ma-
chine M is a finite state machine with state set S, alphabet
α, and transition function T such that the goal state G is
in S and there is a path from every state in S to G. The
observation set O is the set of possible observations (differ-
ent sensor values) where G ∈ O denotes the observation of
reaching the goal state. The observation function f : S → O
computes what is observed in any state where f(s) = G if
and only if s = G.

An agent in this environment is told α and G, but is oth-
erwise provided no information about the environment. The
agent is initialized in some unknown random state s0. At
any time-step t when the agent is in state st, the agent will
be told f(st). If st is not a goal state, the agent must pro-
vide an action at ∈ α. The agent will then transition to
st+1 = T (st, at). If instead st is a goal state, the agent
must provide any action, then it will be moved to non-goal
state st+1 at random. This will continue until an fixed but
unknown number of goals are reached. The objective of the
agent is to minimize the total number of time steps.

In the Blind FSM environment, O = {ε,G} and f(s) =
ε for non-goal states. In the OSFSM environment, O =
{0, 1, G}, with 0 and 1 denoting whether the state is even
or odd, respectively, and f(s) returns the parity of s for non-
goal states.

ARO Overview
We are now ready to present ARO, an algorithm designed for
navigating environments with extreme state aliasing such as
Blind FSM and OSFSM.

ARO stores previous events in units called episodes. Each
episode consists of the tuple (o, a), where o is the observa-
tion f(s) and a is the action taken after the observation. In
the OSFSM environment, an example episode may be (1, b).
In this episode, the agent was in an odd-numbered state and
took action b. When the agent reaches the goal, the action is
irrelevant, so we denote such an episode simply with “G.” In
non-goal episodes, we concatenate the tuple for brevity, so
the above episode would be denoted “1b”.

Rules
Using these episodes, the agent records patterns of cause and
effect in a structure called a rule. Rules are denoted like this
example:

1a→ 1 : 23%.

This rule states that being in an odd state and taking action
a “caused” an odd state 23% of the time. The effect part of
a rule is always in this same style, but causes may be more
complex. For example, consider this rule:

0b, 1a→ 1 : 6%.

This rule states that being in an even state and performing
action b, then reaching an odd state and performing action a
has caused the agent to reach an odd state 6% of the time.

More formally, a rule consists of three parts: a sequence
of episodes of any length known as the cause sequence, an



observation known as the effect, and a probability. The cause
sequence of a rule may be empty, which can be interpreted
as the probability that transitioning to a new state causes a
particular observation. The number of episodes in the cause
sequence of a rule is called the depth of a rule.

The three examples for rules given in the background sec-
tion may now be formally stated. We will use ∗ to denote
any possible value.
• ∗a→ x : 100%

• ∗a0, xa1 → G : 100%

• xa→ y : 50% and xa→ z : 50%

As we can see from the final example, it is often useful to
consider the set of all rules with the same cause sequence.
This lets us consider all possible outcomes from taking a
particular action. We call such a set of rules a rule set.

We used a tree structure to store rules, but this choice does
not affect functionality in contrast to similar algorithms that
use a tree-based data structure (McCallum 1995a; Shani and
Brafman 2005). So rather than explain this tree, we merely
define the function GETRULE that takes as inputs both a
cause sequence and an effect then produces as an output the
corresponding rule. We also define the function GETRULE-
SET that takes a cause sequence as an input and produces
the corresponding rule set as an output.

Since the agent does not have access to the underly-
ing FSM, it cannot compute the probabilities for rules ex-
actly. This leaves us with two choices for developing the
rules: learned knowledge and expert knowledge. For learned
knowledge, the agent estimates the probability using the rate
at which the effect follows the cause sequence in its episode
history. For example, if 0b occurs 10 times in memory and
0b,G occurs 3 times in memory, then the agent would use
the rule

0b→ G : 30%.

Expert knowledge can be used instead of this estimate if it
is provided to the agent. GETRULE does not distinguish be-
tween the source of the rule when providing it to the agent.

As noted by a reviewer of this paper, it may be necessary
to treat expert knowledge as only likely to be correct rather
than certain to be correct. To accomplish this, expert knowl-
edge can be associated with a weight, with higher weights
indicating a higher confidence in the correctness of the rule.
In this case, ARO can treat these weights like the frequency
of the observation of this pattern. These frequencies can be
added to the total frequencies of ARO’s observations in or-
der to compute the probability. For instance, say the rule
0b → 0 : 100% is provided with a weight of 8, but ARO
observes the pattern 0a, 1 twice. Then ARO would use the
rules 0b→ 0 : 80% and 0b→ 1 : 20%. Thus, over time ex-
pert rules would either be confirmed by ARO’s observations
or replaced with more accurate rules. In a sense, the weight
serves as a kind of Bayesian prior of the actual probability
of the effect following the cause. The implications of such a
system are not fully explored here.

Now that we have a method for storing patterns of cause
and effect, we can use this information to predict future out-
comes and find the move that minimizes the expected num-
ber of steps to goal.

Expected Value

Given a sequence of previous episodes that have occurred
and an observation, we can recursively compute the ex-
pected number of moves it will take to reach the goal. This is
computed under the assumption that at each choice the agent
may have in the future, it will make the best possible move.
The algorithm is below. (Note: the GETHEURISTIC function
will be defined later in the paper.)

1: function EV(Episode[] episodes, Observation o)
2: BestSum =∞
3: BestMove = ε
4: for a in α do
5: Sum = 0
6: Let next = (o, a) be a new episode.
7: Let nextSeq be episodes appended by next
8: nextRuleSet = GETRULESET(nextSeq)
9: if nextRuleSet is empty then // base

case
10: Sum = GETHEURISTIC( )
11: end if
12: for rule in nextRuleSet do
13: Let e be the effect of rule.
14: Let p be the probability of rule.
15: if e = G then
16: Sum = Sum+ p
17: else
18: Sum = Sum+ p ∗ (EV(nextSeq, e) +1)
19: end if
20: end for
21: if Sum < BestSum then
22: BestSum = Sum
23: BestMove = a
24: end if
25: end for
26: return BestSum
27: end function

This algorithm also computes the move it expects will
take the fewest number of steps to reach the goal on average,
stored in the BestMove variable. Let GETBESTMOVE be a
function that, when given the same inputs as EV, will return
the value of the BestMove variable. The action returned
by GETBESTMOVE will minimize the expected number of
steps to the goal based on what the agent has learned about
the environment, so we would expect this would minimize
the average number of steps to the goal over the long term.
ARO uses this function to determine what action to make.

There are two aspects of this policy that are not yet ex-
plained. First, we cannot compute an expected value for a
move we have never taken before. This case is dealt with
in line 10 of the code with the GETHEURISTIC function,
which we will define below. Second, there are multiple se-
quences the agent may pass into GETBESTMOVE. For in-
stance, if the most recent episodes are 1a, 0a and the last
observation was 0, the agent may call GETBESTMOVE([],
0), GETBESTMOVE([0a], 0), or GETBESTMOVE([1a, 0a],
0). Each sequence may produce a different recommendation,
and the agent must choose which recommendation to follow.
These are the corresponding topics of the next two sections.



Explore Heuristic
Let us first deal with the case where we must calculate an
expected value for a rule set containing no rules. This can
be equivalently stated as follows: ARO has never seen the
episode sequence episodes occur, then observed the obser-
vation o, and then performed some action a. Furthermore,
no expert has provided knowledge on what they expect to
occur in this scenario. Thus, taking action a can be thought
of as an “exploration” by the agent. The agent must choose
between exploring this new action and exploiting its existing
knowledge to reach the goal.

The explore-exploit tradeoff is well studied under the con-
text of the Multi-Armed Bandit problems (Berry and Frist-
edt 1985) and has several known solutions (Sutton, Barto,
and others 1998; Kearns and Singh 2002; Brafman and Ten-
nenholtz 2002). However, these algorithms are not applica-
ble because they assume that the agent always recognizes
the identity of the state it has reached. Research with regard
to explore-exploit in environments with extreme perceptual
aliasing is more difficult. Lacking an established explore-
exploit algorithm, ARO takes a simple approach that seems
effective.

To compare the value of this exploration to other actions
we have taken, we must decide the value of exploring in the
units of expected value. It is possible to find an estimate of
the expected value by using the rule set corresponding to re-
moving the first episode from episodes. However, repeating
this process can lead to infinite depth recursion. Rather than
creating a suitable base case to make the recursion finite, we
instead attempt to estimate the value that this recursion will
return. Let p denote the probability of reaching the goal ac-
cording to the 0-deep rule→ G : p. We note that if we were
to continue recursion infinitely, the probability of reaching
the goal in any step should converge on p. If we estimate that
this probability holds constant on every step, then the num-
ber of steps to goal follows a Geometric distribution with
probability p. This gives an expected value of 1

p . To prevent
dividing by 0, we add 1 to the number of goals observed
when calculating p. Hence, we can now define the heuristic
function:

function GETHEURISTIC( )
return 1/p

end function
As a benefit of this technique, we have derived a quanti-

tative value of exploration without using hyperparameters,
in contrast to traditional techniques (Sutton, Barto, and oth-
ers 1998; Kearns and Singh 2002; Brafman and Tennenholtz
2002). Thus, this is particularly suitable to online learning
and artificial general intelligence problems where hyperpa-
rameter tuning is not desirable. Also of note is that 1

p nearly
equals the average number of steps to goal over the lifetime
of the agent (they are not equal because we must add one
to the number of goals). This means that ARO’s explore-
exploit solution has an intuitive description: explore if the
alternative is worse than average.

This intuitive idea appears in other contexts. Notably, an
algorithm called POKER has been applied to the multi-
armed bandit problem where the agent is not able to test

all the arms before a time horizon is reached (Vermorel and
Mohri 2005). In this context, the value of an arm is estimated
based on the average value of other arms.

Sequence Selection
The agent may now calculate the best move given a sequence
of recent episodes. However, different sized sequences may
produce different results. If a large sequence is used, the
episode sequence is more likely to be rare in memory, pro-
ducing unreliable predictions. Furthermore, a long sequence
may contain superfluous information, which would imply
that a more common and shorter sequence would be a suffi-
cient state identifier. With a small sequence, the episode se-
quence may be too common for the agent to know where it is
in the machine or to determine if it is going in a loop, which
could cause undesirable behavior such as infinite looping.
To resolve this dilemma, ARO uses a greedy strategy of tak-
ing the episode sequence that produces the smallest expected
value and the smallest such sequence if there are multiple
options. Hence, if the agent has knowledge of a fast path to
the goal, it will take it regardless of sequence length.

This alone, however, is not sufficient to prevent loops. At
timestep t, say the sequence seq has the property EV(seq, o)
= x, where x is the minimal expected value and o is the cur-
rent observation. Hence, the action GETBESTMOVE(seq, o)
is performed. Let nextSeq be seq appended by the new
episode generated by performing that action. We found that
the expected value of nextSeq in timestep t + 1 can be
higher than x, usually from an improbable event informing
the agent that it is farther from the goal than the average case.
When this occurred, we observed that the agent would often
switch to a shorter sequence with a better expected value for
a move recommendation. However, this is not because the
agent actually knows a faster path to goal, but because the
agent effectively “forgets” that it is in a poor position. After
the agent has performed a few moves, it will again learn that
it is in a poor position and switch to a shorter sequence for a
recommendation. By repeating this behavior, the agent gets
stuck in a loop.

To deal with this issue, we force the agent to deal with
the bad event by not letting the agent switch to a different
sequence for a move recommendation. In other words, if seq
was used to find the best move at timestep t, then nextSeq
must be used to find the best move at timestep t + 1. There
are two exceptions to this rule:

1. The agent observes a goal. Because the agent is moved
randomly upon reaching the goal state, there is no infor-
mation to be gained by using a sequence with a goal ob-
servation.

2. No rules apply to the current situation using nextSeq.
This implies the agent is in a novel scenario and the cur-
rent sequence can provide no data to guide the agent.
Using these procedures, we can now fully define the pol-

icy of ARO. We define the global variable prevSeq, which
stores the sequence from the previous time step used to de-
termine which action to take, and is initialized to the empty
sequence. ARO’s policy is then described in the following
algorithm.



1  b 

2

 a 

5

 a 

goal

 b 

3

 a 

 b 

4  a 

 b 

 b 

6

 a 

 a  b 

Figure 1: An example FSM

1: function POLICY(Observation o)
2: if o = G then
3: Set prevSeq to the empty sequence.
4: return α[0]
5: end if
6: Let e be the last episode.
7: Let seq be prevSeq appended by e.
8: if There are no rules with cause sequence seq, o∗ or
seq contains the episode G then

9: Set prevSeq to the sequence of recent episodes
such that EV(prevSeq, o) is minimized.

10: If there is a tie, use the shortest possible sequence.
11: else
12: prevSeq = seq
13: end if
14: return GETBESTMOVE(prevSeq, o)
15: end function

Example
Let us use the FSM in Figure 1 as an example for ARO
to navigate. Furthermore, suppose that the environment will
provide an odd state sensor and that the following two rules
are provided by experts on this FSM:

→ 1 : 3/7; 1a, 0b→ G : 100%

Note that the first rule says odd states happen only 3/7ths of
the time. This is because the goal state should occur 1/7th
of the time and the goal is neither even nor odd. Finally,
suppose ARO randomly begins in state 6.

Being in an even state, ARO will be provided an ob-
servation of 0. Immediately, ARO will form the new rule

→ 0 : 4/7 because ARO has never seen an even state be-
fore. This probability is chosen because ARO has seen an
even state 100% of the time it was not in an odd state, and
based on the rule→ 1 : 3/7, ARO should not be in an odd
state 4/7ths of the time. At this point, ARO has seen 1 state
and 0 goals, so p = 1

2 and our heuristic is 2 moves to the
goal. (Recall that we add one to the number of goals when
computing p.) ARO will compute an expected value of 2 for
moves a and b since it has no rules to predict the outcome
of either action. In case of a tie, ARO will arbitrarily pick
the earlier move in the alphabet, in this case a. Before it re-
turns, ARO will also update prevSeq to [0a]. ARO will then
transition to state 4.

ARO again receives an observation of 0. ARO will form
the new rule 0a → 0 : 100% because of this observation.
The heuristic will also update to 3. ARO will look for all rule
sets with cause sequence 0a, 0∗ because [0a] is prevSeq.
However, since no rules apply with this sequence, ARO will
check all possible previous sequences to find rule sets. Those
sequences are [] and [0a].

First, ARO calls EV([], 0). The move b has no rule set
apply and thus has an expected value of 3, the heuristic. The
move a will find the rule set consisting solely of the rule
0a → 0 : 100%, which will cause a recursive call EV([0a],
0). In this call, ARO will find no rule sets that apply and thus
return the heuristic of 3 with BestMove set arbitrarily to a.
On return, ARO adds 1 to the return value to account for the
step of reaching that state and multiplies by p = 100%, so
a has an overall expected value of 4. Since EVreturns the
minimum value, it will return 3 with BestMove set to b.

Next, from the POLICY function, ARO will try the other
sequence by calling EV([0a], 0). Note that we already eval-
uated the result of this call in the last paragraph - returning
3 with BestMove set to a. This overlap is very common.
If EVcalls are cached, it is typically only necessary to call
EVa handful of times in order to generate all values needed
to select an action. We have also tied for best value since
both calls returned 3, so we select the move generated by
the shortest sequence, which in this case is the move b. Fi-
nally, prevSeq is set to [0b] and ARO transitions to state 5.

ARO will receive an observation of 1, creating the new
rules 0b → 1 : 100% and 0a, 0b → 1 : 100%. Again,
no rules apply so all sequences are checked. This operation
is common when ARO begins to explore but becomes rare
once ARO has gathered data. Since the agent has never seen
an odd state before, the only helpful rule is the expert rule
1a, 0b → G : 100%. It may appear that the agent can use
this rule, but this is not the case. The agent does not know
how likely it is to reach an even state by making the move
a; in fact, the agent does not even know if this outcome is
possible. As such, it will defer to the heuristic for comput-
ing the expected value of a and not use this rule at all. As a
consequence of this fact, simpler rules are vastly more im-
portant to the agent than complex ones because the former
are needed in order to capitalize on the latter. Luckily, those
rules are also the easiest for the agent to accurately learn.
The best move found will be a as proposed by the empty
sequence, so the agent will move into state 6 with prevSeq
set to [1a].



At this point, you may notice that ARO is performing a
kind of breadth first search. With very little knowledge of
how the goal is reached, this is the best strategy ARO can
perform. However, once the goal has been reached, ARO
will begin biasing its actions toward moves and sequences
of moves that are more likely to reach the goal.

Next, ARO receives an observation of 0 and creates the
rules 1a→ 0 : 100%, 0b, 1a→ 0 : 100%, and 0a, 0b, 1a→
0 : 100%. These may seem redundant, but they are all stored
independently so that each of their probabilities may change
independently in the future. The agent may now capitalize
on its expert knowledge. Using prevSeq, the agent finds b is
the best move with an expected value of 1 because of the rule
1a, 0b → G : 100%. This beats move a, with an expected
value the same as the heuristic at 5. ARO then takes move b
to reach the goal.

Upon reaching the goal, ARO will update and create sev-
eral rules. A full list of rules that ARO knows is presented
below, with rules of equal depth on the same line:

→ 1 : 3/7;→ 0 : 3/7;→ G : 1/7

0a→ 0 : 100%; 0b→ 1 : 50%; 0b→ G : 50%; 1a→ 0 : 100%

0a, 0b→ 1 : 100%; 0b, 1a→ 0 : 100%; 1a, 0b→ G : 100%

0a, 0b, 1a→ 0 : 100%; 0b, 1a, 0b→ G : 100%

Even though the agent saw 3 even states and only one odd
state, the expert knowledge provided has allowed the 0-deep
rules to converge on the correct probabilities. The agent has
very little data, so some of the rules it created are incorrect.
For instance, 0a → 0 should not have a 100% probability
due to state 2. But the agent has also correctly discovered
patterns such as 0a, 0b → 1 : 100% which it will be able to
immediately use to help navigate the FSM.

Results
To assess ARO, we compared its performance in the OSFSM
environment to that of two other algorithms: MaRz (Ro-
driguez et al. 2017) and Nearest Sequence Memory (McCal-
lum 1995b). Since these agents cannot incorporate knowl-
edge engineering no rules were provided for ARO a pri-
ori. Since we would expect that being provided expert rules
would improve performance, this data can be seen as a
worst-case outcome for ARO.

There were a few minor modifications to the implementa-
tion of ARO from the above specification to improve mem-
ory usage and run time. First, there is no need to record a
rule if a prefix of the cause sequence is unique. If the pre-
fix occurs again, we may look back through history to cre-
ate the rule on the fly. This modification does not affect the
behavior of ARO. Second, we cache the result of GETEV
and GETBESTMOVE after every goal, which dramatically
improves computation time. This technically deviates from
the specification because the value of GETHEURISTIC is
saved and not recomputed. Since 1/p trends downward as
the agent learns more, this means that the agent undervalues
explores compared to the specification. We found the overall
effect on the agent to be small.

Figure 2 shows the performance of all three agents in the
Blind FSM environment. Figure 3 shows the results for the

Figure 2: Agents in the Blind FSM Environment with 50
states and an alphabet size of 3. Data averaged from 1000
trials with random FSMs.

Figure 3: Agents in the Odd-Sensor FSM Environment with
50 states and an alphabet size of 3. Data averaged from 1000
trials with random FSMs.

OSFSM environment. These results are shown for a FSM
with 50 states and a three-letter alphabet (three possible ac-
tions per state). The abscissa measures successive trips to the
goal. The ordinate measures the number of actions required
to reach the goal on that trip.

Predictably, the number of steps to reach the goal declines
exponentially on successive trips the goal, indicating that the
agent is learning to improve its behavior. This is true for
all three algorithms. MaRz learns faster than NSM for the
first few goals but converges at a much less efficient policy.
ARO learns significantly faster than NSM and converges at
a policy with nearly identical performance to NSM.

ARO is able to learn near optimal behavior much more
rapidly than the other algorithms. These results were consis-
tent across a variety of different machines ranging from 10
to 90 states and alphabets of 2 to 9 letters (not shown).

Future Work
This work demonstrates that ARO is effective in two specific
environments with extreme state aliasing. Other tests (not in
this paper) have indicated that ARO can handle other deter-
ministic environments as well, including environments with
little state aliasing.

The most pressing concern is that it is not obvious how



best to generalize ARO to accommodate a stochastic obser-
vation function, such as a function that returns 0 or 1 at ran-
dom. With a random observation function, storing all possi-
ble rules can quickly become infeasible in terms of memory
because the number of rules with a given depth is exponen-
tial and unbounded. This is unlike a deterministic observa-
tion function, where the number of rules with a given depth
is no greater than the total number of states of the FSM - one
rule corresponding to each possible initial state of the agent
at the beginning of the cause sequence. Furthermore, ARO
has no means of recognizing that the observations it receives
are random, so it uses rules trying to predict the value of ran-
dom observations as a basis to try to reach the goal. These
factors cause ARO to perform poorly.

Another potential enhancement is to allow ARO to learn
other kinds of rules with more general causes or effects. For
example, in our previous examples of rules we used a wild-
card character for a rule. While this rule can be provided by
an expert, ARO cannot learn such a rule and must instead
learn a similar rule for every possible value of the wildcard.

ARO may also need to be adjusted to address environment
with these properties:

• a reward function rather than a single goal state

• a non-deterministic FSM

• a dynamic transition table

• continuously valued sensors

ARO’s potential extends beyond knowledge integration.
As an online algorithm, ARO can take advantage of knowl-
edge immediately and therefore could be a step towards
ways in which humans and artificially intelligent agents
work collaboratively on a given task in real time.

In addition, the development of ARO builds upon pre-
vious research to explore the application of episodic mem-
ory for artificial general intelligence (Rodriguez et al. 2017).
ARO, therefore, is likely equally applicable in that context.
In particular, the lack of hyperparameters means that it can
be applied in a general context and does not need to be re-
tuned each time it is used in a new environment.

References
Berry, D. A., and Fristedt, B. 1985. Bandit problems: se-
quential allocation of experiments (monographs on statistics
and applied probability). London: Chapman and Hall 5:71–
87.
Brafman, R. I., and Tennenholtz, M. 2002. R-max-a general
polynomial time algorithm for near-optimal reinforcement
learning. Journal of Machine Learning Research 3(Oct):213–
231.
Chrisman, L. 1992. Reinforcement learning with perceptual
aliasing: The perceptual distinctions approach. In Proceed-
ings of the Tenth National Conference on Artificial Intelli-
gence, AAAI 1992, 183–188. AAAI Press.
Hopcroft, J. E.; Motwani, R.; and Ullman, J. D. 2006. Intro-
duction to Automata Theory, Languages, and Computation
(3rd Edition). Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc.

Kearns, M., and Singh, S. 2002. Near-optimal reinforcement
learning in polynomial time. Machine learning 49(2-3):209–
232.
McCallum, A. 1995a. Instance-based utile distinctions for
reinforcement learning with hidden state. In ICML, 387–395.
McCallum, R. A. 1995b. Instance-based state identification
for reinforcement learning. In Advances in Neural Informa-
tion Processing Systems, 377–384.
Rodriguez, C.; Marston, G.; Goolkasian, W.; Rosenberg, A.;
and Nuxoll, A. 2017. The MaRz algorithm: Towards an ar-
tificial general episodic learner. In International Conference
on Artificial General Intelligence, 154–163. Springer.
Russell, S., and Norvig, P. 2009. Artificial Intelligence: A
Modern Approach. Upper Saddle River, NJ, USA: Prentice
Hall Press, 3rd edition.
Shani, G., and Brafman, R. I. 2005. Resolving perceptual
aliasing in the presence of noisy sensors. In Advances in Neu-
ral Information Processing Systems, 1249–1256.
Sutton, R. S.; Barto, A. G.; et al. 1998. Introduction to rein-
forcement learning. MIT press Cambridge.
Vermorel, J., and Mohri, M. 2005. Multi-armed bandit algo-
rithms and empirical evaluation. In European conference on
machine learning, 437–448. Springer.


