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Abstract—In this paper, we consider JavaScript code 
obfuscation detection using artificial neural network with 
attention mechanism as classifier algorithm. Obfuscation is 
widely used by malware writers that want to obscure malicious 
intentions, e.g. exploit kits, and also it is a common component of 
intellectual property protection systems. Non-obfuscated 
JavaScript code samples were obtained from software repository 
service Github.com. Obfuscated JavaScript code samples were 
created by obfuscators found on the same service. Before being 
fed to the network, each JavaScript program is converted to the 
general path-based representation, i.e. each program is described 
by the set of paths in an abstract syntax tree. Model proposed in 
this paper is a feedforward artificial neural network with 
attention mechanism. We aimed to build a model that relies on 
AST paths structures instead of statistical features. According to 
results of experiments, evaluated model potentially can be 
implemented with some improvements in malicious code 
detection systems, browser or mobile device fingerprint collection 
systems etc. 

Keywords—obfuscation classification, obfuscated code, 
obfuscation recognition, Javascript obfuscation, general path-
based representation, ECMAScripit obfuscation, AST-based 
pattern recognition 

I. INTRODUCTION 
According to Varnovsky et al. statements [1], obfuscation 

was firstly implicitly mentioned in 1976 in the famous Diffie 
and Hellman paper [2], in which they introduced asymmetric 
cryptography concept. Diffie and Hellman suggested inserting 
a secret key into the encryption program, and then this secret 
key initialized encryption program becomes tricky converted 
so that the secret key extraction would be a very difficult task. 
The concept of obfuscation was explicitly introduced in 1997 
in the Kollberg, Tomborson and Lowe paper [3]. 

By Han Liu et al. obfuscation is defined as special program 
transformation whose purpose is to obscure source code or 
binary code in order to hide implemented algorithms and data 
structures from being recovered [4]. Obfuscated program is 
obtained from original after applying obfuscation, and 
therefore original program is called non-obfuscated [5, 6]. 

Schrittwieser et al. remark, that at the beginning of the 
computer era obfuscation was commonly used, in particular, to 
surprise users by displaying unexpected messages, but today 
obfuscation is mostly used to protect intellectual property or 
obscure malicious intentions [7]. Boaz Barak notices, that 
obfuscation doesn't make protected program invincible, and 
obfuscated program should be protected from reverse 
engineering as much as an encryption system shouldn't be 
broken using any sensible amount of time and computation 
resources [8]. 

II. PROBLEM DEFINITION 
Obfuscated and non-obfuscated programs distinguishing 

problem is indelibly linked to the source code properties 
prediction and various programs classification types. To 
formalize the problem, we will use the definitions introduced 
by Silveo Cesar and Yang Xiang in the first chapter of their 
book "Classification and similarity of programs" [9]. 

Let r be a property for program p if for all possible 
execution flaws r is true. A program q is called an obfuscated 
copy of a program p if q is the result of transformations that 
preserve the semantics (meaning) of algorithms and data 
structures. Programs p and q are similar if they are based on the 
same program. 

Let P be the set of source codes of programs, f1,..., fk are 
functions that allocate features from program, i.e. fi: P → Di, 
where Di is the i-th set of features. Let {p1, ... , pn} ⊂ P be the 
training sample, {0,1} = Y - class labels (1 is assigned to 
obfuscated programs, 0 is assigned to non-obfuscated). It is 
necessary to find the map s: D1×...×Dk → {0,1} using training 
sample {p1, ... , pn} that classifies all elements of P with the 
smallest error function value. 

III. DATASET PREPARATION 
To create a dataset with obfuscated and non-obfuscated 

Javascript code samples we used software repository 
github.com. Github.com is one of the largest service platforms 
that features software projects hosting and collaborative 
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development. There were downloaded 100 most popular 
JavaScript projects. To get a list of the most popular projects, 
we used a special search API (referenced as Github Search 
API) provided by the service. Further all projects from the 
resulting list were cloned to the local machine. Downloading 
was done on March 22th, 2019 and all downloaded projects 
took up 7.3 Gb of the disk space. 49612 files with the ".js" 
extension (excluding files with the ".min.js" extension) were 
retrieved from the obtained data. In order to simplify the 
further creation of obfuscated code samples, it was decided to 
retrieve functions from scripts. An example of a simple 
JavaScript function is shown in fig. 1. 

Node.js script that retrieves functions from a Javascript 
program was written using the Esprima library. With this 
library abstract syntax tree (AST) can be formed for any 
Javascript program that complies with the ECMAScript 2016 
standard. An abstract syntax tree for a script is formed 
according to the syntactic rules of the programming language. 
You can apply the inverse transformation and generate the 
correct program code from the tree. Unlike to plain source 
code, ASTs do not include punctuation, delimiters, comments 
and some other details, but they can be used to describe the 
syntactic structure of the script along with lexical information 
[10]. Abstract syntax tree example based on the simple 
JavaScript program (fig. 1) is shown in fig. 2.  

There were built ASTs for all previously downloaded 
scripts with the extension ".js" (49612 samples) using the 
parseModule method provided by the Esprima API. Program 
code for each element of the "FunctionDeclaration" was saved 
into separate files during the tree traversal. Hereby 126276 files  
were produced, each file contained a JavaScript function, all 
files took up 527 Mb of the disk space. 

To generate obfuscated code samples, we used special 
programs that implement JavaScript code obfuscation. On the 
mentioned above github.com software repository hosting we 
found 6 obfuscators that fit our needs. They are listed below: 

• javascript-obfuscator/javascript-obfuscator  

• zswang/jfogs 

• anseki/gnirts 

• mishoo/UglifyJS2 

• alexhorn/defendjs 

• wearefractal/node-obf 

Obfuscators can work in different ways. Some obfuscators do 

Fig. 1. Basic JavaScripit function example 

not significantly change the syntactic structure of the program, 
e.g. jfogs and UglifyJS2, and mostly rename some identifier 
and shuffle independent parts. Other obfuscators, such as gnirts 
or defendjs, completely change the syntactic structure of the 
scripts. 

PigeonJS library was used to extract features from the 
JavaScript programs source codes [11]. It provides an API to 
get a list of given length paths on the AST. 

One path on the AST formed by PingeonJS has following 
structure called general path-based representation [11]: 

(1) 

The vertices are separated by v and ^ depending on whether 
the left vertex is higher or lower on the tree in comparison with 
right one. One of the paths retrieved from the basic JavaScript 
program example (fig. 1) is shown in fig. 3.  

Fig. 2.  AST of the basic JavaScript function 

Fig. 3. One of the paths extracted from the basic JavaScript function AST 
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Not all scripts have been obfuscated with all of obfuscators 
listed before and contexts were retrieved not from all programs. 
Main purpose for this was that some of the downloaded 
JavaScript files contained programs that have nonstandard 
features and extensions. Besides, some obfuscated scripts took 
up to 1Gb file storage space although original scripts had size 
up to 200-300 Kb. We decided to take such samples away from 
the dataset. 

IV. NEURAL NETWORK ARCHITECTURE  
The architecture of an artificial neural network was used in 

this study is based on the network, proposed by Uri Alon et al. 
in their paper "code2vec: Learning Distributed Representations 
of Code" [12]. Researchers attempted to create an artificial 
neural network that predicts method names for programs 
written in Java. They got excellent results: at the time of the 
article publication, they had the best percentage of correctly 
named methods among all known studies — about 60%. So we 
decided to adapt that network for JavaScript code obfuscation 
recognition problem solving. 

Main objects the network is working on are script contexts. 
The context si = (xs, p, xt) is a tuple containing three elements: 
the start vertex, the path, and the terminal vertex. Start vertex xs 
and terminal vertex xt are elements of the start and terminal 
vertices set T. Path p is an element of the paths set P. Every 
JavaScript program (it does not matter, is it obfuscated or non-
obfuscated) is described with a set of contexts: 

(2) 

Each element x of the vertices set T has its own vector 
representation vx in VectT (128-dimensional rational vector). 
Similarly, each element p of the paths set P has its own vector 
representation vp in VectP (128-dimensional rational vector). In 
that way each context has 384-dimensional vector 
representation that looks like this: 

(3) 

Then each script is described by a tuple of contexts vector 
representations: 

 (4) 

Maximum number of contexts per script was 200. If there 
were less then 200 contexts for some script then contexts tuple 
was padded with zero-filled contexts: 

(5) 

Artificial neural network architecture used in this research 
is shown in fig. 4. First of all, there is fully connected layer to 
which Dropout regularization method was applied. Thanks to 
this 75% randomly chosen neurons are ignored (not considered 
during forward pass) on each epoch. This helps to prevent 
over-fitting of training data and increases model performance 
on non-observed samples. 

Fully connected layer have tanh activation function:  

(6) 

where  is a context vector representation, 
 is a combined context vector representation  

Fig. 4. Neural network ahitecture scheme 

 

and  is a fully connected layer weights matrix.  

Based on the combined contexts {d1, ... , d200} and the 
attention vector α, the attention weights αi are calculated for 
each di. Vector α is initialized with random variables and 
updated during the training. 

(7) 

 

Obviously, the sum of all αi equals 1. After that a code 
vector v is calculated using the attention weights αi as follows: 

 

(8) 

Since all attention weights αi are nonnegative, and their 
sum equals to 1, we can consider the calculation of the code 
vector as the calculation of the weighted average over all 
combined contexts di. 

The idea behind the attention mechanism can be described 
as choosing the most interesting part of the resulting set. The 
softmax transformation (7) is a key component of several 
statistical learning models but recently it has also been used to 
design attention mechanisms in neural networks [13]. Attention 
mechanisms are used to solve various applied problems with 
the help of artificial neural networks, e.g. multilingual 
translation [14], sentiment classification [15], time-series 
classification [16], vehicle images classification [17] or speech 
recognition [18]. 

At the last step the final solution is calculated using 128-
dimensional real vectors yobf and ynotobf: obfuscated or non-
obfuscated script was passed to the network input. Vectors yobf 
and ynotobf are initialized randomly and updated during model 
training. JavaScript program obfuscation probability q(v) is 
calculated based on code vector (7): 
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If q(v) > 0.5 then script is thought to be obfuscated. Script 
non-obfuscation probability is estimated as 1−q(v) respectively. 
For one script, the loss function (cross-entropy function) is 
computed as follows: 

(10) 

where p(v) = 1 for obfuscated scripts and p(v) = 0 for non-
obfuscated scripts. To minimize the loss function, the method 
of adaptive moment estimation (Adam) was used as an 
optimization algorithm. 

V. MODEL TRAINIG AND EVALUATION 
Model training and evaluation were proceeded on the 

workstation with the following equipment: Intel Core i7-7700 
processor (3.6 GHz) with 8 cores, 16 GB of RAM, NVIDIA 
GeForce GTX 1080 GPU. The training dataset was formed as 
follows: 115504 context samples describing non-obfuscated 
functions and 117990 context samples describing obfuscated 
functions, among them 36000 randomly chosen from all 
samples obfuscated with "javascript-obfuscator" , 36000 
randomly chosen from all samples obfuscated with "jfogs", 
36000 randomly chosen from all samples obfuscated with 
"UglifyJS2" and 9990 – from samples obfuscated with 
"defendjs". There were 233494 context samples in sum. 

A set Tp (|Tp|=776830) of the most popular names of start 
and final context vertices and a set Pp (|Pp|=1008102) were 
obtained from the training sample so that for each script s at 
least one context c contains two elements from T and one 
element from P. 

Testing dataset contained 8444 contexts describing 
obfuscated functions (7655 samples obfuscated with "gnirts" 
and 789 samples obfuscated with "jfogs") and 8444 contexts 
describing non-obfuscated functions. 

We decided to use precision (10), recall (11) and F1-score 
(12) as model evaluation metrics explaining model 
performance. 

(11) 

 

 (12) 

 

(13) 

 

Model training was 9 epochs long. Precision, recall and F1-
score obtained after model training completion are shown in 
Table 1. 

TABLE I.  MODEL SCORES 

Metric Value 

Precision 84.9% 

Recall 85.1% 

F1 85.0% 

 

Our model showed less well performance than the model 
proposed by Tellenbach et. al. Their model used features 
reflecting the frequencies of JavaScript keywords and other 
statistical statistical calculations and had following evaluations: 
precision – 95%, recall – 90%, F1-score – 92% [19].  

At the same time the presented model has sufficient 
improvement potential gives rise to further research of 
obfuscation detection models that do not rely on pre-calculated 
statistical features. First of all, second fully connected layer and 
activation function replacement with different one could 
positively impact model quality scores.  

Beyond that, code vector v (7) can be passed to additional 
classifier input, e.g. SVM-based or Random Forest based. A 
similar approach Ndichu et al. proposed to solve the JavaScript 
malware detection problem using feedforward neural network 
[20]. They divided model training process into two stages: on 
the first one they trained neural network classifier based on 
Doc2vec and on the second one they passed fully connected 
layer output to the SMV. As a result, SVM was trained on the 
code embeddings [20]. Their model that combines Doc2vec 
and SMV had following evaluation results: precision – 94%, 
recall – 92% and F1-score - 93% on the obfuscated samples. 

VI. CONCLUSION 
In this paper we explored JavaScript (ECMAScript 2016) 

code obfuscation detection method that uses artificial neural 
network with attention mechanism as classifier algorithm.  

First of all, a set of samples of obfuscated and non-
obfuscated code was obtained using projects and repositories 
hosted on github.com. Secondly, an artificial neural network 
model with an attention mechanism was adapted to solve the 
problem of scripts classification on the obfuscation basis. 
Thirdly, non-obfuscated dataset could be checked for the 
presence of obfuscated samples uploaded to github.com 
repository, downloaded during the dataset preparation stage 
and erroneously labeled as non-obfuscated. 

The characteristics of the obtained model show that the 
considered method potentially can be implemented with some 
improvements in malicious code detection systems, browser or 
mobile device fingerprint collection systems or other software 
that use obfuscation recognition. 
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