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Abstract— Protocols for generating high-entropy 

cryptographic session keys from long-term low-entropy keys or 

passwords (PAKE - Password Authenticated Key Exchange) are 

used to increase the security of information protection in 

information systems. The paper shows how to increase the 

security of the PAKE protocols themselves by using the concept 

of asymmetric execution of cryptosystems proposed by the author 

(see, for example, at SIBCON 2016, RusCrypto 2018).  

Asymmetric execution of cryptosystems implies a deliberate 

significant increase in the complexity of performing operations 

for one of the legitimate users (for example, for the server, due to 

additional transformations of the plaintext, increasing the 

password by a random value, choosing the mode of the cipher, 

hiding part of the information necessary for the operation), 

resulting in significant increasing the complexity of finding the 

secret keys and for the attacker. 

The proposed strengthening of cryptographic protocols is 

especially relevant in the context of restrictions on the 

parameters used in the primitives of cryptographic protocol. 

Keywords— cryptography, cryptographic protocols, keys, 

complexity, resilience, ЕКЕ protocol, Diffie-Hellman key 

agreement protocol, SESPAKE protocol. 

I. INTRODUCTION 

This work, in addition to independent significance, is a 

continuation of a number of works by the author in the field of 

strengthening the security of cryptosystems with short keys. 

Short keys are understood as keys of symmetric and 

asymmetric cryptosystems defined by the restriction for 

unlicensed use introduced by the well-known Decree of the 

Government of the Russian Federation dated 04.16.2012 No. 

313. According to the Decree, without a license you can use a 

“symmetric cryptographic algorithm that uses a cryptographic 

key with a length not exceeding 56 bits, either an asymmetric 

cryptographic algorithm based either on the method of 

factoring integers whose size does not exceed 512 bits, or on 

the method of calculating a discrete logarithms in a finite field 

multiplicative group size not exceeding 512 bits, or a method 

of computing discrete logarithms in another group of size not 

exceeding 112 bits.. " 

The concept of low-entropy keys is often used in the 

literature, compared with the 256-bit high-entropy keys, which 

are typical for modern standard encryption algorithms. Short 

keys can be classified as low-entropy, but a number of authors 

attribute password words and even PIN-codes, whose entropy 

is less than 56 bits, to low-entropy keys. 
In [1], for symmetric ciphers, it was proposed to introduce 

asymmetry into the complexity of the work when encrypting 
plaintext and when decrypting a ciphertext by legitimate users. 
In this regard, such ciphers and cryptosystems were called 
asymmetrically executed. The legitimate recipient of the 
ciphertext in this case spent significantly more time decrypting, 
since he had to try out a random binary vector by which the 
short key used in encryption was increased, which was known 
to the sender and recipient of the message. To find the 
plaintext, the attacker had to try both the short key and the 
random vector added by the sender to the key. Of course, at the 
same time, it is assumed that the sender has a high-quality 
generator of random binary sequences, and for the model of the 
attacker, it is possible to use only the full testing method (brute 
force attack) for decryption. 

To increase security, other methods were proposed in [2], 
including preliminary conversion of plaintext such as AON 
conversion. The use of new (in comparison with GOST 28147-
89) operating modes of block ciphers according to the GOST 
34.13 standard turned out to be essential for the 
implementation efficiency. 

Further, at the RusCrypto 2018 conference [3], the author 
proposed to use the PAKE protocols to strengthen the strength 
of ciphers with short keys, where a short key should be used as 
a password word. For example, when using symmetric and 
asymmetric ciphers with short keys in the EKE protocol [4], 
the complexity of decryption is not the sum of the complexity 
of decryption of each of the ciphers, but is their product. 

This paper shows how the introduction of asymmetry in the 
complexity of operations performed by legitimate users of the 
PAKE protocols themselves leads to an increase in the 
complexity of solving cryptanalysis tasks for an attacker using 
well-known protocols as an example. 
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The concept of “asymmetric PAKE” was previously 

considered in a number of works (see, for example, [5], [6]), 

but the reason for using the word “asymmetry” differs from 

that described in this paper. Asymmetric PAKE is the same 

PACK in the client-server architecture, where the server does 

not store the password word itself, but the value of the one 

way function from it. If the server is compromised, the 

attacker will have to perform an additional off-line attack to 

find the password word. 

II. THE BELLOWIN - MERRITT CRYPTOGRAPHIC PROTOCOL 

EKE AND PROPOSALS FOR ENHANCING ITS STRENGTH. 

 

The EKE protocol [4] is one of the first password-

based authentication key exchange protocols. The purpose of 

the protocol is to safely transport a high-entropy key from one 

user to another if they have a common low-entropy secret 

(password). The EKE protocol has been patented. For 

readability, we recall the steps and steps of the EКE protocol. 

Let PW denote the password word known to users A and B. 

Key transportation stage.  

• 1. A: sends the message [A, E (PW; PKa)]  B,  

where E (PW; PKa) is the encryption transformation with a 

symmetric cipher on the PW key, PKa is the public key of user 

A for the asymmetric cipher.  

• 2. B: produces a high-entropy key k and sends  

E (PW; E_PKa (k))  A.  

The step of confirming receipt of key k is “Request-response”.  

• 3. A: From E (PW; E_PKa (k)) receives k, sends  

E (k; R_a)  B.  

• 4. B: From E (k; R_a) it receives R_a, sends  

E (k; h (R_a) II R_b) A, here h is some hash function.  

• 5. A: From E (k; h (R_a) II R_b) receives h (R_a) II R_b and 

checks h (R_a) = ?, then sends E (k; h (R_b))  B.  

• 6. B: From E (k; h (R_b)) receives and checks h (R_b) =?. 

 

According to the Dolev - Yao model, the attacker in 

step 1 receives ciphertext E (PW; PKa) for off-line attacks. 

Due to the relatively small number of options for choosing 

PW, he can go through all of them and get options for the PKa 

public key. But this key, which is clear text for E (PW; PKa), 

has no structure and is similar to a random sequence of bits. 

Therefore, he cannot isolate the true password word at this 

step. 

In step 2, each selected PW option leads to the task of 

finding the key k by the corresponding public key PKa from 

step 1 and the ciphertext E_PKa (k) obtained by decrypting E 

(PW; E_PKa (k)) to PW. Even if it is possible to test all the 

secret keys of the asymmetric encryption algorithm, it is 

impossible to determine the true key k, since it also has no 

structure. With short public and secret keys of the asymmetric 

algorithm (for example, 512 bits), a faster finding of k is 

possible, but still among the options for PW. 

It follows that, to increase the complexity of finding the 

key k by an attacker, it is necessary to increase the number of 

options for PW.  

Here are options for enhancing the strength of the EKE 

protocol only for the key transportation phase, omitting the 

second stage for brevity. 

1 option for protocol amplification.  

• 1. A: [A, E (PW-Ra; PKa II h (PKa)]  B, where Ra is a 

random vector selected by user A and not known to user B. 

• 2. B iterates over Ra and searches for Pka by the criterion for 

plaintext. Then it sends E (PW; E_PKa (k))  A. 

In step 1, a hash code from it was added to the plaintext 

PKa in order to structure this plaintext so that user B could 

find the true public key PKa of user A. Decryption time for B 

was increased by 2 ^ IRaI, where IRaI is the size vectors Ra. 

But the criterion for plaintext also gets the attacker. 

Thus, this case is similar to the case of transmitting ciphertext 

obtained by encrypting structural plaintext on the PW key 

(text structure of the form PKa II h (PKa) is chosen for 

clarity). To enhance the strength of encryption in this case, the 

recommendations of previous works [1-2] can be applied. 
Option 2 protocol amplification. 

At the first step, a certain set of public keys of user A is 
encrypted: PKa1, PKa2, ..., PKaN. 

• 1. A: [A, E (PW; PKa1, PKa2, ..., PKaN)]  B.  

• 2. B: After decrypting the ciphertext E (PW; PKa1, PKa2, 
..., PKaN) and receiving the set of public keys {PKa1, PKa2, 
..., PKaN}, user B randomly chooses one of them - the PKaJ 
key.  

• Next, B generates a high-entropy key k and sends 
message A to user A (PW; E_PKaJ (k II h (k))  A.  

• 3. A, knowing the password word PW, decrypts E (PW; 
E_PKaJ (k II h (k)) and restores E_PKaJ (k II h (k), iterates 
over its public keys PKa1, PKa2, ..., PKaN, looks for PKaJ and 
key k. The criterion for finding the true key k is finding the key 
k with the correct value h (k) attached. 

User A in this option works more than B. In step 3, he 

must sort through all N sent to the user B public keys PKa1, 

PKa2, ..., PKaN. 

In step 1, as before, the sequence PKa1, PKa2, ..., 

PKaN is not structured, which does not allow an attacker to 

recover the password word PW from the ciphertext E (PW; 

PKa1, PKa2, ..., PKaN)] even with full testing.  

At step 2, we have E_PKaJ (k II h (k)) - the ciphertext 

obtained by encrypting the text (k II h (k)) on the public key 

PKaJ of user A. It has no structure, which does not allow the 

attacker to find PW from the ciphertext E (PW ; E_PKaJ (k II 

h (k)) even by full testing. 
After step 1, an attacker can have IPWI variants of the 

set of public keys {PKa1, PKa2, ..., PKaN}, where IPWI is the 

number of possible variants of the word PW. 

After 2 steps, the attacker has IPWI * N decryption 

tasks for the ciphertext E_PKaJ (k II h (k). To assess the 

complexity of decryption, one must proceed from the strength 

of the asymmetric algorithm used. 

3 option for protocol amplification.  

• 1. A: [A, E (PW - Ra; PKa1, PKa2, ..., PKaN, h (*))]  B.  
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• 2. B: Iterates over Ra and looks for a true set of public keys. 

The criterion is the structure of the text [PKa1, PKa2, ..., 

PKaN, h (*)]. Selects one PKaJ key of user A.  

• E (PW-Ra; E_PKaJ (k II h (k))  A, k is a high-entropy key.  

• 3. A: iterates over its public keys PKa1, PKa2, ..., PKaN (Ra 

- knows), searches for PKaJ and key k. The criterion is finding 

the key k with the correct value h (k) attached. 

 

4 option protocol amplification.  

• 1. A: [A, E (PW - Ra; PKa1, PKa2, ..., PKaN, h (*))]  B.  

• 2. B: Iterates over Ra and looks for a true set of public keys. 

The criterion is the structure of the text [PKa1, PKa2, ..., 

PKaN, h (*)]. Selects one PKaJ key of user A.  

• E (PW-Rb; E_PKaJ (k II h (k))  A, k is a high-entropy 

key.  

• 3. A: iterates over its public keys PKa1, PKa2, ..., PKaN and 

Rb, searches for PKaJ and key k. The criterion is finding the 

key k with the correct value h (k) attached. 
In the fourth embodiment, the complexity of the user A 

increases due to the unknown vector Rb and the choice of one 

of N public keys by the user B, and the complexity of the user 

B increases due to the unknown vector Ra.  

In option 3, the vector is Rb = Ra and is known to user 

A.  

But in all these cases, the complexity of the decryption 

task for the attacker also increases. 

 

Diffie-Hellman cryptographic key agreement 

protocol and suggestions for enhancing its strength.  

Another type of key installation protocols, in addition 

to key transportation protocols, are key agreement protocols 

[7-8]. In the key agreement protocol, none of the participants 

knows in advance which key will be installed for 

communication with other participants. This key will be 

generated as a result of the exchange of some information 

between the participants in the interaction. The most famous 

example of a key agreement protocol is the Diffie and 

Hellman protocol [9].  

Recall it for the case of using a group of points of 

elliptic curves. 
A, B - participants in the protocol.  

P is the base point of the elliptic curve. 112 bits is a 

security setting.  

Xa is the secret key of participant A, a natural number.  

Ya = Xa * P - public key of A  B.  

Xb is the secret key of participant B, a natural number.  

Yb = Xb * P - public key of B  A.  

A: calculates the shared key K = Xa * Yb = (Xa * Xb) 

* P  

B: computes the shared key K = Xb * Ya = (Xb * Xa) * 

P  

It is known that for the safe use of this protocol, it is 

necessary to add an authentication channel to it in order to 

exclude a “man in the middle” attack. In particular, the 

password word is also used for this. There are many ways to 

do this.  

But first, we will demonstrate how to strengthen this 

protocol using asymmetric operations, but to modify the 

Diffie-Hellman protocol to the transport protocol. 

 

Gain option.  

Participant A sends a set of {Ya1, ..., YaL} public keys 

to Participant B.  

Participant B sends a set of {Yb1, ..., YbL} public keys 

to Participant A.  

For clarity, the power sets of public keys are selected 

the same. In general, these capacities may be different.  

Participant A randomly selects the public key YbJ and 

his private key XaS, builds a key of the form K = XaS * YbJ.  

Then he can use this key, for example, to encrypt some 

plaintext OT on the key K and send it to participant B:  

C = E (K, OT)  B. 
Participant B, in order to find K and decrypt C, must sort 

through L variants of his secret and L variants of Participant A 
public keys. The criterion for the correct choice is the criterion 
for clear text. The complexity for B is in order equal to the 
number L ^ 2 times the complexity of the operation of 
decryption and application of the plain text criterion. For an 
attacker who also has all the public keys of the participants, the 
task is to solve L ^ 2 discrete logarithm problems (albeit with a 
parameter of 112 bits). 

In the proposed variant of protocol amplification, we lose in 
the so-called communication complexity of the protocol when 
transmitting sets of public keys L ^ 2 times. The complexity of 
the decryption process for participant B also increases by the 
same amount. The security parameter is 112 bits, selected by 
license restriction, it suggests that plaintext and key can in 
principle be found, but at very high computational costs. The 
choice of the parameter L may complicate this possibility. 

 

SESPAKE cryptographic protocol and suggestions 

for enhancing its strength.  

An authentication channel for the Diffie-Hellman 

protocol can be provided using digital signatures or a shared 

secret (password). Many options are suggested for this. 

Consider the SESPAKE protocol, where participants are 

supposed to have a common secret word PW.  

Recall the main steps of this protocol. Details can be 

found in [6]. This protocol also uses a group of points of an 

elliptic curve (In our consideration, the security parameter is 

112 bits). 

A is the client, B is the server. Both store L points {Q_1, ..., 

Q_L} and point P of the elliptic curve. Participant B 

additionally stores:  

number ind from the set {1, ..., L}, string salt, point 

Q_pw = int (f (PW, salt)) * Q_ind. Password words PW may 

not be stored.  

1. B  A: ind, salt.  

2. A computes Qa_pw = int (f (PW, salt) * Q_ind. (= 
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Q_pw of server B).  

A  B: Ya = Xa * P - Qa_pw. (= Xa * P - Q_pw)  

3. B calculates Qb = Ya + Q_pw, (= (Xa * P - Q_pw) + Q_pw 

= Xa * P)  

B A: Yb = Xb * P + Q_pw.  

4. A: Qa = Yb - Qa_pw = Xb * P + Q_pw - Qa_pw = Xb * P. 

Xa * Xb * P gets  Ka,  

B: Qb = Ya + Q_pw = (Xa * P - Qa_pw) + Q_pw = Xa * P. 

Xb * Xa * P gets  Kb.  

Ka = Kb. 

(Here it is omitted how specifically Ka and Kb are 

obtained, it is enough that the relation Xa * Xb * P = Xb * Xa 

* P is fulfilled).  

It can be seen from the above description that the 

SESPAKE protocol is a variant of the Diffie-Hellman protocol 

with public keys, distorted by the function of the password 

word PW, known only to legitimate participants. 

 
Option with asymmetric execution.  

The basic idea is not to pass the number ind. Participant 

A randomly selects ind from the set {1, ..., L} and computes 

Ya, but participant B sends L public keys.  

A is the client, B is the server. Both store L points 

{Q_1, ..., Q_L} and point P of the elliptic curve. Participant B 

additionally stores: string salt, points Q_pw1 = int (f (PW, 

salt)) * Q_1, ...,. Q_pwL = int (f (PW, salt)) * Q_L. The 

password word PW may not be stored.  

1. B  A: salt.  

2. A computes for random Qa_pwJ = int (f (PW, salt)) * Q_J.  

A  B: YaJ = Xa * P - Qa_pwJ.  

3. B  A: Yb1 = Xb + Q_pw1, ..., YbL = Xb + Q_pwL.  

A: chose YbJ and Qa = YbJ - Qa_pwJ = (Xb * P + Q_pwJ) - 

Qa_pwJ = Xb * P.  

B calculates Qb1 = YaJ + Q_pw1, ..., QbL = YaJ + Q_pwL. 

Among them, with the right Q_pwJ.  

QbJ = YaJ + Q_pwJ = (Xa * P - Qa_pwJ) + Q_pwJ = Xa * P.  

4. A: The Ka key is used to encrypt plaintext OT. 

This work does not provide specific parameters for 
enhancing durability, since in many respects they depend on 

the computing power of the attacker and the computing power 
of the legitimate participants in the interaction, as well as on 
the requirement for the speed of obtaining information, which 
in turn can be dictated by the necessary level of security in 
each specific case. 

III. CONCLUSIONS 

The technology of asymmetric execution of 

cryptosystems in the PAKE protocol can increase the security 

of these protocols. In this paper, this is demonstrated on three 

protocols. For each of them, specific methods for asymmetric 

execution are proposed. 
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