
Methods of Acceleration of Term Correlation Matrix

Calculation in the Island Text Clustering Method

Yakiv Yusyn[0000-0001-6971-3808], Tetiana Zabolotnia [0000-0001-8570-7571]

Faculty of Applied Mathematics, NTUU "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv,

Peremohy ave., 37, Ukraine
1
yusin.yakiv@gmail.com

2
tetiana.zabolotnia@gmail.com

Abstract. This paper considers the task of accelerating the text clustering by the

island clustering method. Based on the consideration of the basic implementa-

tion of this method, the step of calculating the term correlation matrix is high-

lighted for further acceleration. This step has quadratic complexity from the

number of terms since it considers each combination of them in pairs. In the

framework of this study, it is proposed to use parallel computing and

memoization as methods to accelerate the calculation of the term correlation

matrix. The experiment was carried out using a specially developed determinis-

tic algorithm for generating test data, which is also described. Based on the re-

sults of the data obtained analysis, it is shown that the use of the proposed

methods accelerates the calculation of the matrix by 8-10 times on a virtual ma-

chine with 4 physical cores and 8 logical ones.

Keywords: text clustering, memoization, parallelism.

1 Introduction

The clustering of natural language textual data is widely used both as one of the vari-

ants of automatic systematization and as a proper analysis tool [1]. Clustering of a

natural-language text corpus allows to: understand its structure; highlight the most

atypical texts in this specific corpus that will not belong to any cluster; reduce the size

of the text corpus before its further processing or storing, discarding the most similar

texts, and more [2].

Thus, due to the constant increase in the volume of text corpora and complication

of their structure, formulation of new and improvement of existing methods of auto-

matic (unsupervised) clustering of text documents becomes an urgent task [3].

One of the existing effective methods of text clustering, which provides clarity to

the process of obtaining clusters for humans, is the method of island clustering [4].

The basis of this method is the implementation of a two-step procedure: the first

stage provides the clustering of terms (hereinafter, “term” is used in general infor-

mation retrieval meaning – any word/expression) that documents consist of; the se-

Copyright © 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:yusin.yakiv@gmail.com

cond stage – construction of document clusters, based on the clusters of terms re-

ceived in the first stage. Below is a more detailed list of steps of this method [4]:

Stage I. Clustering of terms:

1. pre-processing of texts from the input collection of documents: removal of stop

words, lemmatization, etc.;

2. selection from the texts the set of terms which they consist of;

3. if necessary, filtering the resulting set of terms (for example, in situations where

the initial centroids of the clusters are known or the resulting set is too large);

4. construction of a graph of terms correlation;

5. pre-processing of the graph and obtaining its approximation (optional);

6. clustering of the obtained approximation of the graph;

Stage II. Construction of document clusters:

7. splitting documents into clusters based on received term clusters.

One of the biggest cost steps is to build a graph of terms correlation. This procedure

lays in calculation of the graph distances matrix (for this method of clustering the

measure of terms correlation serves as a distance, so the names «distance matrix» and

«correlation matrix» are identical for this research), which requires a pairwise consid-

eration of all terms and leads to the quadratic complexity of the calculation process.

Theoretically, the original clustering procedure for the obtained approximation of the

graph is also quadratic (since it considers all edges of the obtained graph), but when

applying the effective procedures of this very approximation, the complexity of this

step is almost linear in practice.

Regardless of the mentioned above, as will be shown in Section 2 of this paper,

none of the papers dealing with the island clustering method considers the accelera-

tion of the term correlation matrix calculation. From this, we can conclude that the

development of methods to accelerate the calculation of the term correlation matrix is

a pressing issue, the successful solution of which will increase the speed of imple-

mentation of island clustering of texts as a whole.

Thus, the main objective of the research is to accelerate the calculation of the term

correlation matrix in the method of island clustering of texts. The object of the study

is the process of automatic clustering of natural language text data. The subject of the

study is the methods of calculation acceleration and applying them in the context of

the island text clustering method. According to the stated objective, the following

tasks were set and solved:

1. research of existing methods to accelerate the calculations;

2. reasonable choice of methods to accelerate the calculations for their use in the

method of island clustering of texts when calculating the term correlation matrix;

3. software implementation of the calculation of the term correlation matrix using the

selected methods of accelerating the calculations;

4. analysis of the efficiency of the proposed means by the criterion of the speed of

calculation.

2 Related Works

The island clustering method was first described in [4]. One objective of this study

was to develop a method, the computational complexity of which has no more than a

log-linear dependence on the number of texts. The island clustering method meets this

requirement since the calculation time of the correlation matrix linearly depends on

the number of documents. In the section devoted to the experiment, it was described

that clustering took about 9 minutes on a pre-indexed subset (consisting of 17545

documents, longer than 100 characters) of the standard Reuters-21578 collection.

[5] is devoted to the improvement of the island clustering method, describing the

method of essential clustering. The new method did not set any new requirements for

clustering performance, leaving the requirement only for the dependence of complexi-

ty on the number of texts. Since the main objective of this work was to increase accu-

racy, there is no information about clustering performance in the work.

However, in practice, more important is the dependence of performance on the

volume of the text corpus, which is more natural to consider as the number of terms.

Described related papers did not describe any techniques for improving this calcula-

tion.

3 An Existing Algorithm for Calculating the Term Correlation

Matrix in the Method of Island Clustering of Texts

The term correlation matrix is a symmetric matrix containing, as elements, the corre-

lation value between the corresponding pairs of terms [5]. Let be

the number of unique terms (the dimension of the matrix), then to fill in the correla-

tion matrix, it is necessary to calculate the correlation value between
 pairs of terms. The correlation value between the terms and is determined as

follows. Let be the total number of terms in all documents, – be the number of

terms in the documents that meet the term , – the total number of term occur-

rences in all documents, and – the number of term occurrences in documents

containing the term . Then the probability that in documents containing term ,

 is found or more of terms , can be used as a basis for calculating the measure of

the correlation of terms and . This probability can be calculated by the formula of

the binomial distribution (1) [5]. The lower the probability obtained, the more terms

are correlated with each other.

 (1)

Since the probability of is not symmetric, in practice is used

as a measure of the correlation of terms.

As a result, we can build matrix based on the obtained values and this matrix will

look like

. Such a matrix can be effectively

stored in memory in the form of a vector with length .

Thus, the basic algorithm for calculating the term correlation matrix consists of

the following steps [5]:

1. in the cycle with counter from 1 to with step 1 perform pp.2-4;

2. in the cycle with counter from to with step 1 perform pp.3-4;

3. find , and calculate ;

4. assign and .

This algorithm is a test of the statistical hypothesis of pairwise independence of the

presence of terms in documents. The consequence of this is the fact that for randomly

generated texts this algorithm will not find any significant relationship between the

terms, and therefore, no clusters will be received at the output.

In practice, matrix also can be additionally filtered to remove insignificant rela-

tions between terms (e.g. it can be done by use absolute threshold for term correlation

[5]) – p.5 in the island clustering algorithm. Such a procedure will increase the quality

of obtained term clusters.

4 Methods of Accelerating the Calculations That Can Be Used

in Calculating the Term Correlation Matrix

4.1 Parallel Implementation of Cycles of the Correlation Matrix Calculation

In the algorithm of the term correlation matrix calculation, it is obvious that each of

the iterations is independent of the others. Thus, instead of

sequentially executing iterations of cycles, their parallel execution is possible.

Let be the time of steps 3-4 of the algorithm (calculating the probabilities, find-

ing the maximum and assigning it to the elements of the matrix). Then – the

duration of the sequential implementation of the algorithm will be

 .

Let all the iterations be divided into parts of approximately equal size, which will

be processed by independent threads in parallel. Then – the minimum

duration of running a parallel algorithm implementation, which is

 can theoretically be achieved. [6]

Thus, comparing and we can conclude that it is theoretically possi-

ble to achieve an acceleration of the matrix calculation by times (with a theoretical

maximum in at). However, the use of

parallel implementation of the algorithm in practice requires additional data sharing

and flow management costs, so that the practical acceleration will be less than .

4.2 Memoization of Interim Results

Memoization is one of the methods of optimizing calculations, which consists of stor-

ing the results of a function execution in a lookup table to prevent repeated calcula-

tions [7]. When using this technique, before performing the memoized function, it is

checked whether this function has already been performed for the passed parameter

set. If the lookup table already saves the result of this function execution for a given

set of parameters – it is used without performing calculations; otherwise, the calcula-

tion is performed, and the given result is recorded in the table [7]. In this way,

memoization differs from the pure use of lookup tables in a way that when used, the

lookup table is not pre-calculated but filled out if relevant.

In practice, memoization can only be applied to pure features that do not create

side effects (such as file entries, database reads, etc.). Also, memoization cannot be

applied if the calculation results have only a certain validity period, after which they

must be re-calculated (in this case, more sophisticated techniques such as caching

should be used).

The additional cost of memoization is only the need for additional memory to store

the lookup table (its size depends on the set of valid values of the memoized function

parameters).

In the case of calculating the term correlation matrix, memoization can be applied

at the third point of the algorithm when calculating the parameters and from

formula (1) of the calculation of . This will only require of additional

memory, and if you use hash tables as lookup tables for memoization, the difficulty of

getting the calculated result will be only .

5 Experiment and Results

5.1 Test Data Generation Algorithm

To test the proposed methods of accelerating the calculation of the term correlation

matrix, in the framework of this research an own algorithm for generating a textual

data corpus was developed.

The developed algorithm has the following properties:

1. accepts only from the input parameters – the number of unique terms in the

corpus texts;

2. is fully deterministic – the same result will be obtained for startups with the same

input parameter value;

3. the generated corpus of texts contains pairs of terms with different degrees of cor-

relation – fully correlated, partially, not at all correlated.

Due to the deterministic nature of this algorithm, it is possible to compare the ob-

tained experimental data (the rate of calculation of the term correlation matrix) for the

same matrix dimension with the use of different combinations of the proposed meth-

ods.

The developed algorithm for generating a textual data corpus (with a term correla-

tion matrix of a given dimension) consists of the following steps:

1. based on the input value, calculate the number of texts in the corpus being

generated, as well as the boundaries of the range of texts in which the next term
will occur. Formulas (2) and (3) are used to calculate these two parameters;

 (2)

 (3)

2. for each from to :

(a) obtain the row value of the next term by converting to hexadecimal;

(b) calculate the indexes of the texts in which the next term will occur according to

formula (4). In case if any index of the resulting set is negative or exceeds the

index of the last text – this index is reduced to valid values;

 (4)

(c) calculate the number of occurrences of the term to the texts found in p.b:

(i) the total number of occurrences of the term to the corpus is calculated by

the formula (5);

 (5)

(ii) the number of occurrences of term to the central text of the range is ;

(iii) the rest of the occurrences are distributed equally among the other

texts of the range;

(d) the term according to the number of occurrences calculated is added to the

texts in the range.

5.2 Features of Implementation of the Software Used for Testing

The software based on C# and the .NET Core 2.2 platform has been developed for

experimental studies of the proposed methods to accelerate the calculation of the term

correlation matrix. The source code for the developed software is fully open and

available at https://github.com/yakivyusin/IslandClusteringAcceleration.

The measurement of the performance of the calculation of the term correlation ma-

trix at different dimensions of the matrix and with different combinations of accelera-

tion methods used was performed using the BenchmarkDotNet library (v.0.11.5) [8].

The launch of the developed software was performed in Google Cloud Platform

virtual machine [9]: machine type – n1-highcpu-8 [10], the operating system installed

– Windows Server 2012 R2 Datacenter, .NET runtime – .NET Core 2.2.6 (CoreCLR

4.6.27817.03, CoreFX 4.6.27818.02), 64bit RyuJIT.

5.3 Results Obtained

Testing the speed of calculating the term correlation matrix was performed for 8 di-

mensions: 49, 169, 245, 371, 441, 569, 659, and 785 terms. According to the devel-

oped algorithm for generating a textual data corpus, this set of dimensions provided

the generation of corpora with sizes from 2 to 5 texts.

For each dimension of the test set, the term correlation matrix was calculated in

twelve different ways: with sequential execution of cycles, with parallel execution of

an external cycle, with parallel execution of both cycles, with memoization of calcula-

tion , with memoization of calculation , with memoization of calculation of both

parameters.

The test results are shown in Table 1, in which the following notations are used to

denote a matrix calculation variant:

 S – sequential execution of cycles;

 P – parallel execution of the external cycle only;

 P2 – parallel execution of both cycles;

 - – memoization of parameter calculation is absent (at the second position in the

variant code corresponds to the parameter at the third position – parameter);

 + – memoization of parameter calculation is present (at the second position in the

variant code corresponds to the parameter , at the third position – parameter).

Table 1. The obtained performance of methods for accelerating the calculation of the term

correlation matrix

Method Mean StdDev Mean StdDev

S / - / - 35.4752 ms 0.1121 ms 2.6196 s 0.0062 s

S / + / - 33.2845 ms 0.0395 ms 2.4361 s 0.0011 s

S / - / + 19.1021 ms 0.0168 ms 1.3123 s 0.0018 s

S / + / + 16.8484 ms 0.0250 ms 1.1841 s 0.0008 s

P / - / - 10.8383 ms 0.0694 ms 749.1520 ms 50.0884 ms

P / + / - 10.0251 ms 0.0845 ms 696.1854 ms 40.3249 ms

P / - / + 6.0347 ms 0.0404 ms 384.8331 ms 22.9376 ms

P / + / + 5.2268 ms 0.0482 ms 335.5853 ms 16.9692 ms

P2 / - / - 8.5507 ms 0.0475 ms 597.0329 ms 3.2351 ms

P2 / + / - 8.0345 ms 0.0485 ms 548.0303 ms 1.8181 ms

P2 / - / + 4.7860 ms 0.0139 ms 296.4303 ms 0.6176 ms

P2 / + / + 4.2407 ms 0.0169 ms 286.2303 ms 0.9918 ms

S / - / - 7.7801 s 0.0018 s 55.1376 s 0.0198 s

S / + / - 7.4509 s 0.0052 s 52.9286 s 0.0456 s

S / - / + 3.9939 s 0.0018 s 27.6869 s 0.0282 s

S / + / + 3.6144 s 0.0021 s 25.4090 s 0.0081 s

P / - / - 1.9809 s 0.0565 s 13.1661 s 0.3204 s

P / + / - 1.9109 s 0.0720 s 13.0529 s 0.2354 s

P / - / + 1.0398 s 0.0474 s 6.7133 s 0.0920 s

P / + / + 903.7262 ms 30.9186 ms 6.0140 s 0.1030 s

P2 / - / - 1.7839 s 0.0055 s 12.5339 s 0.0165 s

P2 / + / - 1.6661 s 0.0092 s 12.4280 s 0.0126 s

P2 / - / + 894.3405 ms 1.6272 ms 6.4234 s 0.0168 s

P2 / + / + 839.8861 ms 5.0445 ms 5.5927 s 0.0100 s

S / - / - 93.5463 s 0.0535 s 198.8434 s 0.0268 s

S / + / - 88.9259 s 0.0641 s 191.0914 s 0.1423 s

S / - / + 46.4341 s 0.0200 s 100.9218 s 0.0948 s

S / + / + 42.5489 s 0.0446 s 91.5685 s 0.0610 s

P / - / - 21.9313 s 0.4058 s 46.7494 s 0.5385 s

P / + / - 21.0615 s 0.4508 s 44.4518 s 0.6213 s

P / - / + 10.7926 s 0.1662 s 24.0653 s 0.2072 s

P / + / + 10.1699 s 0.1097 s 21.7441 s 0.2087 s

P2 / - / - 21.0443 s 0.0344 s 45.2012 s 0.0235 s

P2 / + / - 21.1862 s 0.0157 s 42.6193 s 0.1020 s

P2 / - / + 10.6506 s 0.0158 s 22.3946 s 0.2510 s

P2 / + / + 9.2976 s 0.0409 s 20.6989 s 0.1456 s

S / - / - 413.1504 s 1.2729 s 697.6169 s 0.5776 s

S / + / - 394.7832 s 1.1438 s 672.0708 s 0.7522 s

S / - / + 212.8414 s 0.0583 s 358.1073 s 9.3059 s

S / + / + 197.5828 s 0.8492 s 336.9688 s 0.1039 s

P / - / - 90.4252 s 0.4118 s 157.0082 s 1.5449 s

P / + / - 90.1054 s 0.9602 s 156.6425 s 1.1942 s

P / - / + 50.4148 s 0.3149 s 84.6741 s 0.3796 s

P / + / + 45.4625 s 0.3596 s 78.0188 s 0.6076 s

P2 / - / - 91.8562 s 0.0361 s 161.2538 s 0.0429 s

P2 / + / - 87.9799 s 0.0304 s 159.0484 s 0.0618 s

P2 / - / + 48.3707 s 0.0264 s 79.9656 s 0.0314 s

P2 / + / + 43.5551 s 0.0280 s 75.6100 s 0.0295 s

The present results have high accuracy with a low variance – the ratio of the standard

deviation to mean is in the range from 0.01% to 6.7% (standard error is also within

the range from 0.02% to 0.92%). All measurements (except one) where this ratio

exceeds the mean value of the dataset are related to parallel implementations. This

may be caused by the fact that parallel implementations are more sensitive to random

changes in the workload of the operating system with multitasking, while sequential

implementations just utilize one core and work on it. Also, the process of garbage

collection might influence the variance of results without memoization, but on the

experimental dataset this process is almost deterministic due to dataset volume.

The charts of the obtained results for matrices with dimensions of 659 and 785

terms are shown in Fig. 1 and Fig. 2 respectively. Interactive charts for all test data

are created using the Highcharts library [11, 12] and are available at

https://yakivyusin.github.io/IslandClusteringAcceleration/plots.html.

Fig. 1. The results of testing the performance of the calculation of the term correlation matrix

with the dimension of 659. Achieved performance improvement is in the range between 1.05

and 9.49 times depends on used methods.

Fig. 2. The results of testing the performance of the calculation of the term correlation matrix

with the dimension of 785. Achieved performance improvement is in the range between 1.04

and 9.22 times depends on used methods.

From the obtained results, it can be concluded that the use of all the proposed meth-

ods to accelerate the calculation of the term correlation matrix, increases the perfor-

mance by 8-10 times in total, provided there are 8 virtual cores (depending on the

dimension of the matrix and the number of texts; shown in Fig. 3), compared to the

«naive» implementation of calculations.

Fig. 3. Obtained results of accelerating the calculation of the term correlation matrix (the ratio

of the time of «naive» calculation to the time of calculation using all the proposed methods)

As we can see, the main objective of the present paper is achieved –all proposed

methods improve correlation matrix calculation performance in any given combina-

tion of used methods. The combination of all proposed methods (enabled parallelism

and memoization of both calculation parameters) allows getting acceleration more

than 8 times on machine with 4 physical cores / 8 virtual cores. Also, from the results

obtained, the following dependencies can be emphasized:

1. clean use of parallelism leads to acceleration improvement more than 4 times. Such

a result is because the test virtual machine has only 4 physical cores with 8 virtual

cores;

2. memoization of parameter has a much greater effect on acceleration than

memoization of parameter (average 2 times against average 1.05). We relate it

to the fact that the calculation of is a more complex process and requires read

collection of all corpus terms;

3. variants of parallelism implementation with one cycle and two almost do not differ

from each other (P2 variant on average is faster on 4-6%). The internal features of

.NET Core parallelism implementation might influence this result and also that

even in case of used one parallel cycle the number of chunks exceeds free cores

count.

6 Conclusion

In the present paper, we have described methods of acceleration of term correlation

matrix calculation in the island text clustering method. Proposed methods are based

on two techniques: parallel execution of iterations and memoization of interim results

(coefficients in correlation calculation formula). According to experimental results,

the performance of calculation has been improved more than 8 times on 8 virtual core

machine within the range of different text corpora (test data was generated by a de-

scribed algorithm which was developed especially for this paper). The obtained result

exceeds a theoretical limit of parallel execution (which is equal to the number of

cores) due to memoization using.

Future work on this subject may be in the following areas:

1. experimental testing on different machines (with different number of cores) to bet-

ter determine the dependence between improvement ratio and the degree of paral-

lelism;

2. porting an implementation to a programming language without a garbage collector

to reduce the number of factors that affect the results.

References

1. Reddy S., Kinnicutt P., Lee R.: Text Document Clustering: The Application of Cluster

Analysis to Textual Document. In: Arabnia H., Deligiannidis L., Yang M. (eds.)

INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND

COMPUTATIONAL INTELLIGENCE, pp. 1174–1179. IEEE Computer Society, USA

(2016).

2. Allahyari, M., Pouriyeh, S.A., Assefi, M., Safaei, S., Trippe, E.D., Gutierrez, J.B., Kochut,

K.J.: A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques.

ArXiv, abs/1707.02919 (2017).

3. Berry W.: Survey of text mining: clustering, classification, and retrieval. Springer, New

York (2002).

4. Shmulevich M., Kiselev M., Pivovarov V.: The method of clustering texts, taking into ac-

count the joint occurrence of key terms, and its application to the analysis of the thematic

structure of the news flow, as well as its dynamics. In: INTERNET MATHEMATICS,

pp. 412–435. Yandex, Moscow (2005).

5. Shmulevich M.: The method of automatic clustering of texts, based on the extraction of

object names from the texts and the subsequent construction of graphs for the joint occur-

rence of key terms. Ph.D. Thesis, MFTI, Moscow, Russia (2009).

6. Amdahl, G.M.: Validity of the single-processor approach to achieving large scale compu-

ting capabilities. In: AFIPS CONFERENCE PROCEEDINGS vol. 30 (Atlantic City, N.J.,

Apr. 18-20), pp. 483–485. AFIPS Press, Reston, Va. (1967).

7. Michie, D.: Memo Functions and Machine Learning. Nature 218, 19–22 (1968).

8. Overview | BenchmarkDotNet, https://benchmarkdotnet.org/articles/overview.html, last

accessed 2019/10/27.

9. Cloud Computing Services | Google Cloud, https://cloud.google.com/, last accessed

2019/10/27.

10. Machine types | Compute Engine Documentation | Google Cloud,

https://cloud.google.com/compute/docs/machine-types, last accessed 2019/10/27.

11. Interactive JavaScript charts for your webpage | Highcharts, https://www.highcharts.com/,

last accessed 2019/10/27.

12. Box plot | Highcharts, https://www.highcharts.com/demo/box-plot, last accessed

2019/10/27.

https://benchmarkdotnet.org/articles/overview.html
https://cloud.google.com/
https://cloud.google.com/compute/docs/machine-types
https://www.highcharts.com/
https://www.highcharts.com/demo/box-plot

