
Big Data Approach to Developing Adaptable Corpus

Tools

Andriy Lutskiv1’[0000-0002-9250-4075]’, Nataliya Popovych 2’[0000-0001-6949-0771]’

1 Computer Systems and Networks Department

Ternopil Ivan Puluj National Technical University, Ternopil’, Ukraine

l.andriy@gmail.com
2 Department of Multicultural Education and Translation

State University “Uzhhorod National University”

Uzhhorod, Ukraine

nataliya.popovych@uzhnu.edu.ua

Abstract. Thesis deals with the development of corpus tools which allow build-

ing corpus of religious and historical texts. It is foreseen that the corpus has the

features of data ingestion, text data preprocessing, statistics calculation, qualita-

tive and quantitative text analysis. All these features are customizable. With Big

Data approach is meant that corpus tools are treated as the data platform and the

corpus itself is treated as a combination of data lake and data warehouse solu-

tions. There have been suggested the ways for resolving algorithmic, methodo-

logical and architectural problems which arise while building corpus tool. The

effectiveness of natural language processing and natural language understand-

ing methods, libraries and tools on the example of building historical and reli-

gious texts’ corpora have been checked. There have been created the workflows

which comprise data extraction from sources, data transformation, data enrich-

ment and loading into corpus storage with proper qualitative and quantitative

characteristics. Data extraction approaches which are common for ingestion in-

to data lake were used. Transformations and enrichments were realized by

means of natural language processing and natural language understanding tech-

niques. Calculation of statistical characteristics was done by means of machine

learning techniques. Finding keywords and relations between them became pos-

sible thanks to the employment of latent semantic analysis, terms and N-gram

frequencies, term frequency-inverse document frequencies. Computation com-

plexity and number of information noise were reduced by singular value de-

composition. The influence of singular value decomposition parameters on the

text processing accuracy has been analyzed. The results of corpus-based com-

putational experiment for religious text concept analysis have been shown. The

architectural approaches to building corpus-based data platform and the usage

of software tools, frameworks and specific libraries have been suggested.

Keywords: adaptable text corpus, Big Data, natural language processing, natu-

ral language understanding, statistics, machine learning, data mining, conceptu-

Copyright © 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

al analysis, corpus-based translation studies, conceptual seme, componential

analysis.

1 Introduction

Corpus-based approach for comparative translation studies analysis of religious and

historical text units is to be done with a proper tool. Corpus allows to demonstrate

typical and outline unusual or less frequently used lexico-semantic expressive means

on a large amount of text data and underline rare or exceptional cases. Corpus-based

analysis also makes both quantitative and qualitative analysis on the large amount of

data possible. Comparative translation studies analysis of religious and historical texts

is aimed at verifying possible inadequacies in translation by means of different transla-

tion studies approaches and theories of which theories of equivalence are the most

effective ones. Corpus-based translation studies analysis enables to analyze a large

amount of text data with better accuracy, higher efficiency, adaptable functionality,

less ambiguity and within significantly smaller time frames. The whole workflow pro-

cess is customizable. Building corpus can be done with the help of a proper corpus

tool which can be developed using a combination of corpus linguistics and Big Data

processing approaches. To process these data there should be used methods and tools

relevant to Big Data and data analytics subject areas, such as machine learning, statis-

tics and neural networks. The key feature of this system should be computational ef-

fectiveness. Thus, corpus tool can be treated as a data platform which allows ingest-

ing, storing, processing and performing analysis.

 Adaptable corpus comprises the features of parallel, multilingual, synchronic and

diachronic corpora or corpus tool [1].

The aim of this article is to suggest the software tool which can comprise the quality

or effectiveness, option-based functionality and will be task-based or adaptable to

specific linguistic research tasks with higher level of big data workflow capacity and

less ambiguity indicator.

2 Briefly on classifications of corpora and corpus tools

There are many classifications of corpora and software tools in today’s corpus linguis-

tics literature. Kennedy G. in his Introduction to Corpus Linguistics (1998) gives cor-

pora classification focused on design, development and their generations and is highly

recommended as a basic beginner reference book in corpus linguistics. Lee D. and

Weisser M. suggest very good and substantial classifications of corpus tools and cor-

pora [2, 3]. Our classification is focused more on final user and divides corpus tools

and corpora into five main groups. We classify them according to their functional

features or properties, i.e., (A.) content-based, (B.) functionality-based, (C.) aim- or

purpose-based, (D.) adaptable or of mixed features and functions and (E.) one task-

based corpus software tools. Similar classification was given in our recent article on

adaptable corpus tool. The generation-based type of corpora and corpus tools is not

taken into account in this investigation [4]. One-task-based corpus software tools type

is added to the classification.

This type comprises a great number of different linguistic tools, i.e., so-called cor-

pus software tools directed toward the accomplishment of one task either linguistic or

statistic in its nature. Among them are offline and web-based concordancers, text cod-

ing, (manual) annotation programs, text-analysis tools & search engines, tools & re-

sources for transcribing, annotating or analyzing texts (inc. speech or audio-visual),

stats tools and effect size calculators, taggers and POS taggers etc. [4] Within this

group are offline and web-based concordancers like AntConc (v.3.5.8, February 18,

2019) , WordSmith Tools (v. 7, 2019), #LancsBox (v 4.0, 2018), JConcorder (ver.

1.beta.13, 2011), text coding, (manual) annotation programs, text-analysis tools &

search engines like DART (ver. 3.0, 2019), Dexter and tools & resources for tran-

scribing, annotating or analyzing texts (inc. speech or audio-visual) like CLaRK,

ELAN (EUDICO Linguistic Annotator), GATE (General Architecture for Text Engi-

neering), stats tools like Log-likelihood and effect size calculator, taggers like

CLAWS, Stanford POS tagger and others [4-11, 15-17].

It is also worth mentioning that the Computational Linguistics in Ukraine has its

long history and the issues of corpus-based language research have their systematic

development that resulted in the works of the outstanding scholars Perebyjnis V.,

Klymenko N. [12], Karpilovska E., Dartchuk N. and others.

Besides different specialized dictionaries published by these Ukrainian linguists,

there are also Ukrainian National Corpora which have been developed in several pro-

jects realized till nowadays and some of them are in the process of their development.

Corpus of the Ukrainian Language (N. Dartchuk, O. Siruk, M. Langenbach, Ya.

Khodakivska, V. Sorokin at the Institute of Philology of TKU of Kyiv) [13], Labrato-

ry of Ukrainian (Ukrainian) [14] and General Regionally Annotated Corpus of Ukrain-

ian (GRAC) (Ukrainian) [15], to name just a few which are the most developed of the

Ukrainian language corpora and corpus tools.

3 Main goals of building adaptable corpus for the analysis of

religious and historical texts

Concepts, terms and notions of the religious and historic texts require interdisciplinary

approach to their study. Lexicology, Cognitive Linguistics, Semantics, especially

Conceptual Semantics and Cognitive Semantics, Semasiology, Neurolinguistics, Phi-

losophy of Language and Pragmatics study the notion of concept from various points

of view and are connected to Translation Studies by means of equivalence or adequa-

cy theories. The latter focus on translation unit equivalence/adequacy. Such ap-

proaches to the semantic or conceptual meaning of the lexical unit as (1) componential

analysis, (2) semantic triangle theories, (3) system of values theory and (4) conceptual

analysis represent a set of criteria to translation quality assessment of the religious

concepts.

Conceptual analysis is a type of approach applicable to study and define the con-

cept relations and systems. The idea “of concept system, which is one of the most cen-

tral theoretical notions in the theory of terminology, is usually defined in terminologi-

cal literature as a system of related concepts which form a coherent whole. Starting

from the idea of system, concept systems could be regarded as systems consisting of

several components (concepts) and their relations (concept relations). They are men-

tal, i.e. abstract, artificial, theoretical, man- made systems. They are static because

they represent the conceptual apparatus reflecting the knowledge which exists at a

particular time. New data result in new concepts, and the emergence of new concepts

changes existing concept systems as has repeatedly happened” in the history of dif-

ferent sciences” [19].

Corpus-based conceptual analysis is a type of approach applicable to study and def-

inition of concept relations, concept systems and the place of conceptual seme, i.e., the

smallest meaningful particle in the system of concept relations and systems by means

of an adaptable text corpus tool able to analyze a large amount of text data (BigData).

It should be taken into account that any concept belongs to the system of concepts and

has its relations. And a conceptual seme as a smallest conceptual unit has its important

functional role in that big system of concepts.

3.1 Ukrainian translations of the Bible

It is very important to understand the context in which the concept is used: history,

translations and cultural influences. Facts, which form the context for the Bible trans-

lation, play a very important role in the understanding of the Ukrainian translations of

the Holy Bible.

There are few Ukrainian translations of the Bible which were made by Panteleimon

Kulish, Ivan Pulu’j and Ivan Nechuy-Levitsky (1903) [20], Olexandr Gyzha (2006)

[21], Ivan Ohiyenko (1962, 1988) [22], Rafail Turknonyak(2011)[23] and others. All

these translations are not literal but literary translations. As an example of adaptable

corpus content there were taken six editions of the Bible in three languages (English

[24-26], Ukrainian [21-22] and Russian [27]) to create parallel searchable corpus for

linguistic research goals.

The Ukrainian language which was used by translators is the language of different

years, i.e., 1872-1903, 1966, 1988, 2006, 2011. Translators are influenced by coun-

tries of their origin and not all of them lived in Ukraine while translating the Bible.

3.2 Basic mathematical representation of the translation process

If we treat translation unit (term, word combination, set expression) x which belongs

to set
sourceX of source language text as a translation unit and target text unit y which

belongs to set
targetY of translated units, than translation can be treated as a matching

between the elements of the sets
sourceX and

targetY :

 targetsourcentranslatio YXF :
 (1)

But if there is no literal translation used in the process of translation… and one word

is translated by means of equivalent word, few words or none, than we can describe

translation
ntranslatioΦ as matching graph between sets

sourceX and
targetY . Hence, transla-

tion can be treated as a matching φ of the elements of the sets
sourceX and

targetY :

targetsourcentranslatiotargetsourcentranslatio YXΦ,Y,X,Φφ  ⊆

def

 (2)

Translation of each translation unit can be written as:

    
   



∈∈}{

∈∈

21 yYy,y,,y,y

Yy Xx

targetin

target

Φ

source

 (3)

But due to translation of historical, religious and other ancient texts’ analysis linguist

faces the problem of the unknown sources or intermediaries of the source languages.

When translators are making literary translations they have the possibility to compare

the Bible translations made in different languages (e.g. while translating the Bible into

Ukrainian in some translations there could have been used the Old Slavic, the Ancient

Greek or the Ancient Hebrew texts as the sources). Thus, set
sourceX comprises of few

subsets:

  nsource X,,X,X=X 21 (4)

While working with translations from ancient languages such as Ancient Greek into

modern languages (e.g., English, Ukrainian, Russian, German etc.), we are facing the

problem of the absence or incorrect named entity recognition (NER), stop words,

lemmatization etc. These problems can be solved by preparing special dictionaries and

written rules for lemmatizers by linguists in the collaboration with computer engi-

neers.

All these facts should be taken into account while developing customizable corpus

software. Proper and customizable corpus should suggest for professional linguist a

set of different options. Among these options could be:

1. Different types of text data ingestion can be fully automated, semi-automated or

manual. For example, some texts cannot be automatically ingested into corpora be-

cause of text recognition problem (e.g. ancient texts), some texts have improper

symbols in the text format (Ukrainian “i” is substituted by a Latin), some languages

may be not supported by modern natural language processing (NLP) libraries and

so on.

2. Text processing is aimed at dividing text into paragraphs, sentences and word to-

kenization, finding collocations (words co-occurrences) and colligations (words co-

occurrences in some special grammar constructions), term lemmatization (grouping

together the inflected terms for further analysis as a single item), concordance

(search word in a context), Part-of-speech tagging.

3. Semantic tagging of each part of the corpus (e.g. UCREL Semantic Analysis Sys-

tem [28]). This process is based on results that are obtained from the previous

stage. This option allows adding supplementary meta information to simplify text

understanding.

4. Qualitative and quantitative analyses based on different statistical character-

istics allow finding terms and lemmas frequencies per corpus and per document,

mutual information value in collocation (allows finding proper collocation),

strength of relations in collocations, keywords, the importance of the document in

the corpus of texts, N-grams frequencies. They can annotate according to different

levels of linguistic analysis of the corpus or text (phonetic, semantic, lexical, prag-

matic, discourse or stylistic annotation) and find semantically close documents and

semantically close terms.

5. Comparison with different translations of the same text and map terms in dif-

ferent languages means that there should be parallel multilingual corpus available

that allows comparing characteristics of the same terms in several languages.

6. Texts that are stored and analyzed in the corpus should be chosen only by linguists

to build proper dependencies and lead to proper statistics to prevent side effects in

statistics.

7. Linguists can choose proper calculation methods of text preprocessing and analysis.

They should be customizable.

The main objective of the given research is to develop supported tool for professional

linguists and translators. This development comprises the right choice and justification

of the proper mathematical apparatus (mathematical models, computational methods),

proper algorithms and their effective implementations in software libraries and im-

plement needed functionality.

4 Mathematical model of the corpus

To provide the needed level of qualitative and quantitative text analysis accuracy

(concordance analysis, keywords and keywords clusters, collocations, relations be-

tween terms, relations between documents, relations between terms and documents

etc.) input data should be ingested and preprocessed in the most appropriate way. It is

recommended to use good techniques and choose correct input parameters in the

methods which are used. Data ingestion is a multi-stage transformation of the input

documents. It is worth describing the above mentioned processes by means of mathe-

matical models.

Natural language can be treated as a set of terms or words:  nt,,t,t= 21T , Nn .

This research describes multilingual corpus, thus set L is a superset over the T -sets

that comprises terms from all languages:  n21 T,,T,T=L  . As the next step, we con-

sider the relations between terms and different elements of corpus for only one lan-

guage. There is a subset  n21 t,,t',t'=T'  , Nn of set T of terms that belong to

book ingested into corpus. It is supposed that the whole corpus of one language is a

set A that comprises books (set B). Books are well structured and divided into chap-

ters or documents (set C), so each book is a set that contains a subset of chapters.

Chapter contains sentences (set S), sentence consists of natural language terms. Alt-

hough the words in the sentence are arranged in a certain order, we consider elements

of set S as pairs where first component is the term and second one — its position in

the sentence  r;t'ijkr
. These relations can be described as follows:

 n21 B,,B,B=A  ,  imi2i1i C,,C,C=B  , n,i 1 ,

 

ijpij2ij1ij S,,S,S=C  , m,j 1 ,

      r;t',,;t',;t'= ijkrijkijk 21S 21ijk

, p,k 1 , (5)

 ht,,t,t= 21T' , q,h 1 ,

Nrp,q,m,n, , ABCS  , AT'

Note that each set has its own index which points to the position. This is very im-

portant for navigating through the terms in corpus. When a book is ingested into the

corpus, sentence, term tokenization will be created, then, as a result, a subset of terms

(T') will be obtained.

In (5) n — number of the books in the corpus, m — number of the chapters in any

book of the corpus, p — number of the sentences in any chapter, r — number of the

ordered terms in any sentence, q — number of unique terms in the corpus. Consider

ij
C

z — number of terms in j-chapter of i-book, and i
B

z — number of terms in i-

book,
h

t'z - number of h-term
ht' .

Based on the analysis of all ordered terms t' of pairs

      
ijkijkrijkijk r;t',,;t',;t' 21 21

 there can be obtained frequencies for each term in the

chapter  ij
C

t'ν :

     
































 ij

h
t'

ij

t'

ij

t'

C
ν,,

C
ν,

C
ν

21

,

 
ij

C

h
t'

ij
C

i
t'

z

z
=ν

, (6)

 n,i 1 , m,j 1 , q,h 1 , Nqm,n,

And frequency for each term in the book  iB

t'ν can be obtained as given below:

     
































 i

h
t'

i
t'

i
t'

B
ν,,

B
ν,

B
ν

21

,

 
i

B

h
t'

i
B

i
t'

z

z
=ν

, (7)

 n,i 1 , q,h 1 , Nqn,

Keywords represent the most important lexical units of the text under analysis. There

are different methods of keyword search described and suggested by V. Lytvyn, V.

Vysotska, D. Uhryn, M. Hrendus, O. Naum, U.Shandruk, P.Pukach, O. Brodyak, es-

pecially for Slavic languages [29-31].

In this investigation Latent Semantic Analysis (LSA) [32] is applicable to find the

most important concepts in different languages and is suggested as the most universal

and performance effective method among other methods for the outlined tasks. It

comprises such steps as finding importance of words in text corpus and building term-

document or lemma-document matrix. Importance of the words in the documents can

be obtained by calculation of frequencies or TF-IDF (term frequency–inverse docu-

ment frequency) [32, 33]. TF-IDF is more accurate method in comparison to frequen-

cy calculation. Finding keywords comprises the removal of stop-words, finding lem-

mas, calculating TF-IDFs of each lemma and ranging lemmas by TF-IDF criteria.

Thus, to find keywords (set
KWT') stop-words should be removed and lemmas for

the rest of the terms are to be found. To remove stop-words it is advisable to use the

dictionary (set
SWT') predefined by the linguist:

 SWKW T'\ T'=T' , T'T'KW  , T'T'SW  , (8)

Lemmas are to be found among the terms belonging to the set T of the whole lan-

guage and are to be compared with the keywords KWT' obtained according to lan-

guage rules:

 KWKWionlemmatizat 'T'T':F  , (9)

Having done lemmatization, the obtained set of lemmas  h21KW 't',,'t','t'='T' 

analogous to (6) lemmas' frequencies are to be calculated. It is considered that iw
B

 is

number of chapters of i-book, and
h
't'

iw
B

 — number of some h-lemma s
h't' in i-

book.

And now we can obtain importance of each lemma in any chapter by calculating

TF-IDF
 ij
C

't'ξ :

     
































 ij

h
't'

ij

't'

ij

't'

C
ξ,,

C
ξ,

C
ξ

21

,

   
 

h
't'

i
B

i
B

ij
C

h
't'

ij
C

i
't'

w

w

z

z
=ξ log

, (10)

 n,i 1 , m,j 1 , q,h 1 , Nqm,n,

To find relations between terms (
ht') which are converted to lemmas (

h't') and docu-

ments cosine similarity metrics can be used [32]. This metrics is commonly used in

natural language analysis domain. Term-document matrix M containing TF-IDF val-

ues is formed to find cosine similarity. Documents and terms are represented as vec-

tors of TF-IDF values, i.e., each column represents document and each row represents

term (11).

 (11)

Cosine similarity between terms (12) and documents (13) is represented as follows:

 

hh

hh

't''t'

't''t'
=φ









1

1cos

, (12)

 

imim

imim

CC

CC
=φ









1

1cos

, (13)

Large matrix dimensions are to be seen as a disadvantage of this method. LSA method

[33, 32] enables reducing both computational complexity and information noise by

using singular value decomposition (SVD). SVD is based on using matrices U , S and
TV :

TVSUM  , (14)

Matrix M has dimensions mh , U is an lm matrix, S is a ll diagonal matrix,
TV is a ml matrix. SVD is parameterized with a parameter l , ml  . By these

parameters we set how many concepts are to be analyzed. There are two options:

1. If m=l , then we obtain original matrix exactly.

2. If m<l , then we obtain low-rank approximation of the original matrix. Usually

l is chosen to be smaller than m . SVD ensures that the approximation will be the

closest possible to the original matrix.

Hence, finding relations between terms and documents in LSA is based on finding

cosine similarities between smaller matrices. In LSA all calculations are done with

matrix lh but not with matrix of original size mh .

Other very important features of the corpus are collocations and colligations. The

process of obtaining collocations and colligations is based on finding N-grams (a con-

tiguous sequence of N terms) and computing probabilities of this N-grams in the cor-

pus. The highest probabilities     v;t'|+v;t'P ijkv+vijk 11
 that the term  11 +v;t' +vijk

follows the term  v;t'ijkv
 point on the most used collocations and colligations in the

natural language. There are usually 2-grams (bigrams) and 3-grams (trigrams) used in

practice as follows:

    11 +v;t',v;t' +vijkijkv

,

 n,i 1 , m,j 1 , p,k 1 , 1v , r+v 1 , (15)

 Nrv,p,m,n,

      21 21 +v;t',+v;t',v;t' +vijk+vijkijkv

,

 n,i 1 , m,j 1 , p,k 1 , 1v , r+v 2 , (16)

 Nrv,p,m,n,

Finding N-grams is one of the most time and memory consumable processes which are

described by S. Ryza, U. Laserson, S. Owen, and J. Wills [32]. This task can be com-

pleted only after finding sentences and terms. The probabilities of collocation are

calculated according to the formula given below:

    
    

 v;t'Count

+v;t',v;t'Count

=v;t'|+v;t'P

ijkv

+vijkijkv

ijkv+vijk

1

1

1

1



 (17)

 n,i 1 , m,j 1 , p,k 1 , 1v , r+v 1 ,

Nrv,p,m,n,

Corpus should contain much additional and useful information that describes its ele-

ments (part-of-speech tag, types of sentences etc.). This information will appear in the

corpus after text data enrichment. This text data enrichment or augmentation process

[34] comprises different types of tagging and text mark-up operations. Due to this

research, data enrichment is achieved by using POS-taggers and sentence taggers. We

obtain the set of tagged sentences
ijkS

~
 and tagged ordered terms  r;'t ijkr

~ in the sen-

tences as follows:

 ijkijktaggingF SS:
~

 ,       r;'t,,;'t,;'t= ijkrijkijkijk

~~~~
21S 21

, (18) 

 n,i 1 , m,j 1 , p,k 1 , 



Result set of the corpus will be larger than the set of input data and will be based on 

the elements of additional dictionaries, different transformations and mappings of the 

source set elements. 

5 Suggested implementation of the corpus tools 

Building corpus of religious and historical texts is impossible without usage of Big 

Data techniques and methods which are usually used for building data lakes and data 

warehouses.  

Figure 1 shows general preparation workflow and usage of the corpus from the point 

of view of Big Data engineering. After Extract-Transform-Load (ETL) phase data 

sources from different formats and structures become a set of structured text docu-

ments. Depending on the document structure and type of source data (image, text, xml 

etc.) this phase can be automated or semi-automated. For example, linguists should 

fulfill some manual tasks to divide structureless text with some special delimiters but 

well-structured documents can be ingested automatically. 

Phase “preprocessing” is used to enrich [34] and prepare text for statistical analy-

sis. This phase comprises text tokenization into sentences and terms, removing useless 

information, filtering stop words, lemmatization of terms, obtaining collocations and 

additional information about every term (different tags), numeric characteristics calcu-

lation of every term etc. 

Preprocessing is implemented with the specific NLP and NLU libraries. Current 

implementation of the corpus tool is oriented on the English, Ukrainian and Russian 

texts’ processing. For the English language text processing it is suggested to use Stan-

ford Core NLP 3.9.2 which is better NLP and NLU library. For the Ukrainian and 

Russian texts’ processing there is advisable to use LanguageTool 4.7. Feature extrac-

tion (N-grams, frequencies of terms, TF-IDF etc.) was done with Apache Spark 

MLLib, with usage of parallel and distributed capabilities of this library. Language-

Tool and Stanford Core NLP was embedded into Apache Spark pipelines data pro-

cessing. The effectiveness of Stanford Core NLP in the processing of the English texts 

is higher than that of processing Ukrainian and Russian texts by means of the Lan-

guageTool because of different internal processing algorithms. Stanford Core NLP 

uses a well-trained neural network to do lemmatization, whereas LanguageTool uses 

vocabulary-based approach. Stanford Core NLP effectiveness is based on well trained 

models which can be observed only on its well supported languages: Arabic, Chinese, 

French, German, and Spanish.  

Table 1 shows the results of average computation time of data processing under the 

same conditions run on Apache Spark 2.3.2 in local mode (JDK 1.8.0-231). Thus we 

can assume that text processing and text analyzing without usage of well-trained mod-

els will take the same average time as the Ukrainian and the Russian texts processing 

do. As it is shown on Table 1, there are given the cases of processing times for stop-

words filtering, tokenization and lemmatization without N-gram extraction. N-gram 

processing time was not taken into account because their extraction was implemented 

with Apache Spark MLLib. These results show the effectiveness of NLP libraries.  



 

 

 

 

Fig. 1. Corpora tool data processing workflow 

Table 1. Comparison of the average execution data processing time on different texts 

Documents 
Doc. 

Number 

PC1 (intel i5-

2300, 16GB) 

PC2 (intel i7-

8565U, 16GB) 

English text1 [24] 1189 1M8.395S 44.148S 

English text2 [25] 1189 1M1.407S 39.538S 

English text3 [26] 1336 1M27.183S 53.605S 

Ukrainian text1 [21] 1189 4M56.589S 3M3.604S 

Ukrainian text2 [22] 1189 5M3.484S 3M8.59S 

Russian text1 [27] 1189 10M54.735S 7M5.913S 

There are two types of statistics, i.e., statistics per document and statistics per whole 

corpus. Statistics per document is calculated once when linguist adds a new document 

to the corpus. This type of statistics comprises term frequencies, N-grams (colloca-

tions) frequencies, results of LSA (term-document matrix, results of SVD decomposi-

tion). 

Frequencies of terms per chapter in the book, frequencies per book, finding N-

gram, calculating N-gram frequency and TF-IDFs were done with Apache Spark 

MLLib which provides specific libraries featured by high level of parallelization. 

LSA is implemented with the libraries from Apache Spark MLLib which contains 

SVD. To obtain better performance of Spark MLLib in SVD-computation native op-

erating system libraries ARPACK, BLAS and LAPACK were used. Among BLAS 

and LAPACK, which are well known basic linear algebra libraries, ARPACK is a 

Fortran77 parallel implementation of subroutines to solve large scale eigenvalue prob-

lems, especially eigenvalue decomposition. Usage of these native libraries is very 

important for speedup that can be achieved up to 50%-70% [35]. 

Statistics for corpus data should be recalculated when every new document appears 

in the corpus. All described phases are implemented as a pipelines in Apache Spark 

2.3.2. 

Thus, multilingual parallel corpus persists data of: 

─ source texts in unchanged immutable state;  

─ processed annotated and tagged texts; 

─ additional metadata which maps source and processed texts; 

1

2

3

n

ETL   

ETL   

ETL   

ETL   

PREPROCESSING    STATISTICS   

PREPROCESSING    STATISTICS   

PREPROCESSING    STATISTICS   

PREPROCESSING    STATISTICS   

ALL 
CORPUS

STATISTICS

ANALYTICS

DATA
MINING
WITH

QUERIES

REPORTING

M
U

L
T

IL
IN

G
U

A
L
 

P
A

R
A

L
L
E

L
 

C
O

R
P

U
S



─ statistics, analytics and reports on each document and the whole corpus. 

These are different types of data which persist in the different types of storages. Con-

ceptually it is the combination of data lake and data warehouse approaches, i.e., un-

structured raw data stored with processed results and statistics for analysis. Distributed 

file system and relational database management system (RDBMS) are used to provide 

this functionality. In our case, the distributed file system is HDFS, but also it can be 

Amazon Web Services S3 object storage. Parquet file format, which is compressed 

and efficient columnar data representation for parallel and distributed data processing, 

is used for storing files on HDFS. PostgreSQL 9.6 is used as RDBMS. It also allows 

to do fast analytics on cached data and has a large amount of special text functions. 

5.1 Data processing workflows 

In our research corpus tools are treated as a type of data platform which comprises 

data processing software, storage system, software to make queries and which pro-

vides a user interface to interact with a platform.  

Data extraction, transform, load and processing. Data processing software works 

according to the workflow which is illustrated by Figure 1 and is described above. The 

implementation of this workflow is based on the principle of data locality. This prin-

ciple is provided by Apache Spark and HDFS architectures. Data extraction depends 

on the type of sources. Texts of the Bible were chosen for the demonstration in SQLite 

format. The extraction from UTF-8 text files, wikipedia-xml files and from PDF-

documents, which are based on the usage of Apache Tika library, were also imple-

mented. But in any case the linguist has to check the correctness of source documents. 

SQLite-files are extracted to PostgreSQL database which is supported by Apache 

Spark as data source for building Datasets. SQLite files can be extracted with Apache 

Spark only in local-mode execution. In cluster-mode these options are not appropriate. 

Apache Sqoop tool was also tested for data extraction from SQL to CSV files into 

HDFS. Advantage of this tool is the possibility to extract data from any SQL-data 

source into Parquet file on HDFS with required SQL-queries. In our case, it is decided 

to extract SQLite data into PostgreSQL to simplify ETL process and to read data into 

Apache Spark from PostgreSQL directly. 

Internally, in Apache Spark it is used Spark SQL to process ingested datasets. To 

increase effectiveness of parallelization and avoid Spark Data Skew Problem [32] 

Spark broadcast function is used. Results of processing are stored on HDFS in Par-

quet-format and in PostgreSQL. 

Storage system. As mentioned above when text is added to corpus, corpora tool 

makes all needed calculations and stores obtained results. There is statistics per docu-

ment and statistics for all corpora, which should be recalculated after adding of every 

new document. Time of recalculation depends on the size of all corpus and complexity 

of query. Developed corpora tool is based on batch data processing principle. This 

principle means that new batch data processing which comprises recalculation of the 

whole statistics, starts after each new ETL of a new document finished. 



 Thus results of Apache Spark data processing and all data needed for calculations 

as a set of DataFrames are stored in the Parquet format on the HDFS and the data 

needed for fast user data queries are stored to PostgreSQL tables. Stored DataFrames 

are needed for the whole corpus statistics recalculation. Tables in RDBMS allows to 

build user interface to interact with the corpus.  

Thus, combination of distributed file system and RDBMS provides reliable and fast 

data lake with capability to make fast queries and get analytics. At this stage of the 

corpus tool development analytics and reports are implemented with Apache Superset.  

User interface. A user interface to interact with a platform and which provides abil-

ity to ingest data and to make queries was built as a separate microservice. This mi-

croservice is developed with Spring Boot 2.0 framework. Implementation of the mi-

croservice has been done conforming to methodology [33]. ETLs which are performed 

by Apache Spark are triggered through Livy service which provides REST-interface to 

Apache Spark and allows to submit tasks. Thus user uploads file for process and sub-

mits ETL task through microservice application. Queries can be done by interaction 

with this microservice which uses PostgreSQL as data source. At this paper main at-

tention is pointed on building data workflow and text processing so user interfaces are 

mentioned only as a part of data platform. General architecture of the corpus data 

platform is shown on Figure 2. 

 

Fig. 2. Corpora tool with implementation details 



5.2 Corpus data platform implementation details 

Corpora data platform is developed on the top of the Cloudera HDP 3.1.4 software 

stack. This stack provides:  

─ HDFS 3.1.1 for storing data; 

─ MapReduce2 3.1.1; 

─ Apache Spark 2.3.2 provides ETLs, data preprocessing, statistics and analytics 

(with a Livy server); 

─ Apache Sqoop 1.4.7 for ETL data in SQL format; 

─ Apache Yarn 3.1.1 cluster task scheduler;  

─ Apache Superset 0.23.0 for visualization and analytics. 

There are also different supporting and cluster management tools (Ambari, Ranger, 

Zookeeper etc.). All this software stack is based on free and open source software and 

is to be installed on CentOS 7 Linux. Deployment was done into private cluster. Com-

putational experiment was run in Apache Spark cluster mode. 

Described implementation of the corpus tool is based on batching data processing, 

but to provide faster results is better to choose event-based lambda architecture [36] 

while adding new texts to the corpus. In lambda architecture delta rules are used for 

data processing models to achieve robustness, automation and efficiency. Any change 

in the state of data is an event to the system and as a matter of fact it is possible to give 

any command, queried or expected to carry out delta procedures as a response to the 

events on the fly. 

All data processing workflows are implemented with Java 8 programming language 

and appropriate software libraries: 

─ Apache Spark 2.3.2 to process data in a parallel and distributed manner; 

─ LanguageTool for the Ukrainian and Russian languages tokenization, lemmatiza-

tion, POS-tagging; 

─ Stanford Core NLP for the English language tokenization, lemmatization, POS-

tagging; 

─ Statistics, feature extractions which were designed with distributed machine learn-

ing Apache Spark MLLib; 

─ Spring framework 5.1 for managing Java application context, i.e., manage beans’ 

lifecycles, working with configuration, network communication (Spring 

WebMVC), working with database (Spring Data); 

─ Additional libraries for logging (slf4j, log4j2), wikipedia-xml extraction (cloud9, 

bliki), data mapping into xml and json (jackson), testing (junit, mockito) etc. 

Microservice which provides user interfaces implemented with Spring Boot 2 frame-

work, Spring Data, Spring WebMVC, Spring Cloud etc. 



6 Computational experiment 

Corpus of different editions, translations and languages of the Bible was compiled to 

verify the suggested approach. Few examples of investigated texts are shown in Table 

2. Due to this investigation every Bible edition is treated as a subcorpus, i.e., a set of 

chapters. Each chapter has its own sentences and terms. After ETL the most important 

keywords, term POS-tags, relations between terms and other features for each chapter 

are obtained. After statistical processing each subcorpus (book) and its documents 

(book chapters) has its own characteristics. 

 

Table 2. Input text data characteristics 

No. Book 

Year of 

publishin

g 

Target  

translate

d  

language 

Number 

of books 

Number 

of  

Chapters 

Number of  

stories 

Number 

of  

verses 

1 [24] 2009 English 66 1189 1139 31102 

2 [25] 2011 English 66 1189 1139 31102 

3 [26] 2011 English 77 1336 1252 35488 

4 [21]  2019 Ukrainian 66 1189 1175 31160 

5 [22] 1962 Ukrainian 66 1189 - 31170 

6 [27] 2014 Russian 66 1189 1011 31163 

Corpus comprises a set of Bible editions (subcorpora) and allows to compare transla-

tions in different languages. 

In this experiment it is very important that the context of the translation is taken in-

to account. To provide literary translation many translators were oriented on different 

source languages, i.e., Ancient Hebrew, Ancient Greek and Old Slavic or intermediary 

languages. The translation of chapter titles does not match and differs. It is very often 

the fact that the source language of the translated text is or unknown or is very diffi-

cult to identify. 

At the stage of ETL well-structured books of the Bible have been obtained. There 

were taken the books which were used for mobile applications in SQLLite format. 

Text data were imported into RDBMS PostgreSQL. Hence, data ingestion wasn’t too 

complicated, since Apache Spark allows to use JDBC-connection as a source.  

There are two important factors which are to be taken into account while pro-

cessing books: 

Some books are logically subdivided into stories, but the number of stories depends 

on translation and varies from zero to 1139. Some books contain less number of trans-

lated books. Due to these two factors and in order to provide more accurate results it 

is suggested to divide each book into documents by chapter criterion and to prepare 

custom ETLs for different types of books. 



At this stage of ETL the obtained meta information about the book (author, pub-

lisher, source filename, edition, year of publication etc.) and tuples which comprise 

the title of the chapter and its text. 

After ETL there are to be done the following processing steps:  

─ sentence and word tokenization (results are shown in Table 3); 

─ calculation of terms frequencies; 

─ collocation search (N-grams with high probabilities); 

─ POS-tagging and sentence tagging; 

─ stop words removal; 

─ lemmatization; 

─ calculation of TF-IDFs; 

─ building of term-document matrix with TF-IDFs; 

─ singular value decomposition with obtaining low-dimensional term-document ma-

trix representation.  

Table 3. Results of text tokenization 

No. Book 

Number of 

unique  

terms  

with 

stopwords 

Number of 

unique  

lemmas  

(without 

stopwords) 

Total  

number  

of terms 

Total number 

of  

sentences 

1 [24] 14948 9897 1429388 81428 
2 [25] 14716 9747 1452104 79832 
3 [26] 13988 10088 1802496 67574 
4 [21]  41743 19805 1078446 64962 
5 [22] 42887 20000* 1125518 69448 
6 [27] 41997 16239 1124732 80202 

Fifth book published in 1962, so the set of terms comprises a large number of the old 

Ukrainian words and the corpus tool sets upper bound up to 20000 terms. This exam-

ple shows the complexity of automatic processing of non-modern language. 

While doing SVD it is important to choose proper value of k in finding relevancies 

between term and terms (Table 4), document and documents, term and documents as 

well as making search queries in corpus. But finding better numerical metrics of accu-

racy of concept search it has appeared to be a very complicated task due to many fac-

tors which must be taken into account. In this investigation k-value is taken as equal to 

100. It is quite reasonable as a result if it is to compare with number of unique lemmas 

in every document and the size of processed input data (Table 3). Number of unique 

lemmas represents the dimension of lemma-document matrix. Thus the use of k=100 

means that computational complexity is reduced approximately to 100 times. The use 

of k=100 resulted to be very close to k=1000. Hence, is reasonable to reduce dimen-

sionality.  



 

Table 4. Results of LSA calculation in finding related terms 

Book 

Num. 

Documen

ts 

Results of finding top 10 related terms to term “light”, 

“світло”, “свет” (term and its weight) 

[24]  1189 

[light, 0.99999], [darkness, 0.57538], [bearing, 0.487875], 

[expanse, 0.4852], [shine, 0.386439], [create, 0.36975], 

[vegetation, 0.36695], [formless, 0.35512], [wildlife, 

0.345030], [lesser, 0.34467] 

[25] 1189 

[light  0.99999], [darkness 0.5586], [vault 0.464004] [teem  

0.39937], [vegetation 0.374906], [formless 0.372928], [sky 

0.36825],  [winged 0.344664], [shine 0.32292], [hover  

0.31357] 

[26] 1336 

[light  0.99999], [darkness 0.52926], [yielding 

0.42156],[firmament  0.38736],[shine 0.350623], [see 

0.32817],[earth 0.32739], [herb 0.308865],[winged 

0.299326], [thing 0.294953] 

[21] 1189 

[світло  0.99999], [світлий 0.62616], [пітьма 

0.53209],[бог  0.33081],[людина 0.322283], [день 

0.313664],[шлях 0.304283], [земля 0.290772],[мова 

0.28927],[бачити  0.28903] 

[22] 1189 

[світло  0.99999],  [світлий 0.70187],  [темрява 0.443529], 

[темрявий  0.406461], [день 0.315974],  [бог 0.315765], 

[темнота 0.31495],  [мати 0.31098], [земля 0.30418], 

[людина  0.30102] 

[27] 1189 

[свет  0.99999], [света 0.99284], [тьма 0.74948], [суд  

0.58115], [ведомый 0.56315], [искать 0.56206], [миро 

0.55932], [праведность 0.55761], [мир 0.55613], 

[слепнуть 0.54661] 

 

Developed adaptable corpus allows choosing the custom k-value. Choosing better 

numerical metrics of similarity between results obtained due to the experiments with 

different k are of great importance and will be completed in later investigations. 

Proper k-value also takes an important role when relevancies between term and 

terms, document and documents, term and documents are to be found. Search queries 



in corpus have to be found as well. Table 5 presents the top 10 relevant terms fixed as 

searchable terms.  

Table 5. Results of LSA calculation with different k-value 

Book 
Num. 

Documents 
k 

Top 10 terms for the first concept in a descending 

order 

[24] 1189 

100 
offering, king, david, son, male, priest, clan, bull, 

israel, saul 

1000 
weaned, resounding, forevermore, plowmen, singers, 

sustainer, detailed, dampen, pillow, bowstr 

[25] 1189 

100 
weaned, surpassing, clash, plowmen, preside, slur, 

preeminent, enact, beheld, compacted 

1000 
weaned, surpassing, clash, plowmen, preside, slur, 

preeminent, enact, beheld, compacted 

[26] 1336 

100 
mesech, plower, mower, sheave, backbiteth, shade, 

anointest, comfortedst, relieveth, vilest 

1000 
mesech, mower, sheave, plower, backbiteth, shade, 

anointest, comfortedst, relieveth, vilest 

[21] 1189 

100 
вийти, піти, чоловік, нарід, побачити, місто, пос-

лати, батько, час, стати 

1000 
вийти, піти, чоловік, нарід, побачити, місто, пос-

лати, батько, час, стати 

[22] 1189 

100 

трубний, дивніший, пишнитися, заспокоювати, 

подякування, повіквічне, однокупно, хермонська, 

оберемок, порвати 

1000 

трубний, дивніший, заспокоювати, пишнитися, 

подякування, хермонська, повіквічне, однокупно, 

порвати, оберемок 

[27] 1189 

100 
послать, оставить, посол, больший, тома, царь, 

иерусалим, слуга, отдать, услышать 

1000 
послать, оставить, посол, больший, тома, царь, 

иерусалим, слуга, отдать, услышать 



 

The accuracy of results shown in table 4 also depends on value k. Computational sys-

tem which has been developed for carrying out these experiments is based on HDP 

3.1. Computational cluster is deployed in private cloud with manage nodes (master 

nodes) in OpenStack environment [37] and computational nodes are bare-metal nodes. 

The suggested solution can be also deployed in the public clouds such as Amazon 

EMR with distributed storage on Amazon S3[38]. 

 

7 Conclusions and future work 

Developed corpus data platform is capable to satisfy specific linguist needs and com-

bines multiple functions of parallel, multilingual and diachronic corpora. Adaptability 

of the corpus is provided by the ability to set custom parameters for every text docu-

ment and the capability to make quantitative and qualitative analyses. It allows lin-

guists to compare multilingual translations of the same texts. Suggested approaches 

and methods of corpus data platform development have been verified by implementa-

tion support of the Ukrainian, Russian and English languages and based on the exam-

ple of the Bible text analysis. In comparison to analog corpora this tool has the same 

basic functionality, but its adaptability gives new opportunities for text analysis by 

customization usage of specific data mining methods and custom dictionaries. 

It has been also suggested to represent elements of the corpus as a number of related 

sets, i.e., terms, sentences, chapters, books etc. These elements are represented in 

mathematical model of the corpus. 

There have been compared and analyzed different NLP and NLU libraries which al-

low scientists to provide investigations with needed basic functionality and could be 

extended by adding new language rules, especially those of the ancient languages. 

References 

1. Kibler, S., Zinsmeister, H.: Corpus Linguistics and Linguistically Annotated Corpora 

Bloomsbury Academic, New York, London, 21-156. (2015) 

http://dx.doi.org/10.5040/9781472593573 

2. Lee, D.Y.W.: What corpora are available? In: McCarthy M. and O'Keeffe A. (eds) The 

Routledge Handbook of Corpus Linguistics. Routledge, Abingdon,107-121. (2010) 

3. Weisser, M.: Manual for the Dialogue Annotation & Research Tool (DART). Version 3.0. 

http://martinweisser.org/publications/DART_manual_v3.0.pdf. Accessed 15 Dec 2019. 

(2019) 

4. Lutskiv, A., Popovych, N.: Adaptable Text Corpus Development for Specific Linguistic Re-

search. In: Proceedings of IEEE International Scientific and Practical Conference Problems of 

Infocommunications. Science and Technology, Kyiv, 217-223. (2019) 

5. Kruger, A., Wallmach, K., Munday, J. (eds): Corpus-Based Translation Studies. Research and 

Applications.Continuum, London. (2011) 

http://dx.doi.org/10.5040/9781472593573
http://martinweisser.org/publications/DART_manual_v3.0.pdf.%20Accessed%2015%20Dec%202019


6. Anthony, L.: A critical look at software tools in corpus linguistics. Linguistic Research 

30(2):141-161. (2013). https://doi.org/10.17250/khisli.30.2.201308.001 

7. Anthony, L. (February 18, 2019) AntConc (Windows, Macintosh OS X, and Linux) Build 

3.5.8. http://www.laurenceanthony.net/software.html. Accessed 14 Feb 2020 

8. Scott, M.: WordSmith Tools Manual. (2019). 

https://lexically.net/downloads/version7/HTML/index.html. Accessed 15 Dec 2019  

9. Brezina, V., Timperley, M., McEnery, T.: #LancsBox v. 4.x [software]. (2018)  

http://corpora.lancs.ac.uk/lancsbox. Accessed 15 Dec 2019. 

10. Garretson, G.; Dexter. Tool for analyzing language data. (2011).  [Online]. Available: 

http://www.dextercoder.org/index.html. Accessed 15 Feb 2020. 

11. Francis, W.N., Kucera, H.: Standard American English or the Brown Corpus. (1979).  

http://clu.uni.no/icame/manuals/BROWN/INDEX.HTM#t1. Accessed 15 Feb 2020  

12. Klymenko, N.: Structural Linguistics. Linguistic Synergetics. Cumputational Linguistics. 

Selected Works. Dmytro Burago Publishing House. Kyiv, 445-567. (2014) 

13. Dartchuk, N.: Corpus of the Ukrainian Language (Ukrainian). (2002-2020). 

http://www.mova.info/corpus.aspx?l1=209. Accessed 15 Feb 2020 

14. Laboratory of Ukrainian (Ukrainian). https://mova.institute/. Accessed 15 Feb 2020 

15. General Regionally Annotated Corpus of Ukrainian (GRAC) (Ukrainian). 

http://uacorpus.org/, http://www.parasolcorpus.org/bonito/run.cgi/first_form. Accessed 15 

Feb 2020 

16. Godfrey, J.J.: (1997) Air Traffic Control Complete. Linguistic Data Consortium. 

https://catalog.ldc.upenn.edu/LDC94S14A Accessed 20 Feb 2020. 

17. Bennett, Ch., Rudnicky, A. I.: The Carnegie Mellon Communicator Corpus. In: Proceedings 

of the International Conference of Spoken Language Processing. Denver, Colorado, 341-344. 

(2002). 

18. Opus, the Open Parallel Corpus. http://opus.nlpl.eu/.Accessed 05 Feb 2020. 

19. Nuopponen, A.: Begreppssystem für Terminologisk Analysis (Concept Systems for Termino-

logical Analysis). Acta Wasaensia 38. 266, (1994). 

20. Kulish, P. O.: Nechuy-Levȳts’kyj IS, Pulyuj I (transll), Svyate Pȳs’mo Staroho i Novoho 

Zavitu. Movoyu rus’ko-ukrayins’koyu (2010) Prostir, Kyiv. 852+249. 

21. Novitniĭ pereklad Bibliyi Oleksandra Hȳzhi: Druk KT Zabelina-Fil’kovs’ka, Kyiv. 1210, 

(2013). 

22. Ohiyenko, I.: (transl) Bibliya Abo Knȳhȳ Svyatoho Pȳs’ma Staroho ĭ Novoho Zapovitu. Iz 

movȳ davn’oyevreĭs’koyi ĭ hrets’koyi na ukrayins’ku doslivno nanovo perekladena. UBT. 

Kyiv.1529, (1962). 

23. Turkonyak Roman, Iyeromonakh o. Rafayil (transl) Bibliya (chetvertȳĭ povnȳĭ pereklad z 

davn’-ohrets’koyi movȳ): Ukrayins’ke Bibliĭne Tovarȳstvo. L’viv. ukrbi-

ble.at.ua/load/zavantazhiti_ukrajinsku_bibliju/skachaty.../7-1-0-165. Accessed: 10 Feb 2020 

24. Christian Standard Bible, Holman Bible Publishers, Nashville, 1920, (2011). 

25. Holy Bible: King James Version, Study Edition, Containing The Old Testament, Apocrypha, 

and New Testament. American Bible Society.1462, (2011). 

26. Holy Bible. New International Version (2011). Zondervan Publishing House.1140. 

27. Byblyja Novj russkyj sovremennj perevod Slovo Zhyzny. Mezhdunarodnoe Byblejskoe Ob-

shhestvo Biblica, 998, (2014). 

28. Rayson, P., Archer, D., Piao, S., McEnery, T.: The UCREL Semantic Analysis System. In: 

Proceedings of Beyond Named Entity Recognition. Semantic Labelling for NLP Tasks. 

Workshop, LISBON, Portugal, 7-12. (2004) 

http://www.laurenceanthony.net/software.html
http://corpora.lancs.ac.uk/lancsbox
http://opus.nlpl.eu/


29. Lytvyn, V., Vysotska, V., Uhryn, D., Hrendus, M., Naum, O. Analysis of statistical methods 

for stable combinations determination of keywords identification. Eastern-European Journal 

of Enterprise Technologies. 2/2(92): 23-37, (2018). 

30. Shandruk, U.: Quantitative Characteristics of Key Words in Texts of Scientific Genre (on the 

Material of the Ukrainian Scientific Journal). In: Proceedings of CEUR Workshop, Vol. 

2362, 163-172, (2019). 

31. Lytvyn, V., Vysotska, V., Pukach, P., Brodyak, O., Ugryn, D.: Development of a method for 

determining the keywords in the slavic language texts based on the technology of web mining. 

EasternEuropean Journal of Enterprise Technologies, 2(2-86):4-12, (2017). 

32. Ryza, S., Laserson, U., Owen, S., Wills, J.: Advanced Analytics with Spark. Patterns for 

Learning from Data at Scale, 2nd ed. O'Reilly MediaInc. Sebastopol, 115-136, (2017). 

33. Jurafsky, D., Martin, J.H.: Speech and Language Processing, 2nd ed. Prentice-Hall, Inc., 

Upper Saddle River, NJ, USA. (2009). 

34. Data Quality Management In: Multi-Domain Master Data Management. Advanced MDM and 

Data Governance in Practice, 131-160, (2015).   http://www.odbms.org/wp-

content/uploads/2015/09/Multi-Domain-Master-Data-Management_Ch9.pdf. Accessed 28 

Feb 2020. https://doi.org/10.1016/B978-0-12-800835-5.00009-9 

35. Zuling, Kang: Using Native Math Libraries to Accelerate Spark Machine Learning Applica-

tions. Cloudera Data Science (2019). https://docs.cloudera.com/documentation/guru-

howto/data_science/topics/ght_native_math_libs_to_accelerate_spark_ml.html. Accessed 28 

Feb 2020.     

36. Kiran, M., Murphy, P., Monga. I., Dugan, J., Baveja, S.S.: Lambda architecture for cost-

effective batch and speed big data processing (2015). In: Proceedings of IEEE International 

Conference on Big Data (Big Data). Santa Clara, CA, USA. 2785-2792. 

DOI:10.1109/BigData.2015.7364082 

37. Lutskiv, A.: Provisioning Hortonworks Data Platform onto OpenStack with Terraform (2018) 

https://dataengi.com/2018/09/21/terraform-hdp/. Accessed 28 Feb 2020.   

38. Amazon EMR (2020) https://aws.amazon.com/emr/. Accessed 28 Feb 2020. 

39. Mykhalyk, D.: Spark DataSkew Problem. (2019)  https://dataengi.com/2019/02/06/spark-

data-skew-problem/. Accessed 28 Feb 2020.   

40. The twelve-factor app (2017). https://12factor.net/. Accessed 28 Feb 2020.   

 

http://www.odbms.org/wp-content/uploads/2015/09/Multi-Domain-Master-Data-Management_Ch9.pdf
http://www.odbms.org/wp-content/uploads/2015/09/Multi-Domain-Master-Data-Management_Ch9.pdf
https://docs.cloudera.com/documentation/guru-howto/data_science/topics/ght_native_math_libs_to_accelerate_spark_ml.html
https://docs.cloudera.com/documentation/guru-howto/data_science/topics/ght_native_math_libs_to_accelerate_spark_ml.html
https://12factor.net/

