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Abstract. In this paper, the authors consider an artificial intelligence technique 

of providing visual testing, and also the developed system that is integrated into 

functional automated test suites. Thus carried out monitoring and analyzing of 

visual changes in the graphical interface of the application under test. A pro-

posed tool is supposed to resolve the existing problems of the traditional snap-

shot visual testing. Graphical user interface (GUI) testing is a very important 

testing step for quality control of software applications. The GUI is the central 

node in the test application, from where all functions are accessed. Thus, it is 

difficult to thoroughly test programs through their graphical interface, especial-

ly because they are designed to work with humans, not machines. In addition, 

they are inherently non-static interfaces, prone to constant changes caused by 

functionality upgrades, improved usability, changing requirements or changed 

contexts. This complicates the development and maintenance of test cases with-

out resorting to time-consuming and costly manual testing. A proposed auto-

mated system for web-interfaces visual testing uses computer vision technology 

as an artificial intelligence technique for visual comparison. A comparative 

analysis is carried out with the developed interface for testing (in particular, a 

web page) and the expected mockup with the location of visual elements on the 

page for example, an interface from the customer). When designing an auto-

mated system for web-interfaces visual testing, the programming languages Py-

thon, JavaScript, library TensorFlow, testing framework Cypress, and database 

MySQL were used. 

Keywords: automated testing, visual testing, artificial intelligence, snapshot, 

digital image, AI algorithms, computer vision, graphical interface, visual ele-

ment, pixel comparator. 

1 Introduction 

Automated visual testing is a quality assurance process designed to automatically 

check the visual display of the interface. Currently, there are two main areas of auto-

mated visual testing: verification of CSS element style names and comparison of 

screenshots taken during automated functional tests [1]. 
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The biggest problem with automated visual testing is that people and machines 

perceive pixels differently. Two images of the user interface may appear completely 

identical to a person, but differ at the pixel level. Anti-aliasing algorithms for resizing 

images, different video cards create differences in pixels. Thus, the testing program, 

which should obtain the exact match of points between two figures, may be filled with 

pixel differences, that is, a big amount of false defects. 

The subject of the study is methods of analysis and comparison of expected and ac-

tual images of the interface. The relevance of this work is determined by the fact that 

due to the rapid development of automated visual testing, there is a need to develop a 

system that will allow more accurate analysis of the interface and reduce the number 

of false results. 

The purpose of the paper is to investigate artificial intelligence tools and technolo-

gies for analyzing, processing and comparing GUI images captured in the process of 

performing automated regression function tests, and creating a system that will allow 

tracking web application interface errors, generating a report, and editing basic (ex-

pected) GUI images. 

In this paper the authors proposed to create a system that will be integrated into 

functional automated test suites, while performing the function of monitoring and 

analyzing visual changes in the graphical interface of web applications. 

2 Related Works and Problem Statement 

One of the traditional methods of automated visual testing is to check the CSS styles 

of the corresponding HTML page element. These checks are performed during the 

execution of functional tests based on various frameworks, such as Selenium Web-

driver, Cypress, WebdriverIO, or Appium. The driver manages the web application as 

the user would, and checks whether the application is working properly [2]. 

For the item on a page you can perform the following checks (Fig. 1): 

1. Element .todo-list must have a specific color represented in the sixteen-year-old 

form #d6d6d6; 

2. Element .todo-list should have the text design crossed out-line-through. 

An example of such checks using the JavaScript programming language and the Cy-

press test framework is shown below: 

   

    

cy.get '.completed ' .should 'have.css ',  ' text decoration ',  ' line through '

cy.get '.completed ' .should 'have.css ',  'color ',  ' rgb 217,217,217 '

 
. 

When using usual checkpoints in program tools of functional testing such as Selenium 

Webdriver, Cypress, WebdriverIO, or Appium, you must to view the main visual 

components: visible, top coordinates, height, width, background color. This means 

that you will need the next amount of approvals: 

20  5     105   visual elements statements per element lines of code  . 



 

It will be extremely difficult to find all visual errors, even using all the code suggested 

above. For example, you can't access a visual element if it's hidden under another one. 

 

Fig. 1. Sample styles of a particular visual element 

Thus, this method of verification has certain disadvantages: significant increase in the 

code of test methods; complexity of supporting test code, since changing style names 

can cause a large number of failed tests; this method will not detect a valid visual 

defect, such as an element offset on the page [3]. 

Screenshot testing. This method is implemented as follows. First-generation au-

tomated visual testing uses snapshot testing technology. When testing snapshots, the 



screen bitmap is trapped at different points in the test run, and its pixels are compared 

with the base bitmap. 

The algorithms for testing images are very simple: we iterate over a pair of pixels 

and then check whether the sixteen-year-old color code matches. If the color codes 

differ, a visual error report is generated [4-6]. 

There are a large amount of open source and commercial program tools for snap-

shot testing available because they can be created easily enough. Unlike manual test-

ing, program tools for visual testing of images, you can rapidly identify the differ-

ences of pixels. And this is a step forward, because the computer can identify visual 

differences easily and accurately. Some of these program testing tools called "pixel-

perfect testing" (Fig. 2). 

 

Fig. 2. Pixel image comparison process 

Another problem is that these tests are often slow compared to lighter unit tests that 

don't require a full browser (Fig. 3). 

Summing up, comparing images of the expected result (ER) and the actual result 

(AR) as follows has the following disadvantages [5, 7-11]: 

─ inability to search for visual changes at different image resolutions; 

─ significant slowdown in the execution time of automated test suites; 

─ it is not possible to search for visual changes separately for a specific component of 

the graphical interface; 

─ high probability of false alarms. 

 

Fig. 3. Example of a false positive when comparing screenshots 



 

3 Methods of Image Segmentation and Processing 

When selection a method to process GUI screenshot, we should consider the follow-

ing: perform font smoothing; different situations in which styles and elements are 

displayed by different browsers; ability to compare images with different resolutions. 

The process of image segmentation is based on the information available in the im-

age itself. This can be information about the color of the pixel, differences in colors 

and shades, or the texture of the image [9]. 

K-means algorithm. The K-means algorithm was proposed in 1979, but it is still 

relevant today. The idea behind it is quite simple, and the algorithm works quite ef-

fectively. However, the optimality of solutions obtained using the K-means algorithm 

is not guaranteed. In addition, the disadvantage of the algorithm is the need to know 

the number of clusters in advance [10, 12-17]. 

Formally, the solution to the clustering problem is to "mark" each of the existing 

objects-assign it a number of a certain class. The K-means algorithm assumes that 

objects are divided into classes in such a way that differences ("distances") between 

objects of the same class are minimized and differences between objects of different 

classes are maximized. 

The current algorithm is a base of almost all fuzzy clustering algorithms, and its 

detail analysis will help us better understand the principles embedded in more com-

plex algorithms. 

In General, the algorithm is an iterative procedure [18-20]: 

Step 1. Initialize the initial partition matrix U randomly and select the accuracy δ 

that will be used to complete the algorithm, set the iteration number l = 0. 

Step 2. To determine the cluster centers: 
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where 
 i
lc  is the cluster centers, d is the dimension of the object, c is the amount of 

clusters, l is the amount of the current iteration, u is a matrix of partitioning m object, 

m is the object, which is investigated. 

Step 3. To update the matrix splitting: 
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where 
 l
iju  is an element of the partition matrix,  ,j id m c  is the selected metric, c is 

the cluster, m is the object, which is investigated. 



Step 4. Verify the constraint 
   1l l

U U 


  , where U is the partition matrix, and 

δ is the selected precision. If the condition is met, end the process, if not, go to step 2 

with the iteration number l = l + 1. 

There is also an alternative version of this algorithm: 

Step 1. Randomly select cluster centers from input data elements and select the ac-

curacy δ that will be used to complete the algorithm, set the iteration number l = 0. 

Step 2. Update the split matrix (1). 

Step 3. To determine the cluster centers (2). 

Step 4. Check how much the cluster centers have shifted. If they have shifted less 

than the accuracy of δ – complete the process, if not-go to step 2 with the iteration 

number l = l + 1. 

There is also a set of restrictions: 
   
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    , which deter-

mines that each data vector can belong to only one cluster and not to the others. Each 

cluster must have at least one data item and no more than the total number of items. 

The main disadvantage of this algorithm due to the discreteness of the elements of 

the partition matrix is the large size of the spatial partition. To eliminate this disad-

vantage is to represent the elements of the partition matrix with numbers from the 

range from 0 to 1. That is, the membership of a data item to a cluster is determined by 

the membership function, in this way the data item can be a member of few clusters 

with different degrees of ownership [16]. Other disadvantages and limitations of the 

K-means algorithm are: you need to know the number of clusters in advance; the 

algorithm is very sensitive to the choice of initial centers of clusters; the classical 

variant implements a random choice of clusters, which is very often a source of error; 

does not cope with the task when the object belongs to different clusters equally or 

does not belong to any one. 

Neural networks and fuzzy logic are also used for image segmentation [21-25]. 

Mean Shift method. It is not necessary to determine the amount of clusters in ad-

vance. This is defined based on the source data. The direction to the centroid of the 

nearest cluster is defined by where most of the nearest points are located. 

Mean Shift is a great iterative method. The average offset was proposed by Fuku-

naga and Hostetler and expanded for use in other areas, such as computer vision. The 

method considers functional space as an empirical function of probability density. If 

the input data is a set of points, then mean shift method considers them as a sample 

from the basic probability density function. If there are dense regions in the functional 

space, they belong to the form of the probability density function. Clusters can be 

identified associated with this form using the mean shift method [17-20].  

Mean Shift groups objects with similar attributes. Pixels with similar features are 

combined into a single segment, and the output is an image with uniform areas. 

For example, you can select pixel coordinates (x, y) and RGB pixel components as 

coordinates in the feature space. When you draw pixels in the feature space, you can 

notice a thickening in certain places [21]. 

To make it easier to describe the thickening of points, a density function is intro-

duced: 
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where x  is the feature vector of the i-th pixel, d is the amount of features, N is the 

amount of pixels,  h is a parameter responsible for smoothness. 

The maxima of the function are located at the points where the image points are 

condensed in the feature space. Pixels that belong to the same local maximum are 

combined into a single segment. It turns out that to find which of the centers of con-

densation the pixel belongs to, you need to step along the gradient to find the nearest 

local maximum (Fig. 4) [21, 26]. 

 

Fig. 4. Pixels on the image: (a) pixels in a two-dimensional feature space, (b) pixels that arrive 

at the same local maximum are colored the same color, and (c) density function, the maxima 

correspond to the places of the highest concentration of points 

When you select point coordinates and color intensities as attributes, pixels with simi-

lar colors and located close to each other will be combined into a single segment. 



Accordingly, if you choose another feature vector, then the Union of the pixels in the 

segments will already be on it. For example, if you remove coordinates from features, 

then the sky and the lake will be considered one segment, since the pixels of these 

objects in the feature space would fall within the same local maximum [19-21]. 

4 Practical Implementation 

In the process of designing the system, the task was to create a system that will be 

integrated into functional automated test suites, while performing the function of 

monitoring and analyzing visual changes in graphical interfaces of web applications. 

The system will work in the following order: 

1. Loading basic images determines the expected appearance of the web application 

at each step of the test; 

2. Capture a screenshot of the GUI; 

3. Analysis and comparison of images of the expected result and the actual result 

based on the selected algorithm; 

4. Generating a report on test results; 

5. The decision-maker should review the detected changes and ignore them or report 

an error; 

6. The base images or expected result should be updated according to the ignored 

changes. 

Thus, clustering algorithms for image segmentation in practice should be considered 

in detail. For example, consider the main page (Fig. 5) of a web-application for book-

ing air tickets of Ukrainian International Airlines (UIA). 

 

Fig. 5. Input image 



 

 

Let's try to apply the K-means algorithm (Fig. 6) and the Mean Shift method (Fig. 7) 

to segment the input image (Fig. 5) with 4 clusters. 

 

Fig. 6. The result of image segmentation by the K-means algorithm 

 

Fig. 7. The result of image segmentation by the Mean Shift method 

As a result (Fig. 6), you can see that after processing the image, we lost a significant 

number of elements and all the text on the page was not smoothed out. In addition, if 

fewer clusters are used, a significant number of colors are lost, which will cause the 

element color to be accidentally changed by the tester. Thus, the results of using dif-



ferent image segmentation methods (K-means (Fig. 6) and Mean Shift (Fig. 7)) show 

that the Mean Shift method is better for the current task, since we get clearly high-

lighted visual elements on the page, no text on the screenshot and the same results at 

different image resolution. 

At the stage of database design, the appropriate structure of tables was identified 

and implemented (Fig. 8). When visual testing is complete, the user can log in, view 

the report from the appropriate test, and either reject or accept the error (Fig. 9). 

 

Fig. 8. Database structure for visual testing system 

 

Fig. 9. A page for viewing the results of visual testing of the developed system 



 

In addition, the module architecture for image analysis and comparison was designed. 

Based on the defined class diagram, a system was implemented. When designing an 

automated system for web-interfaces visual testing, the programming languages Py-

thon, JavaScript, library TensorFlow, testing framework Cypress, and database 

MySQL were used. 

5 Discussion 

The GUI testing is a very important testing step for quality control of software appli-

cations. Despite the fact that many automated testing tools and methods have been 

developed, they still do not solve all problems, such as tracking visual changes to the 

interface. The first part of the paper deals with the review of the theoretical founda-

tions of automated visual testing, the review of existing methods and software. The 

next sub-task was to conduct a detailed analysis of the basic methods and approaches 

for automated visual testing, including methods for element style verification and 

pixel-by-pixel image comparison. The authors discuss clustering methods (K-Means 

and Mean Shift) for image segmentation. When selecting image processing methods, 

a detailed review and comparative analysis were conducted. The main result of the 

work is the creation of a system for automated visual testing. To solve this problem, 

the following tasks were performed: features and stages of web application develop-

ment were considered; software for the development of the appropriate system was 

selected; image segmentation techniques were applied; system architecture was de-

fined; a system for visual testing was developed and its performance was tested. 

6 Conclusions 

Due to the rapid development of automated visual testing, there is a need to develop a 

system that will allow you to perform a more accurate analysis of the interface and 

reduce the number of false positives. 

This paper describes the study of artificial intelligence tools and technologies for 

analyzing, processing and comparing graphical interface images captured during au-

tomated regression functional tests, and to create a system that will allow users to 

track errors in the web application interface, generate a report, and edit the basic (ex-

pected) GUI image. 

A proposed automated system for web-interfaces visual testing uses the Mean Shift 

method as an artificial intelligence technique for visual comparison. A comparative 

analysis is carried out with the developed interface for testing (in particular, a web 

page) and the expected mockup with the location of visual elements on the page for 

example, an interface from the customer). When designing an automated system for 

web-interfaces visual testing, the programming languages Python, JavaScript, library 

TensorFlow, testing framework Cypress, and database MySQL were used. 

The result of this paper is a developed automated system for visual testing of web 

interfaces using artificial intelligence methods for image segmentation and more ac-

curate analysis. 
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