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Abstract

Unmanned Aerial Vehicles (UAV) operators must maintain
high levels of situation awareness on their area of operation.
To achieve this, they use the Command and control (C2) map,
which are shared among forces, and is regularly overloaded
with data that is irrelevant to their mission. UAV operators’
missions require distilled information at the right timing. Yet,
the existing filtering mechanisms of C2 maps are layer-based
and insufficient. We propose a new approach to automatically
and dynamically filter information items on the map based
on environmental and mission context. To achieve this, we
introduce a three-tier artificial intelligence (Al)-based algo-
rithm (GiCoMAF), where we delineate the use of machine
learning (ML) models to support UAV missions. For the Gi-
CoMAF development, tagged data was collected in simulated
experimental runs with professional UAS operators. Differ-
ent types of ML models were evaluated and fitted into the
algorithm. The models achieved a relatively high accuracy
at modeling human preference and area of interest. The ap-
proach presented in this study can be further implemented to
support other operators in time-critical spatial-temporal prob-
lems.

1 Introduction

February 2010, Afghanistan, an American helicopter fired
on three suspected trucks, killing 23 innocent civilians, and
wounding 12. The attack was approved based on informa-
tion provided by operators of an unmanned aerial vehicle
(UAV) who did not report the presence of civilians in the
trucks (Filkins 2010). In a later news report, Shanker and
Richtel (2011) cite Army officials claiming that the leading
cause for the tragic incident was information overload that
lead to poor Situation Awareness (SA). SA can be defined
as one’s perception of the environment around him or her at
any given point in time (Endsley 1988). Thus, although there
were evidences for children in the trucks, the UAV operators
“did not adequately focus on them amid the swirl of data”.
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The use of UAVs in the military domain is increasing, due
to their ability to perform missions without risking human
operators (Izzetoglu et al. 2015). UAV operators monitor the
payload, often a camera sending video feed, in various mis-
sions (e.g., reconnaissance, guidance of forces; Marusich et
al. 2016), in addition to multiple tasks (e.g., navigation and
orientation, flying the vehicle, radio communication; Ever-
aerts 2008). A command and control (C2) map, often in a
different display, is used for orienting and making sense of
the payload’s outputs. The C2 map shows mission critical
information and intelligence-related information items such
as markings of potential targets, location of allied forces and
so forth. A cognitive work analysis of UAV operators work-
flows, emphasizes frequent and continuous use of the C2
map during missions (Back et al. 2019). The C2 map, how-
ever, being shared among military elements, is showcasing
information that is irrelevant to the UAV operators. It has
been indicated (Endsley 2000; Sandom 2000) that informa-
tion overload is a contributor to poor Situation Awareness
high workload and low overall performance. According to
Back et al. (2019), the information clutter in C2 maps may
often lead operators to neglect the map, and rely solely on
the payload’s feed, and may also lead to fatal results as the
tragic incident of February 2010. Answering Adams’ (2015)
call for incorporating human factors limitations in the design
of UAV3s, it serves as an incentive to address the information
overload problem. Some advanced solutions for improving
UAV operators’ SA had been suggested, e.g. using synthetic
vision (Calhoun et al. 2005). Such solutions, however, may
require costly adjustments of the vehicle’s payload.

For decluttering, most C2 maps are based on information
layers. Layers can manually or automatically (via a set of
rules) be hidden, shown or dimmed. The layer mechanism
reduces the information overload problem by hiding or dim-
ming layers, yet, at the same time, it may cause information
deprivation due to an inherent tradeoff; any action performed
on a layer affects it entirely. Thus, it is impossible to hide
irrelevant information items in a layer, while showing rele-
vant ones of the same layer. Therefore, aspiring to solve the
C2 map information overload tradeoff, Zak, Oron-Gilad, and
Parmet (2018) called for ’breaking’ the layer mechanism
and addressing the information at the information items’
level. Thus, instead of filtering layers of information items,
the filter will handle each information item individually (as
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Figure 1: Left. An illustration of a layer-based filter, where entire layers can be turned on/off. Right. An information-item level
based filter, where each single information item can be considered as a separate layer and handled individually.

illustrated in Figure 1). This can be achieved by an algorithm
that dynamically and automatically filters information items
on the C2 map by their importance and relevance to UAV
operator’s current mission. Automating this process, how-
ever, is challenging as it can inadvertently reduce operators’
SA and performance, especially regarding items chosen not
to be shown (Endsley and Kiris 1995).

Two guidelines led the development of the automatic and
dynamic algorithm. First, working at an information item
level requires advanced techniques. Those techniques rise
from the artificial intelligence (AI) domain. Second, as the
problem is both spatial and temporal, the solution should
adopt perceptual concepts inspired by Gibson and Crooks’
(1938) field of safe travel. The field of safe travel, was de-
fined as the spatial field where it was safe to steer a car. It
was dependent on driver state, vehicle and environment, and
it was constantly changing as the vehicle moved and the con-
text of driving changed. Gibson and Crooks referred to the
field’s intuitiveness as affordance. In Section 2 we use these
guidelines for the development of the GiCoMAF (Gibsonian
Command and Control Map Al Filter algorithm) but first,
in Sections 1.1 and 1.2, we review Machine Learning (ML)
models that were considered for the Al implementation and
delineate the research goals.

1.1 Machine-Learning (ML) Models for C2
Systems

The military domain is seeking for techniques to incorpo-
rate Al into C2 systems and Machine Learning (ML) mod-

els have been used in UAV, GIS and C2 domains (e.g. Azak
and Bayrak 2008; Bao 2016; Choi and Cha 2019; Dzieci-
uch et al. 2017; Noh and Jeong 2010; Rapaport 2015), but
to our knowledge, not as the interface between the C2 map
and the operators. For our research, we looked for models
that can be used for classification (to classify information
item’s importance) or logistic regression (for defining the
field of relevance, as detailed later). Table 1 describes four
ML techniques, suitable for classification and regression and
therefore applicable towards GiICoMAF development.

There are other ML models that can be used for the pur-
pose of this study. For example, Long Short-Term Mem-
ory (LSTM), is a common deep learning technique for time
series data, that can be used for multi-stream data as well
(Behera, Keidel, and Debnath 2019; Bouaziz et al. 2017).
Given that each information item in the C2 map can be per-
ceived as a standalone time series, this model was consid-
ered for this study too. However, the exact number of par-
allel streams (i.e. the number of the information items) is
constantly changing as more information items are added to
the map. Therefore, the LSTM model was neglected.

1.2 Research Goals

Acknowledging UAV operators’ C2 map needs, this study
aims to introduce the GiCoMAF solution for distilling the
information presented on the map to show mission relevant
important information items, while minimizing or hiding
less important or distracting items. The first goal is to de-
velop an algorithm that automatically and dynamically fil-



Table 1: A short description of machine learning models suitable for classification and regression modeling.

Model Description

Lasso Re- | In Generalized Linear Models (GLM) the relationship between the predicting variables and the independent

gression variable is a linear function. It is mostly used to predict a single continuous numeric value, but variations allow

(LR) it to be used for classification (multinomial linear regression; Greene 2012) or for predicting a probability
(logistic regression; Walker and Duncan 1967). Lasso is a method of performing feature selection alongside
GLM by introducing a coefficients size penalty as a constraint. The effect of the penalty on the regression is
controlled by a user defined A\ parameter (Tibshirani 1996; Tibshirani et al. 2012).

Neural NN is a composite of input, output, and middle layers (a.k.a. "hidden layers’) presuming to mimic the work of

Networks | neurons in the human brain. Each layer consists of an undefined number of neurons, which sum the input

(NN) received from the previous layer using an activation function f, and ’fire’ the result to the next layer. NNs can
handle non-linear problems (Kanevski et al. 2004).

Random Decision tree is a prediction for non-linear problems where each node of the graph represents a predicting

Forest variable. The returned value is the final node the decision led to (Quinlan 1986). The number of possible

(RF) results is limited by the number of possible values of the label, and by the depth of the tree (maximum number
of nodes a branch can have). Increasing the number of possible results can be done by increasing the tree’s
depth, but it may result in undesired patterns of overfitting. Random Forest overcomes this limitation by
producing multiple trees, each one is trained on a randomly selected subset of the same dataset. The returned
value is an average of the predictions of all trees for a regression type model, and the highest frequent value
for the a classification type model (Breiman 2001).

XGBoost | Gradient boosting is an iterative ensemble of trees model, where in each iteration a decision tree is learned
using the residuals of the previous iteration (Friedman 2002). XGBoost is an open source package
implementing an efficient scalable tree boosting system, incorporating a regularized model to prevent
overfitting (Chen and Guestrin 2016).

ters the information items on the C2 map. The automatic part
of the algorithm, addresses the filtering at the information
items’ level. The dynamic part of the algorithm addresses
the evolving environmental context of the area of operation.
The second goal is to delineate the use of ML models in
the construction of the algorithm by demonstrating how its
construction can be achieved using ML models. This goal is
attained using importance and relevance labelled data col-
lected empirically from UAV operators. Their inputs enable
the ML models to learn the operators’ contextual informa-
tion needs, and to showcase the algorithm’s feasibility. This
paper describes the process of developing the GiCoMAF al-
gorithm using ML models. A third goal, not described in this
paper, is to evaluate the update rate of the GiICoMAF empir-
ically, exploring its effect on operators’ mental workload,
situation awareness and perception of the experience.

In the following Sections the definition of the GiCoOMAF
algorithm is first outlined. Then, the process of acquiring the
ML models constructing the algorithm’s tiers is detailed, in-
cluding the data collection, manipulation, and models eval-
uation. Lastly, the discussion Section discusses how to com-
bine all tiers into an operating filter algorithm.

2 Developing GiCoMAF

The GiCoMAF — Gibsonian Command and Control Map Al
Filter algorithm, consists of two tiers, each answers a dif-
ferent research question. The integration of the tiers creates
the filter rule, and incorporates the outcomes of these ques-
tions into the workflow of the operators. Tier I aims at the
information item level, and answers the question what is the
perceived importance of each information item? Tier Il aims
at the map as a whole, and answers the question how can the

operator’s area of interest be modeled on the map? Tier 111
aims at the dynamicity property of the algorithm, and an-
swers the question how often should the automatic filter be
updated?

The construction of the GiCoMAF is illustrated in Fig-
ure 2. The distinction between Tiers I and II is impor-
tant. Tier I predicts each information item’s importance. The
scale is inclusive, i.e., it provides an indication of how im-
portant it is to show the information item on the map, and an
indication of how important it is not to show the item. The
incentive behind this logic is that some non-important infor-
mation items may be harmless and operators will be oblivi-
ous to their presence, while others may be disturbing. More-
over, predicted information item’s importance should not be
handled in the same way throughout the map space, and this
is where Tier II comes into play. Consider an information
item with a neutral predicted importance, i.e., not important
but not disturbing. While the item per se is not considered
disturbing, possibly, if it is within the operators’ area of in-
terest, they may be more sensitive to disruptions, and the
item can inadvertently cause clutter or quickly become dis-
turbing. To avoid such cases, it may be better to filter out the
item. Outside the area of interest, however, leaving a neutral
item may be a good strategy, as its importance may rise as
the mission evolves. Hence non-important items for the im-
mediate context, may be valuable to foresee future evolve-
ment of the situation and prepare for it. Therefore, Tier I of
predicting the information items’ importance is not enough,
and the algorithm should model the operators’ area of inter-
est as derived in Tier II. The final decision rule, hence, is
a combination of these two tiers. Tier I and II of the algo-
rithm are based on ML models, thus, by learning examples




from UAV operators, the algorithm predicts and executes an
automatic filter for new operators and in new unknown sce-
narios. ML models require tagged examples to be learned
from. Therefore, an experiment which emulated the work
of UAV operator in operational scenarios was designed and
conducted to collect tagged data from UAV operators (Zak,
Parmet, and Oron-Gilad 2019a, 2019b). Tier III defines the
rate at which the filter rule of Tiers I and II should be ap-
plied. At this stage of development Tier III cannot be based
on ML models, and represent a pure cognitive issue. Since
the scope of this study was to delineate the construction of
the GiCoMAF algorithm using ML models, the process of
studying the cognitive effect of various filter update rates
and setting the optimal rate is due to future research.

2.1 Tier I - Information Item Importance

Tier I aims to model information items’ importance as per-
ceived by the operators. An information item’s importance
may vary based on environmental context, mission, and
characteristics. Generally, operators want important infor-
mation items to be shown on the map. If an information
item is not perceived as important, its presence can be dis-
turbing and then operators would prefer that it will not to be
shown, or not disturbing and operators may be impartial to
its presence on the map. Therefore, Tier I attempts to pre-
dict and classify information items’ importance level, into
a four tics scale, based on the context: Positive importance
represents important (1) and very important (2) informa-
tion items. Zero importance represent non-important infor-
mation items, that operators have no preference to whether
they should be shown or not. Negative importance represents
information items that disturb and distract operators from
their mission context.

The prediction is done using a ML model. The model,
once trained, has the ability to deduce item importance from
insightful environmental and mission related measures that
describe the context. For example, the average distance of
an information item from the UAV payload may describe
its mission related context. The density of information items
around an information item, for example, may reflect the en-
vironmental context. Higher density raises the probability of
some operational event happening at that location. A ML
model can find the relationship between an information item
and the route, and then predict the importance of the infor-
mation item; and it can determine that as the environment is
denser, the probability of showing non-important items in-
creases. These examples of relations between derived mea-
sures like distance and density and the predicted value are
given for simplifying purposes, and the real relationship that
emerge from the ML model may be more complicated. Fur-
thermore, selecting the most suitable ML model (Table 1)
was determined empirically as detailed in Section 3.

2.2 Tier II - Operator’s Field of Relevance

Tier II of the algorithm addresses the areas of interest for the
operators in the environment. It is essentially a spatial prob-
lem that can be represented using geospatial measures on the
map (e.g. polygons, heatmaps, etc.). The ’area of interest’ is
not necessarily a singular area, and can be phrased as ’areas

of interest’, where each area has a different level of interest.
For example, Figure 3 illustrates multilevel areas of interest,
where in the center of the polygons occurs the mission, and
therefore the smallest area around this focus has the highest
interest. The surroundings do withhold interest to the oper-
ator since they may affect the mission’s center. Their rele-
vance decreases as they get farther than the mission’s center.
The ’area of interest’ is modeled using the concept of field
of relevance, an adaptation of Gibson and Crooks (1938).
The field of relevance depicts operators’ areas of interest
based on the environment, mission, operators’ behavior, etc.
Moreover, it corresponds with the affordance property as the
field of relevance highlights areas that are intuitively more
focused upon by the operators. Due to the probabilistic char-
acteristic of ML models, it was decided to adopt the quality
map approach of Morse, Engh, and Goodrich 2010, and to
model the field of relevance as a pseudo-Gaussian heatmap,
where each spatial element on the map gets a value between
0 (no relevance) and 1 (high relevance) corresponding to the
probability of that spatial point to be in the operator’s area
of interest.

Similar to Tier I, prediction in this tier is done using a ML
model, deducing from insightful environmental and mission
related measures that describe the context. In this tier those
measures are in respect to a spatial element (e.g., a square
of 10 meters?), without relating to any particular informa-
tion item within the area of interest. For example, a mission
related measure can be the average time a spatial element
is in the UAV payload’s field of view, assuming higher av-
erage time may indicate higher relevance of that element.
An environmental measure can be the density of informa-
tion items around a certain element. Assuming higher den-
sity around a spatial element indicates upon the probability
of some operational event happening at that location, and in
turn higher relevance. Similar to Tier I, the examples of rela-
tions are for simplifying purposes, and the exact ML model
(Table 1) was determined through an empirical process de-
tailed in Section 3.

3 Constructing the GiCoMAF

In the construction of the filter, an experiment emulating
the work of UAV operators in the military domain was ex-
ecuted. Participants, professional military UAV operators,
were asked to perform a mission of supporting a ground bat-
talion in urban battlefield scenarios. The data collected using
the feedbacks they provided during and after the experiment
was used to construct the ML models of Tiers I and II. The
process is illustrated in Figure 2. The research was approved
by the Institutional Review Board at Ben Gurion University.
Informed consent was obtained from each participant.

3.1 Data Tagging Experiment

Data for Tiers I and II were collected in a set of experimen-
tal runs, detailed in Zak, Parmet, and Oron-Gilad 2019a and
2019b. The experiment aimed to emulate the work of UAV
operator in the military domain. Using a designated sys-
tem developed for this task (UCES — UAV Command and
Control Experiment System), a battlefield scenario was de-
veloped by subject matter experts with a UAV mission to
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Figure 3: An illustration of multilevel areas of interest, as
derived by operators in an operational context. Each polygon
represents a level of interest, increasing from the outside-in.

assist a ground battalion in conquering an urban neighbor-
hood. The ‘five paragraph order’, a common military stan-
dard of writing a fight plan of the mission, was outlined on
the C2 map (Figure 4) and programmed in the VR-Forces
simulation engine. The mission was 12 minutes long, rep-
resenting a sequence of events that in real life settings may
take several hours. Thirteen professional military UAV op-
erators performed a reconnaissance mission as if they were
acting in a real-world battlefield. The UCES allowed them
to control the vehicle’s payload, observe the battlefield from
an aerial point of view, and get real-time information from a
C2 map. Occasionally at specific points, the scenario paused,
and a scoring session had started. They were asked to label
two types of information using the UCES map: tagging in-
dividual information items’ importance; and drawing their
current contextual area of interest as polygons on the map.
There were 88 scoring sessions in total, an average of 6.5
sessions for each experimental run. The data collected from
the runs was put together into two datasets. The dataset con-
taining the information item’s importance tags was the in-
put for Tier I, and the dataset containing the area of interest
polygons was the input for Tier II. Then, ML models for the
two tiers were developed. The processes and outcomes are
detailed in Sections 3.2 and 3.3.

3.2 Tier I ML Model - Information Items’
Importance

The data collected in the experiment was divided into two
tables. The first table was an event diary, where each row



Figure 4: A mockup of the C2 map, including the fight plan
for the simulation’s scenario (in dark blue). The symbols are
standard NATO symbols, where light blue represents allied
forces, red represents enemy forces, and green represents
neutral entities.

represents one event in one experimental run (e.g., UAV
movement, forces movement, cross-fire event, etc.). This ta-
ble contained approximately 90,000 rows. The second table
is a tagging table, where each row represents an information
item in a scoring session in an experimental run and its per-
ceived importance as was reported by the participant. This
table contained 1,203 rows, where each information item has
inherent attributes like its location, type, the time it was last
modified, etc. However, item attributes are insufficient for
introducing mission context to the ML models. Therefore,
the two tables had to be joined into one training dataset. For
that, the event diary had to be manipulated into insightful
variables. Thirty-five derived measures were calculated from
the event diary to describe the environment and the mission.
The objective of the ML model was to classify information
items’ importance. Misclassifying a non-important informa-
tion item as important does not have the same implication as
misclassifying an important information item as disturbing.
Therefore, the error function could not be merely classifica-
tion accuracy, and weights were given as penalty for mis-
classifications based on the sensitivity and specificity of the
misclassification.

All four techniques described in Table 1 were tested in
a classification configuration. Model technique parameters
were optimized using the k-fold cross validation technique,
where k& = 10. During this process, 22,945 models were
built in total for all four techniques. Then, data were divided
by participant; 10 randomly chosen participants as the train-

Table 2: Entropy analysis for each model.

Predicted Value
Model Negative 0 1 2
LR NA NA NA 0.921
NN NA NA 0.891 00917
RF 0.716 0.875 0.739 0.661

XGBoost 0.999 0.999 0.999 1

ing set and the 3 remaining as the validation set. The final
model for each technique was built using the derived opti-
mal parameters set. Figure 5 illustrates the results for two
types of errors: (a) weighted error, the average k-fold result
for the optimal parameters set, the training set, and the val-
idation set; and (b) sign error (percent of misclassifications
of important/very important as disturbing, and vice versa),
for all three sets. From Figure 5 it is evident that RF shows
patterns of overfitting, and multinomial LR and NN perform
better than XGBoost in terms of weighted error. However,
in terms of sign error XGBoost outperforms the others. Fig-
ure 6 delves into the differences among the models by illus-
trating a multiclass receiver operating characteristic (ROC)
graphs (Hand and Till 2001) on the validation set. In this
figure, each line represents the ROC of the comparison of
two possible values, and the area under the curve (AUC) is
the average of all AUCs. It can explain the differences be-
tween weighted error and sign error patterns of the NN and
LR. As seen in the plot, NN and LR have almost no sepa-
ration between the predicted values, probably because mis-
classifying very important information items as disturbing
had the highest penalty. Thus, both models tend to classify
all information items as ‘very important’. Moreover, accord-
ing to Figure 6, RF had slightly better AUC, although Fig-
ure 5 suggests it was overfitting. A third analysis to evaluate
the models’ performance was to look at how each model
was certain in the prediction of the validation set. In the pre-
diction process, each model provides a probability for each
level, where the predicted value is set by choosing the level
with the highest probability. It is expected that a more ‘deci-
sive’ model would provide relatively high probability for the
predicted value and relatively low probabilities for the other
values. The entropy for that prediction, defined by the for-
mula — > ; Pilogap; (Where p; is the probability of predict-
ing a given value ¢, and a is the number of possible values),
would then be close to zero. The result of the entropy anal-
ysis as given in Table 2, show the average entropy for each
model and predicted value. It is evident from Table 2 that
LR assigns only the value ‘2°, and NN only the values ‘1’
and ‘2’. All four models have relatively high entropy scores,
sometimes close to one, indicating that the models’ classifi-
cation decisions, based on the levels’ probabilities, are hung
on the fluctuation of an €. I.e., and all four models are not
very decisive. The only exception is the RF model, which
had a relatively lower entropy, although still closer to one
than zero.
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3.3 Tier II ML Model - Field of Relevance

The objective of the model was to define the field of rele-
vance by predicting the probability of each point on the map
to be in the area of interest. To facilitate the model construc-
tion, the C2 map was divided into a grid of cells, where each
cell represents an area of 25x25 meters on the ground, 9,016
cells in total. Each row in the dataset represents one cell in
a scoring session of an experimental run, with the predicted
label of (1) if the cell was in the drawn area of interest in
that scoring session, and (0) otherwise. The derived mea-
sures were calculated with respect to each cell (e.g. the av-
erage distance of a cell from the UAV route, etc.).

Similar to Tier I, the data was divided into two tables; an
event diary and a table with the reported feedback from the
participants. In this tier, each row in the reported feedback
table represents coordinates of the area of interest’s poly-
gon of a scoring session in an experimental run. Each scor-
ing session consisted of one polygon. Subtracting two cases
where the participant forgot to draw an area of interest, this
table had 86 rows. Also, the events diary was manipulated
into 20 derived measures.

The objective of the model was to define the field of rele-
vance by predicting the probability of each point on the map
to be in the area of interest. To facilitate the model construc-
tion, the map was divided into a grid of cells, where each
cell represents an area of 25x25 meters on the ground, 9,016
cells in total. Thus, each row in the dataset represents a cell
in a scoring session of an experimental run, with the pre-
dicted label of (1) if the cell was in the drawn area of inter-
est in that scoring session, and (0) otherwise. The derived
measures were calculated with respect to each cell (e.g. the
average distance of a cell from the UAV route, etc.).

The same four ML techniques that were used in Tier I
were used in the regression configuration, but the predicted

value was logistic (a number in [0,1]). Model performance
was measured using root mean square error (RMSE). Due to
the large scale of data and computing resource limitations,
408 models were built in total in four k-fold cross valida-
tion processes, where k& = 3. Figure 7 illustrates the aver-
age k-fold RMSE results for the optimal parameters set, and
the RMSE of the training and validation sets. While logis-
tic LR and NN have better results on the validation set in
terms of RMSE, both XGBoost and RF perform better on
both the training set and k-fold results. Figure 8 delves into
the results and illustrates a ’rotated confusion matrix’. The
x-axis represents the predicted value, binned in intervals of
0.01. The y-axis represents the average original value of the
rows corresponding to the bins of the x-axis. The size of the
points represents the relative number of records in each bin.
A perfect model would provide points aligning with the di-
agonal of the plot. According to Figure 8, both LR and NN
collapse and do not provide good differentiation. RF pro-
vides something close to binary results, which may conflict
with the field of relevance concept. Therefore, although not
perfectly aligning with the diagonal, XGBoost performs bet-
ter than the other three models. An illustration of XGBoost’s
performance relative to the runner-up RF model, in two scor-
ing session of two different participants is given in Figure 9.
Figure 9 demonstrates how each operator marked the field
of relevance, at the same stage showing that the structure
of the field of relevance depends on the environment, the
mission, and operators’ individual characteristics and pref-
erences. The XGBoost model seems to handle these charac-
teristics well.

4 Discussion

Operators of UAVs work in uncertain and dynamic envi-
ronments. Their main focus is on managing their vehicle’s
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payload (e.g., camera video-feed) while they are required to
maintain orientation and awareness to their current location
and its surroundings, and plan ahead. In order to develop
the essential SA, they continuously and constantly interact
with a C2 map (see Back et al. (2019) for a Cognitive Work
Analysis). The map, is often overloaded with data that is
irrelevant to their mission, and like the operational environ-
ment things change rapidly. The existing layer-based map
filter mechanism causes a tradeoff dilemma for the opera-
tor —showing an entire layer with its relevant and irrelevant
information, or hiding an entire layer and losing important
information. Furthermore, as noted in Back et al. the existing
filtering mechanisms require operators to manually interact
with the interface, highlight or hide layers of information at
the busiest times of their mission. Thus, currently, obtaining
information from C2 maps pose high demands on operators,
and therefore, they often cope with impaired SA. This study
proposes a solution to dynamically and automatically adjust
the C2 map display to operators’ needs by introducing an
Al-based dynamic and automatic algorithm that filters the
information on the C2 map at the individual items level (as
opposed to layers), as described in section 2, and laying the
foundation for the algorithm by delineating the use of ML
models in its construction as detailed in Figure 2.

The data tagging experiment was designed to collect la-
belled data towards the construction of the ML models of
Tiers I and II; predicting information items’ importance and
predicting the field of relevance, respectively. Using the col-
lected data, four different models were optimized and devel-
oped for each tier. In Tier I both XGBoost and RF had good
results on the validation set, with RF on the upper hand.

LR~

NN -

Model

XGBoost -

RF-

RMSE

.Min. k-fold Avg. Error.Train Error-\/a\idate Error

Figure 7: ML model performance result for Tier II. The av-
erage RMSE of the k-fold result of the optimal parameters
set, and the RMSE of the training and the validation sets. LR
and NN have better results on the validation set, both XG-
Boost and RF perform better on the training set and k-fold
results.

However, since the RF had extremely low training error, for
both error types, it may be overfitted. Further study on the ef-
fects of each model on UAV operators’ mission performance
is needed to examine if the effect of overfitting is negligi-
ble. Therefore, to be cautious, the XGBoost model was cho-
sen for further development. The XGBoost model, however,
had an accuracy sign error of 25.9%, and its decisions were
hanging on the thread of an e (Table 2). This magnitude of
the error is reasonable when modeling human preferences
and performance (as seen in previous studies, e.g. Agichtein
et al. 2016; Guimera et al. 2012; Liu, Bian, and Agichtein
2008), especially when having a limited number of observa-
tions. The XGBoost results of Tier IT were visually evaluated
and provided the best and most accurate pseudo-Gaussian
heatmap for the field of relevance. as illustrated in Figures 8
and 9. It should be noted that accuracy can be further im-
proved by testing other ML models and parameters. Indeed,
due to resource limitations, not all suitable models could be
tested. Future study can attempt to improve the results of this
study by applying additional ML models and techniques.

The two tiers delineate the use of ML models in the GiCo-
MAF algorithm . Yet, is not clear cut how to combine Tiers
I and II into the GiCoMAF algorithm. Several options for
how the tier combination protocols are being discussed in
the following section.

4.1 Putting It All Together — Combining Tiers I
and II

The exact combination of Tiers I and II into the GiCoMAF
algorithm may depend on the mission, the environment, and
even the organization that the operators are part of. This sec-
tion suggests three possible combination approaches; how-
ever, the final setup is not limited to these approaches and



Figure 8: Predicted values binned into intervals of 0.01 (X-
axis), and the average original values (Y-axis) of correspond-
ing records. A perfectly fit model should be aligned with the
diagonal line. The XGBoost model seems to be the better
predictor of the four techniques.

Figure 9: The field of relevance simulated in one scoring ses-
sion in the validation set. The predicted field of relevance is
illustrated in blue and the operator’s reported area of interest
is shown in red. Subfigures (a)-(b) and (c)-(d) represent two
different participants, in the same part of the scenario. (a)-
(c) are the predictions of the XGBoost model, (b)-(d) are of
RF model.

each organization/user/system case may dictate the devel-
opment of a tailored solution. These approaches provide a
show/no-show decision rule based on relevance and impor-
tance thresholds. The optimal approach used in the algo-
rithm, as well as its thresholds, should be continuously eval-
uated through a process of experiments.

Positive Correlation — This approach assumes that there
should be a positive correlation between the field of rele-
vance and the information density. Thus, the more relevant
a spatial element is, the more information should be pre-
sented around it. To avoid distraction, the farther away from
the spatial element, the less information should be shown.
Figure 10a illustrates this approach where there is a negative
relation between the field of relevance and the information
items’ importance. In order to use this approach, an adap-
tive show/no-show threshold should be set based on infor-
mation items’ importance, where the threshold is rather low

at points with high relevance (implying more information
items would be shown), and rather high at points with low
relevance (only very important information items would be
shown).

Negative Correlation — In contrast to the positive corre-
lation approach, this approach assumes that there should be
a negative correlation between the field of relevance and in-
formation density. I.e., the more relevant a spatial element
is, the more attention operators direct to it, and therefore
fewer information items should be shown to avoid disrup-
tion. Thus, as illustrated in Figure 10b, there should be a
negative relation between the field of relevance and infor-
mation items’ importance, in similar but opposite approach
to the relation described in the positive correlation.

Binary Relevance Decision — This approach assumes that
only important information items should be shown on the
map, and only in areas which are currently most relevant to
the operators. Therefore, there are only two constant thresh-
olds in the algorithm — one to decide the minimum impor-
tance an information item should have in order to be shown,
and one to decide the minimum relative relevance a spatial
point should have in order to set the importance threshold
into motion. Figure 10c illustrates the approach.

For a further study, we propose to examine these three
approaches and choose the fittest approach for the context
that was addressed in this paper (i.e., the same mission type
and profile of participants). For that a new multistage sce-
nario similar in nature to the experimental scenarios detailed
in this paper is required. Using the ML models developed
in Tiers I and II, each scenario can be run in one of the
three combination approaches, as well as running with no
filter at all. In the first experiment, participants will be intro-
duced to all of the approaches and different thresholds setups
would be tested. Then, using the optimal threshold for each
approach, new operators would participate in a two-stages
crossover experiment with eight possible treatments — the
three combination approaches and no filter at all.

5 Conclusions

This study aimed to introduce a solution to the information
overload of C2 maps used by UAV operators. By solving op-
erators’ need for distilled information at the right time and in
the right place, it is expected that operators will benefit more
from the C2 map at lower efforts, and overall mission per-
formance will improve. The study had met its goals. First,
a solution was achieved by introducing the three-tier Gibso-
nian Command and Control Map Al Filter algorithm (GiCo-
MAF). Then, ML models were developed and evaluated us-
ing tagged data collected in an experiment. The results of the
experiment are encouraging. The ML models that emerged
from the first experiment were satisfying, and indicated high
accuracy and usability of the algorithm, a step towards a so-
lution to the information overload problem, and high work-
load of UAV operators. The combination of the tiers into a
single algorithm is yet to be fully defined, and should be de-
termined by an additional set of experiments we recommend
performing in future studies.

The contribution of this study lays in various aspects.
First, this study targets a long-neglected field of improving



Figure 10: An illustration of three possible algorithm combination approaches for Tier I and II. The heatmap represents the field
of relevance, dimmed information items represent items that would not be shown to the operator.

the use of C2 maps by operators. Second, by using ML mod-
els in the construction of the GiCoMAF algorithm, this study
utilizes Al concepts and techniques to lay the foundation of
an algorithm that is targeted for improving human perfor-
mance and human cognitive aspects of workload and SA.
And third, successful construction of the algorithm can im-
prove mission performance and enhance the cognitive abil-
ities of operators to perform spatial-temporal tasks beyond
the UAV domain. Algorithms of this form can be further im-
plemented in any domains where an overloaded spatial and
temporal information has to be filtered, e.g., emergency dis-
patching systems, information guided surgeries, search and
rescue missions, air traffic control, etc.
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