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Abstract. Among the classical methods of machine learning, regression is often 

used to solve prediction problems. Nowadays, the linear regression method based 

on the least squares method has become most widespread. When using higher-

order models, the researcher faces the problem of inverting the large-dimensional 

matrices. To eliminate this drawback, the authors have developed a polynomial 

regression method based on discrete orthogonal Chebyshev polynomials. Due to 

the properties of orthogonality and the best approximation, it is possible to con-

struct a recurrent formula for obtaining the values of Chebyshev polynomials of 

higher degrees, which allows optimizing the process of determining the polyno-

mial coefficients. 

Keywords: Machine learning, classical machine learning methods, Regression, 

Polynomial regression, Chebyshev orthogonal polynomial. 

1 Introduction 

In recent years, machine learning methods have been widely used to solve the market, 

product and service prediction problems. Machine learning is a method of artificial in-

telligence that teaches a computer to solve various applied problems on its own. The 

purpose of machine learning is to predict the result based on the available input data. 

The more diverse the input data are, the easier it is for a machine to find some patterns 

and achieve more accurate results. Machine learning often uses statistical techniques to 

provide computers with the ability to "learn from data without being explicitly pro-

grammed". One of these statistical methods is regression. Regression refers to the clas-

sical methods of supervised learning and is based on classical optimization statistical 

algorithms. 
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2 Machine Learning Regression Methods  

Machine learning regression method is primarily intended for numerical predicting the 

behavior of numerical data. The regression model is a constructed function of inde-

pendent variable and of coefficients with random variables included. 

The dependent variable is considered to be described by the sum of the values of the 

model and by independent variables. According to the nature of the distribution of the 

dependent variable, we make assumptions called the hypothesis of the generation of 

data. To confirm or reject this hypothesis, statistical tests are conducted (residual anal-

ysis is the difference between the values observed and the values predicted by the con-

structed regression model). It is considered that the dependent variable is free of errors 

[1–6, 10, 17, 19]. 

As a model, polynomials are often used. At point-quadratic approximation, as the 

polynomial deviation 

𝑄𝑚(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + ⋯+ 𝑎𝑚𝑥0

𝑚 (1) 

from the given function 𝑦 = 𝑓(𝑥) on the set of points 𝑥0, 𝑥1, … , 𝑥𝐿−1 we take the vari-

able 

𝑆 = ∑ [𝑄𝑚(𝑥𝑙) − 𝑓(𝑥𝑙)]
2 ,𝐿−1

𝑙=0  (2) 

called the quadratic deviation [1–3, 7, 9, 12, 15, 16, 18]. 

To construct an approximation polynomial, we need to choose the coefficients 

a0, a1, a2, … , am so that the value of S would be minimal. Assume m ≤ L − 1. In the 

case m = L − 1, the coefficients aj(j = 0, 1, … , L − 1) can be determined from the sys-

tem of equations 

𝑄𝐿−1(𝑥𝑖) = 𝑓(𝑥𝑖) for 𝑖 = 0, 1, … , 𝐿 − 1 , (3) 

where 𝑆 = 0. The solution of the construction problem follows from the minimization 

of the functional (2) and leads to the solution 

𝐴 = [𝑋𝑇𝑋]−1𝑋𝑇𝐹𝑇 ,  (4) 

where 
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is a matrix-row m + 1  of the basic functions φ0(x) = 1, φ1(x) = x,  φ2(x) =
x2, … ,  φm(x) = xm, … , the values of which are calculated at the points xl(l =
0, 1, … , L − 1), that are expanded in a vertical column; 

F = [f(x0), f(x1), … , f(xL−1)] a matrix-row L of the values of the given function on a 

system of points x0, x1, … , xL−1; 



AT = [a0,  a1, … , am] is a transposed matrix-column of unknown coefficients of the pol-

ynomial (1). 

It follows from (4) that in order to construct a regression model it is necessary to find 

an inverse matrix. This operation becomes time consuming when the polynomial de-

gree m should be increased. To eliminate this drawback, we suggest a method of con-

struction the polynomial regression based on Chebyshev orthogonal polynomials. 

3 Machine Learning Approach Based on Discrete Orthogonal 

Polynomials of Chebyshev 

Let 

𝑝0(𝑥), 𝑝1(𝑥), … , 𝑝𝑚(𝑥)   (5) 

be a given system of polynomials orthogonal on a system of points {x0, x1, … , xL−1}. 
Since the polynomials (5) are linearly independent, an arbitrary polynomial Qm(x) can 

be represented as a linear combination of the polynomials from the system (5), i.e. 

𝑄𝑚(𝑥) = 𝑏0𝑝0(𝑥)+,… ,+𝑏𝑚𝑝𝑚(𝑥) . (6) 

This representation is called the expansion of the polynomial Qm(x) in terms of the 

system (5).  

Perform the orthonormation of the system of basis functions. We call the system of 

functions defined on the system of points of the interval [0,t] as orthonormal on this 

interval with the weight ρ if all the functions of this system satisfy the condition 

(𝜌𝜑ℎ, 𝜑𝑖) = ∑ 𝜌(𝑙)𝜑ℎ
∗ (𝑙)𝜑𝑖(𝑙) = 𝛿ℎ,𝑖

𝐿−1
𝑙=0  . (7) 

The condition of orthonormality of the polynomials pi(x) leads to [XTX] = E and 

𝑋 = 𝑃 = 𝑃(𝐿,𝑚) =

[
 
 
 
 
 

�̂�0

∗
(𝐿, 0)

�̂�0

∗
(𝐿, 1)
.

�̂�0

∗
(𝐿, 𝐿 − 1)

�̂�1

∗
(𝐿, 0)

�̂�1

∗
(𝐿, 1)
.

�̂�1

∗
(𝐿, 𝐿 − 1)

�̂�2

∗
(𝐿, 0)     …

�̂�2

∗
(𝐿, 1)     …
.             …

�̂�2

∗
(𝐿, 𝐿 − 1) …

�̂�𝑚

∗
(𝐿, 0)

�̂�𝑚

∗
(𝐿, 1)
.

�̂�𝑚

∗
(𝐿, 𝐿 − 1)]

 
 
 
 
 

. 

The elements of the matrix X
T

 have the form 

�̅�𝑖

∗
(𝐿, 𝑙) = 𝜌(𝐿, 𝑙)

�̂�𝑖
∗

∗
(𝐿, 𝑙) . 

In such a case, the problem of constructing a regression model of the function y = f(x) 

on the set of points x0, x1, … , xL−1 orthonormated by a polynomial of the given degree 

m (m ≤ L − 1) under the condition of the minimal quadratic deviation will be pre-

sented as follows: 

𝑆 = ∑ 𝑝𝐿−1
𝑙=0 (𝑥𝑙)[𝑄𝑚(𝑥𝑙) − 𝑓(𝑥𝑙)]

2 = 𝑚𝑖𝑛. (8) 



To solve it, we need to calculate the coefficients bi(i = 0, 1, … ,m) according to the 

formula 

𝑏𝑖 = ∑ 𝑓(𝑥𝑙)𝑝𝑖
∗(𝑥𝑙) .

𝐿−1
𝑙=0  (9) 

The approximation polynomial has the form 

𝑄𝑚(𝑥) = ∑ 𝑏𝑖𝑝𝑖(𝑥)𝑚
𝑖=0  . (10) 

Discrete orthonormal Chebyshev polynomials defined on the interval [0, t] are given 

by the formula 

�̂�𝑖(𝐿, 𝑙) =
√(2𝑖 + 1)(𝐿 − 1)[𝑖]

(𝐿 + 1)[𝑖+1]
∑𝑙𝑖,𝑣

𝑖

𝑣=0

𝑙[𝑣]

(𝐿 − 1)[𝑣]
 ,    

𝑖 = 0, 1, … , 𝐿 − 1;  𝑙 = 0, 1, … , 𝐿 − 1;  𝐿 = 2, 3, 4, … , 

where 𝑠[𝑣] = 𝑠(𝑠 − 1) … (𝑠 − 𝑣 + 1);  𝑙𝑖,𝑣 = (−1)𝑖−𝑣𝐶𝑖+𝑣
𝑖 𝐶𝑖

𝑖−𝑣 . 

For point approximation, it is convenient to assume that Chebyshev discrete polyno-

mials are given on the system of points 𝑀 = {𝑥0 = 0,  𝑥1,  𝑥2, … , 𝑥𝐿−1} of the interval 

[0, 𝑡] with the constant step ℎ = 𝑥𝑖+1 − 𝑥𝑖.  They are orthonormal on this system of 

points with the weight 𝜌(𝐿, 𝑙) = 1. For such discrete orthonormal Chebyshev polyno-

mials, the recurrence formula holds [3, 5–7, 11, 13, 14] 
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√
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∗𝑖−1

(𝐿, 𝑙)} , (11) 

𝑖 = 0, 1, 2, … , 𝐿 − 1 ,  

which allows us to find all Chebyshev polynomials by means of the first two polyno-

mials 

�̂�
∗0

(𝐿, 𝑙) = √
1

𝐿
 ;  

�̂�
∗1

(𝐿, 𝑙) = √
3(𝐿−1)

(𝐿+1)𝐿
(

2𝑙

𝐿−1
− 1) . (12) 

Since l = (x − x0) h⁄  and given that the Chebyshev polynomials x0 = 0, h = t L⁄ , we 

find the approximation formula for the Chebyshev polynomial 

𝑄𝑚(𝑥) = ∑ 𝑏𝑖
𝑚
𝑖=0

�̂�
∗𝑖

(𝐿,
𝑥𝐿

𝑡
)  при  𝑚 ≤ 𝐿 − 1 . (13) 

The physical meaning of optimization of the choice of the degree of an approximating 

polynomial can be explained as follows: as the degree of Chebyshev polynomial in-

creases, the method error of approximation is reduced to the degree that corresponds to 



the current process of approximation. With a further increase in the degree of the poly-

nomial, it begins to describe random errors rather than the average value of the approx-

imated process, therefore a random error increases, which leads to a decrease in the 

quality of the approximation. That is, it is necessary to determine the optimal degree of 

the approximating polynomial. 

Based on the formulae obtained, the process of constructing the regression model 

can be presented in a step by step form (Fig. 1). 

 

Fig. 1. The process of constructing the regression model 



Step 1. The input data and the maximal degree 𝑚 of Chebyshev polynomial are in-

putted. The input data should be taken at regular intervals and, for better prediction, it 

is advisable that the condition 𝑚 ≪ 𝐿 − 1 holds. 

Step 2. Chebyshev polynomials of the 0 and 1 orders are calculated according to the 

formulae (12). 

Step 3. With the help of the loop operator, a recurrent procedure is implemented, in 

which to reach the highest degree 𝑚 of the polynomial, the following occurs: 

─ by the formulae (11), the remaining Chebyshev polynomials (till the degree m) are 

calculated; 

─ the coefficients  𝑏𝑖  of the polynomial according to the formulae (9) are calculated; 

─ the approximating polynomial (13) is formed. 

Step 4. For each degree of the polynomial, the sum of squared differences of the 

input data and the approximated values (2) is calculated. 

Step 5. The minimal value of S, which is the optimal order of the model (8) is deter-

mined. 

Step 6. The coefficients of the polynomial model with the optimal value of S are 

chosen as the basis and predictive algorithms are built based on it. 

4 Results and Discussions 

Verification of the correct functioning of the developed method has been carried out on 

the problem of prediction of the sales of mineral water (1.5-liter bottles) in a supermar-

ket using Mathcad and Python software (Fig. 2) [2, 6, 8, 11, 14, 18]. 

 

Fig. 2. Software development in Python using IDE Spyder 



The machine learning was conducted according to the statistics for 2016, 2017, 2018 

as training samples, and the incomplete statistics for 2019 were used as validation data. 

For example, in Fig. 3, the data of water sales for each day of 2016 and the obtained 

approximation by means of the developed method (optimal 10-th degree polynomial) 

are shown. 

 

Fig. 3. Approximation of data by Chebyshev 10-th degree polynomial 

The refinement of the polynomial coefficients according to the data for 2017 and 2018 

has provided us with an opportunity to build an optimal model for the prediction of 

mineral water sales for 2019 (Fig. 4). 

 

Fig. 4. The optimal model for prediction of mineral water sales for 2019 

The prediction of water sales carried out for 2019 with continuous training is compared 

to the partial data available at that time (Fig. 5). 



 

Fig. 5. Refined model for prediction of mineral water sales for 2019 with continuous training 

on available data 

In Fig. 6, a graph of the prediction errors for the available period of data for 2019 is 

shown. It is seen that over the entire period, except for the first 20 days, the forecast is 

adequate and the prediction errors are small. 

 

Fig. 6. Error in prediction of mineral water sales for 2019 for the model with continuous train-

ing 

As can be seen from the graphs presented, the prediction model for the period of avail-

able data adequately reflects the state of sales. 

As for the first 20 days, here the prediction proved to be not accurate. This is due to 

the great release of water sales at the beginning of the year, which is, probably, related 

to the New Year holidays. 



5 Conclusions 

The use of discrete orthogonal polynomials of Chebyshev for machine learning meth-

ods has been theoretically substantiated. The conducted investigations on the applica-

tion of this method to the prediction of mineral water sales have confirmed the adequacy 

of the proposed model of machine learning and allow the effective formation of regres-

sion models for the predicting complex processes. 

In future, it is planned to carry out a study to determine the optimal interval for ap-

proximation by means of Chebyshev polynomials and its effect on the terms of predic-

tion. It is also advisable to consider multivariate regression analysis. 
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