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Abstract
The data science platform for materials developments is
demonstrated. Due to the recent great advances in artificial in-
telligence, it becomes more realistic that the industrial appli-
cation of materials informatics (MI) which is the data-driven
approach to discover and investigate materials characteristics.
However, it is not quite easy for materials manufacturers to
set up MI analytics environments without any help. There-
fore, we provide the user-friendly cloud-based IT platform
for non-experts of IT enabling materials scientists in R&D
departments to analyze their experimental data effectively for
rapid developments.

Motivation
Product developments require significant time and costs to
find the optimal combination of ingredients and parame-
ters. Materials Informatics (MI) is an emerging study field
based on the both informatics and materials science, with
the goal of greatly reducing the resources and risks required
to discover, invest, and deploy new materials (Curtarolo et
al. 2013). Recently, artificial intelligence (AI) has improved
the MI performance, thus the experimental candidates can be
narrowed down without unnecessary trials and errors before
its actual experiments to discover or create new materials
with yet-to-be realized properties. In fact, US government
has invested over $250 million to assist MI projects (Ma-
terials Genome Initiative 2011). The Novel Materials Dis-
covery Laboratory in EU also opens new oppotunities to in-
vestigating MI by delivering analytics tools and open access
repository of materials data (NOMAD Laboratory 2015).
According to such outreach activities, there has been heavy
demands of materials manufacturers for introducing MI-
powered methodology into their R&D processes to increase
their industrial competitiveness, and the number of startups
in MI analytics services is increasing.

In figure 1, the concept of this demonstration is illustrated.
In many cases, it is difficult for materials scientists to select
suitable preprocessing method and effective algorithm to
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solve their problems because they do not have enough infor-
matics knowledge, which means that they need the supports
of informatics experts (data scientists). Their relation can be
understood as that between a runner and his escort, thus this
phase can be regarded as an “accompanying phase.” Though
this service style is common, it may remain the possibil-
ity that the informatics experts can not exactly understand
the characteristics of target materials and obtain the know-
hows materials scientists have. This problem will be solved
if materials scientists can reach analysis results by them-
selves without the excessive IT and analytics knowledge.
That phase can be understood as a “self-managing phase,”
and the MI analytics services should be shifted to that phase
from accompanying phase for scaling up and rapid prototyp-
ing. It suggests the need of the informatics expert alternative
and one-stop platform for storing, analyzing data and visu-
alizing analysis results.

Figure 1: The concept of MIAP (MI Analytics Platform)



Materials Informatics Analytics Platform
We have developed an IT platform of MI, called Materials
Informatics Analytics Platform (MIAP), for R&D teams
of various manufacturing companies. This platform brings
together all data into one place to make it easier for re-
searchers to access and custom machine learning algorithms
by themselves without any additional help of informatics ex-
perts. In fact, it includes the functions that support almost
every step required for MI analytics.

Functions
MIAP is a cloud service thus the user interface is accessible
via common web browsers. It mainly includes three func-
tionalities; storing, analyzing and visualizing. In the follow-
ing, their details are explained.

1. Storing
In this platform, all input and output data is stored in Post-
greSQL database servers. Various file types are accept-
able; CSV, Microsoft Excel, NetCDF and so on. Graph-
ical user interface (GUI) is utilized to upload and im-
port data into databases. At the same time, it also receives
SQL queries to manage data tables directly with the im-
plemented query editor for complecated operations. With
GUI for example, users can define the data type of each
column without typing any complicated SQL queries.

2. Analyzing
In general, MI problems are interpreted as regression and
classification tasks. Thus, it supports the various well-
known machine learning algorithms such as Random For-
est (Breiman 2001), Gaussian Process (Rasmussen and
Williams 2006), Support Vector Machine (Burges 1998)
and Gradient Boosting (Friedman 2001). It also makes
predictions and optimizations possible. In addition, one
of the MIAP unique features is the implementation of the
AI-based best practices of efficient methodologies for in-
dividual customers, which contributes to reduce their ex-
periment iterations. In most cases, once users have devel-
oped their best practices, they can easily and repeatedly
apply the same method to new data by themselves.

3. Visualizing
It provides basic visualization tool to plot data in database
by selecting target column and graph types (bar, line and
pie graph). To check the learning performance, users only
have to click on automatically generated truth-prediction
scattering graphs. In addition, it provides the original UI
tool derived from a Geospatial Information System (GIS)
tool that draws animation along with time in 2D and 3D
graphs. It means that users can see the time evolution of
materials properties.

Demonstration
The usage of MIAP is demonstrated by taking an example of
the search for an optimal recipe that improves the material
properties of a ready-made product.

First, collect data accumulated in the process of making
target product. Second, upload them to the MIAP database.
MIAP automatically converts files with different formats
into a predetermined format using KNIME, the open source

Figure 2: Screen capture of checking learning results

software (KNIME 2019). Next, user specify the target ma-
terial property expected to be improved as an objective vari-
able, and other properties are set to explainable variables.
After selecting algorithm for modeling and entering the out-
put table name for the current attempt, the learning is started
by pressing the execute button. These operations are very
simple because almost all users have to do is just clicking on
corresponding tabs. As shown in Figure 2, users can recog-
nize the results are listed on results view window when the
calculation is finished. Because the automatically generated
truth-prediction scattering is shown with common indicators
to score learning performace such as Root Mean Squared
Error (RMSE) and correlation coefficient, it is possible for
users to judge whether the learning is succeeded or not. After
users can obtain well-trained model via iterational attempts,
they can predict the target material property with candidate
recipes to narrow down before the actual experiments for
new products. In this way, MIAP assists to find the optimal
recipes of ingredients or parameters, which contributes to
reduce materials development resources.
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