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Abstract. The work contains a research about a reversibility 

property of cellular automata. Using computational methods, local 

connection functions, that provide a property of reversibility to 

cellular one-dimensional and two-dimensional automata of 

different dimensions, were explicitly obtained. Reversibility criteria 

were obtained for simple cases, as well as properties for which 

reversibility is preserved. Authors provided several directions for 

theoretical analysis, such as polynomial and group model and gain 

several results, which could be relatively easy extended and 

generalized. The property of cyclicity represent interest for 

developing a theory, similar to theory of LFSR. Reversible cellular 

automata with non-linear local function contains properties of 

cyclicity and non-linearity, which could be interesting for 

cryptographic applications. 
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I. INTRODUCTION 

For the first time cellular automata were 

mentioned by John von Neumann in the 40s of the 

twentieth century. In 1985 Steven Wolfram 

described the first stream encryption algorithm on 

cellular automata [1]. A classical cellular automaton 

is an ordered set of memory cells forming some 

regular n-dimensional lattice. Many theoretical 

studies, especially concerning the theory of 

dynamical systems, mostly consider infinite lattice. 

In practice, the most widespread cellular automata 

of small dimension-with one-, two- and three-

dimensional lattices, usually infinite. In 

cryptography, as shown in the review [2] – [5], one-

dimensional and two-dimensional finite-lattice 

automata, or models based on generalized cellular 

automata, have so far found their application. On 

the basis of a two-dimensional cellular automaton, a 

high-performance stream cipher was obtained [6]. 

 

Based on the second model, a hash function was 

recently obtained [7]. A reversible cellular 

automaton  such that each of its states has only 

one antecedent. In a recent review [8] it is shown 

that the main results of studies of reversible cellular 

automata affect only automata with infinite lattice.  

For cryptographic applications, it makes no sense to 

consider such automata. Authors have found 

examples of reversible cellular automata with finite 

lattice, as well as proposed areas of theoretical 

research and obtained some results. 

II. FORMAL STATEMENT OF PROBLEM 

An autonomous finite automaton (1) is called a 

cellular automaton  over a set  with 

d-dimensional lattices, which has size , 

with a radius of locality 𝑟, a neighborhood  local coupling 

function 𝑓 that specifies the transition rule. 

      ,  

where 𝑆 is the set of possible States of the automaton,  

is the initial state of the automaton, 𝐹 is the transition function. 

Denote by  the lattice cell of the cellular 

automaton with coordinates . Denote by 

this value if we need to specify its value at the 

time 𝑡. Each internal state 𝑠 of the automaton corresponds to 

the filling of its lattice. It is described by an ordered set whose 

components are the values of memory cells, as shown in the 

formula (2) 
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              (2) 

Consider a one-dimensional cellular automaton with 

coefficients from . 

Cellular automaton is called a one-dimensional Boolean 

cellular automaton  (3) with a lattice of size , locality 

radius , neighborhood  and the local communication 

function 𝑓 

                (3) 

described by an autonomous finite state machine  (4): 

          (4) 

Here 𝑆 =  is a set of internal states, 𝑠0 ∈ 𝑆 is an initial state, 

 is a transition function. 

The internal state is described by the set 

 The action of  is to apply a local 

communication function to the neighborhood of each cell of 

the cellular automaton, as shown in (5) 

, 0 ≤ 𝑥 < 𝑋         (5) 

 Let the lattice is finite. In this case we should 

understand how  acts near boundaries of lattice. We consider 

2 cases. In the first cells near boundary are neighbors to each 

other, i.e. in the one-dimensional case, the neighbor of the 

rightmost cell is the leftmost cell (shown at figure 1). 

 

Figure 1. Identification of cells, located near with a lattice 

boundary, of a one-dimensional cellular automaton 

 In the second case we assume that beyond the boundaries of 

the finite lattice there are cells filled with zeros, and they do 

not change when the cellular automata works. We call such 

situations a nonzero and zero boundary, respectively. A 

cellular automaton is called reversible if each of its states  has 

the only one preceding state  such that . 

Obviously this condition is equivalent to the periodicity of the 

cellular automaton: for each  there is  such that . 

For cryptography, there are two interesting questions: how to 

calculate the period efficiently and how to construct automata 

with maximal possible period (or almost maximal). Let a 

lattice be finite and a set of cell states is . It’s easy to see 

that the reversibility is guaranteed if a local communication 

function of automaton is a shift. In the two-dimensional case, 

the cell takes the value of its neighbor, or its inversion. That is, 

a function of the form (6): 

            .                      (6) 

In order to identify nontrivial local communication functions, 

we wrote a program in C++. This program reveals functions 

that provide reversibility to a cellular automaton with a given 

number of cells by the method of brute force. The source code 

and the results can be found in the repository [9]. 

III. AUTOMATA, OBTAINED BY BRUTE FORCE 

 In the course of the program, a large number of 

functions were obtained that provide reversibility to automata 

of dimension 1 and the number of cells from 7 to 23 in the 

case of a function of three variables, and up to 19 for 

equilibrium functions of 5 variables. Among them were a 

large number of the aforementioned shift functions as well as 

linear functions. Linear functions are a fairly simple case, they 

provide reversibility to the automaton if and only if the matrix 

of the corresponding linear operator acting on the vector 

representing the current state of the automaton is not 

degenerate. In addition to linear functions as well as shift 

functions, 542 functions with a nonlinear local communication 

function were obtained. Among them, the following facts are 

noticed: the inversion of each function providing reversibility 

also provides reversibility.  

IV. THEORETICAL ANALYSIS 

The non-obvious results prompted a detailed 

theoretical analysis of the reversible cellular automaton as a 

model. The following will list the properties that hold for 

cellular automata. 

Property 1. If  is a local communication function that 

provides reversibility for given Boolean cellular automata 

then  also provides reversibility. 

Proof: We will use rule of contraries. For simplicity, consider 

the one-dimensional case ( ). Let be some state of the 

cellular automaton . And let the 

transition function translate the automaton into a state 
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 Then  will translate 

 to  - state with inverted coordinates. 

Suppose that after applying the inverted function, the state  

has another predecessor . But then in the original 

automaton, .  will be translated by  into  (its own 

inversion), and it has only one predecessor, and that is . That 

is,  coincides with . Similarly, it is proved for large 

dimensions. 

The following 2 properties are essentially an adaptation of the 

classical results from [9] to the case of a finite lattice. 

 

 

Property 2. A map over a vector space is a cellular automaton 

if and only if it commutes with a cyclic shift operator. 

 

Proof: For one-dimensional cellular automata with a nonzero 

boundary, there is a fact, which is also true for automata with 

an infinite lattice, namely, commutativity with a shift 

operation. That is, if  is the function of the 

cellular automaton, and  is the function of the 

cyclic shift vector , then . This 

statement is quite obvious, because when applying the cyclic 

shift, the content of the neighborhood of each cell will not 

change, and therefore its value will not change when applying 

the transformation of the cellular automaton. The converse is 

also true, if a map over a vector space commutes with a shift 

operator, then this map is a cellular automaton with a nonzero 

boundary. To do this, we show that shift invariance means the 

homogeneity of the transformation. Let  be a boolean 

function showing the change of the -th coordinate of an -bit 

vector when the function  acts on it, depending on the value 

of neighboring coordinates. Since we work with binary 

vectors, we can get it explicitly by applying  to each set of 

neighboring coordinates (and itself). Having received a 

column of values, we write the function f through Zhegalkin 

polynom: 

             (7) 

 

Since the value after the shift does not change for any such 

coordinates, and the values of all neighboring cells do not 

change, then the function does not change during the shift. For 

example, if you shift by , the coordinate value is (8): 

 

       (8) 

 

Thus, for any coordinate we have the same function depending 

on the neighboring coordinates of the vector, which means 

that this map is a cellular automaton. It is worth noting that the 

function may not be local – it may well depend on all the 

values of all cells of the lattice. The influence of the 

parameters of the local communication function on the 

distribution of values was studied in [10]. 

 

Property 3. For a reversible binary one-dimensional cellular 

automaton with a nonzero boundary, there is an inverse 

cellular automaton. 

We write the commutativity condition with shift in terms of 

functions: 

                                       (9) 

 

Applying right and left , we get: 

 
                                        (10) 

 

That is, the inverse map also commutes with shifts, and 

therefore is a cellular automaton. 

 

 

 

Theorem 1. A substitutional polynomial written using a 

normal basis will have coefficients from the field . 

 

By normal bases we mean such that each element  of the field 

 is represented as below: 

 

 
 

The shift condition in this case is written as 

 

    .                                     (11) 

 

An reversible cellular automaton is a substitution, so we write 

for it a substitution polynomial in the normal basis: 

                                      (12) 
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Then the condition of commutativity with shift will be written 

as: 

                (13) 

Combining with (14), we obtain: 

 
 

So  and .  

This approach allows us to work with cellular automata as 

mappings over the extension field, which are also 

representable as polynomials. More about the properties of 

such a construction is written in [10]. 

 

Definition 1. Let’s determine a graph by the following rule. 

Let be a finite group , and each vertex of the graph is 

bijectively mapped to some element of the group. Let also be 

fixed some subset  (not necessarily a 

subgroup), and the following property holds: the edge number 

 leading to the vertex  comes from the vertex . on the 

graph thus described, one can specify a cellular automaton 

(both homogeneous and inhomogeneous). We will call such an 

automaton a group automaton, and a group  a carrier 

automaton. The connection function will take the form 

, and the equation describing the operation of the 

automaton will have the form: 

 

               (15) 

 

A quasi-group automaton can be defined similarly by 

replacing the word "group" with "quasi-group". Recall that in 

a quasigroup, the associativity property is not necessarily, 

unlike a group. This definition can be very useful for studying 

the periodicity properties of the cellular automaton. In 

addition, the considered classical automata can be considered 

as automata whose carrier is a cyclic group, which naturally 

leads to the idea of generalizing the developed theory by 

transferring it to a wider class of groups (for example, finite 

Abelian). 

 

 

V. CONCLUSION 

Reversible cellular automata are a fairly simple described 

transformation. They can provide the properties of 

nonlinearity and dispersion (the value of the cell on the 

next cycle affects the entire neighborhood). These 

properties are very useful for construction of symmetric 

cryptosystems. In addition, [13] and [14] show ways to 

construct asymmetric cryptosystems based on reversible 

cellular automata. The theoretical basis of cellular automata 

with finite lattice is not yet fully developed. Authors have 

taken steps in this direction. Obtained results may well 

serve as the beginning of the construction of a theory 

similar to the theory of linear feedback shift registers 

(LFSR). 
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