
A Framework for Exploring and Modelling Neural

Architecture Search Methods

Pavlo Radiuk1 [0000-0003-3609-112X] and Nadiia Hrypynska2 [0000-0003-0103-976X]

1,2 Khmelnytskyi National University, 11, Instytuts’ka str., Khmelnytskyi, 29016, Ukraine

1radiukpavlo@gmail.com, 2grypynska@gmail.com

Abstract. For the past years, many researchers and engineers have been devel-

oping and optimising deep neural networks (DNN). The process of neural archi-

tecture design and tuning its hyperparameters remains monotonous, time-

consuming, and do not always ensure optimal results. In his regard, the auto-

matic design of machine learning (AutoML) has been widely utilised, and neu-

ral architecture search (NAS) has been actively developing in recent years. De-

spite meaningful advances in the field of NAS, a unified, systematic approach

to explore and compare search methods has not been established yet. In this pa-

per, we aim to close this knowledge gap by summarising search decisions and

strategies and propose a schematic framework. It applies quantitative and quali-

tative metrics for prototyping, comparing, and benchmarking the NAS methods.

Moreover, our framework enables categorising critical areas to search for better

neural architectures.

Keywords: deep neural network, AutoML, neural architecture search, scheme

modelling, efficient neural network.

1 Introduction

Nowadays, NAS studies focus on enhancing the viability of DNNs in three ways:

increasing network accuracy, decreasing computational costs, and reducing network

weight. For instance, some applications require high-level precision from neural net-

works [1]. For real-time applications, hardware requirements can be vital [2]. Some

applied systems depend on swift yet straightforward methods [3]. According to [4,5],

among the various optimisation methods, NAS shows the most noticeable outcomes.

In general, the goal of NAS can be defined as a construction of an optimal architec-

ture limited by certain conditions, iteratively searching for better architectures that

satisfy those conditions. Considering the significant benefits of automation, AutoML

has been rapidly developing in recent years. Unfortunately, the scientific community

has not standardised a comprehensive approach to explore, compare and select effi-

cient NAS methods. Consequently, we aim to suggest a new framework to promote

this field of research.

Copyright © 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:radiukpavlo@gmail.com

We consider an N -dimensional architecture space to construct an optimal neural

network. The search space covers the scope of all possible combinations of neural

architectures. Every structure represents an N -tuple, where N stands for the number

of parameters of the architecture search space. To search for a capable topology that

meets all the constraints of a given problem, we must assign a set of cost conditions to

those constraints. Restricted search narrows the search space and focuses on low-cost

architectures.

2 Related Work

Several studies in the NAS area are based on either manual or automatic searching

techniques. As stated in [6], a manual search is to modify the neural elements of

DNNs by imposing sparse constraints on the target function during training. Another

work [7] proposes to replace 3 3 convolutional blocks with individual building

blocks. Such blocks embody a combination of 3 3 and 1 1 convolutional operators

with a reduction in the number of input channels on each convolutional block. Fur-

thermore, the authors of this work achieved increasing classification accuracy by

implementing manual down-sampling. In [8], authors presented a universal cascade

decoder, which is embedded into the network by sequential adding of each convolu-

tional building block. Li et al. [9] combined dense skip connections as specific micro-

blocks from a 2D DenseUNet with a 3D equivalent to hierarchically accumulate vol-

umetric features so that their network can maximise the use of spatial information

during the classification of 3D images. Dolz [10] enhanced the previous approach by

applying an operator level to the building blocks of convolutional neural networks

(CNN). Their HyperDense-Net utilises dense skip connections between convolutional

layers in each building block. In [11], researchers proposed a hierarchical group con-

volution operation that can effectively compress the deep neural model. In [12], a

hierarchical DNN consists of multiple CNNs on each network layer. The proposed

network grows in the tree form with new data classes on each to identify previously

trained ones. Kokiopoulou [13] presented a gradient-based approach to design effec-

tive DNN architectures. In this work, authors applied the modification called subnet-

work level to decrease the inference time. The idea is that the proposed structure splits

the DNN into several subnetworks, where each subnetwork specialises and runs only

on a separate set of input classes.

Despite successful examples of manual methods, they are still highly dependent on

the input conditions of a given task. The use of manual search requires comprehensive

expertise and time-consuming work. To address these issues, researchers have further

developed advanced methods to automate the design process of DNN [14]. In this

study, the parameterised underlying architecture is utilised to search for a suitable

architecture for every dataset separately. In [15], authors independently trained an

ensemble of small building blocks with a homogeneous averaged output. In [16],

researchers proposed a modified reinforcement learning method which selects differ-

ent neural building blocks to construct DNNs. Guo [17] demonstrates how the inverse

reinforcement learning approach can search for efficient network structures topologi-

cally inspired by manual search.

In order to resolve computational-cost issues, Yan et al. [18] presented a capable

NAS based on the parameter sharing approach with a hierarchical search space. In

[19], a novel hierarchical evolution representation scheme simulates the modularised

design template commonly utilised by human experts. In [20], researchers suggested

an automatic designing strategy that empowers particle vectors to encode building

blocks of DNN easily. Chu [21] utilised a fixed hierarchical macro-architecture as a

search space. In [22], authors applied a transfer learning approach to automatic NAS

and proposed a generic search space, including fixed macro-architecture and hyperpa-

rameter choices. Zeng [23] implemented various sampling procedures into an auto-

matic selection method which significantly reduced the search time for the architec-

ture. Recently, researchers started to implement a directed acyclic graph (DAG) as a

search space, as in [24], to store dozens of subgraphs, each of which denotes the type

of sample architecture. In [25,26], authors suggested an evolutionary NAS. In their

work, search space comprises a diverse set of hyperparameters, activation functions,

and normalisation layers. Parkashi [27] applied multi-label classification into the cas-

cade neural network for efficient hyperparameter tuning.

3 Evaluation Criteria

The main problem of NAS methods in terms of evaluation is their limitation by the

performance of optimised architecture. In other words, the better a produced architec-

ture performs (measured by quantitative criteria), the better the corresponding NAS

technique is. The most used quantitative metrics [5,6,14,28] to measure search meth-

ods are described below.

• Training and validation loss. Training loss signals whether the network is im-

proving in the search procedure and if so, shows the speed of improvement. The

validation loss checks if the model is overfitting or underfitting. The goal is to

measure how fast the output network converges and how well it will perform on

new datasets.

• The number of parameters. This criterion records the number of parameters the

output model contains. The more parameters and weights a model comprises, the

heavier it is. The idea behind it is to estimate and compare the amount of physical

memory the models require.

• Amount of training data. In the real world, training data could be a precious re-

source, depending on the expense of data collection and labelling. This criterion

aims to assess whether the search method can find an optimal architecture on a lim-

ited dataset.

• Training and test CPU time. This metric records the total CPUs and GPUs time

used to run all training and test epochs. The goal is to measure how much system

resources the search method might consume.

• Memory requirement. The metric is vital when an output architecture is intended

to be used in limited performance devices such as smartphones, digital cameras, or

quadcopters. The goal is to check whether a model is suitable for restricted sys-

tems.

Despite the simplicity and practicality of quantitative indicators, they do have signifi-

cant disadvantages. The efficiency of neural modals crafted by either manual or au-

tomatic search techniques may vary significantly due to the influence of stochastic

processes of a particular domain [29]. Currently, used metrics focus mostly on the

performance of a network. Such criteria do not account the required level of expertise

in a subject area and the level of effort needed to apply the search method to another

issue or dataset. To this context, the evaluation of variance on performance might be

considered a proper criterion to select a suitable candidate architecture. Another es-

sential aspect is the level of manual changes to the search procedure. Even automatic

search methods may depend on human interventions, although their principal purpose

is to reduce its level. Besides, the reproducibility is a common pitfall in NAS. There-

fore, within our framework, we consider the variance on performance and the level of

human intervention as qualitative criteria. Below we describe a five-step evaluation

strategy that must be followed successively.

• Search space design. Standard manual search spaces usually reduce the efficiency

of the further search strategy. The goal here is to check the suggested heuristic

search procedure for non-standard search placements.

• Requirements. Predetermine the signs of optimality of the underlying architecture.

The purpose of this step is to reduce the likelihood of obtaining suboptimal archi-

tecture upon the completion of training.

• Search process. Like the type of defined search space, this step differentiates the

model’s ultimate performance from basic training strategies. The goal is to check

whether a predetermined underlying architecture can be trained in a standard way

or whether a specific training strategy should be employed.

• Adaptation to changes. The search procedure can be repeated either from scratch

or using prior knowledge by applying additional methods. The aim is to consider in

advance the computational cost of any human interventions.

• Code availability. NAS methods are especially challenging to replicate. Their

effectiveness depends on the implementation details. The goal is to open source a

programming code and ensure its reproducibility so that the exploring NAS meth-

od can be proved on other machines and datasets.

4 Algorithm

This paper proposes a solution that promotes exploring, comparing and estimating

search methods, both quantitatively and qualitatively. Our approach is dedicated to

identifying the strengths and weaknesses of search methods and suggest improve-

ments that can be implemented to them. In total, the framework consists of four stag-

es, plus the evaluation block. Below we briefly describe the algorithm, the consistent

execution of which allows efficient modelling and assessing of any search method.

1. Setup stage. In this step, we define the search space and initialise the underlying

architecture.

2. Framing stage. This step is devoted to measuring the computational and memory

cost and configuring the architecture search techniques.

3. Adaptation stage. In the adaptation stage, we accommodate the various architec-

tural improvements based on the decisions made in the previous step.

4. Assessment stage. Here we assess the performance of training strategy and evalu-

ate output architectures. If the resulting model satisfies the initial conditions or ex-

pectations, then the search stops. Otherwise, adaptation techniques must be reused.

The third and fourth stages form a cycle during which the studied architecture is im-

proved iteratively. Fig. 1 illustrates the above algorithm.

Fig. 1. The scheme of the framework

In the following sections, we provide more detailed instructions based on the analysis

of the literature on how each step can be applied to real-world modelling.

5 Setup Stage

In this section, we describe the first stage of the framework. Setup stage specifies the

search environment and comprises the initialisation of search space and the definition

of underlying architecture. The metrics used in this stage are the amount of training

data, memory requirement, search space design and requirements.

5.1 The Definition of Search space

The architecture search space depends primarily on the intended use since different

datasets impose different constraints on the neural architecture. Also, the search space

is affected by existing computational resources. To find an optimal architecture, we

need to compromise between the network flexibility, target coverage and computa-

tional requirements during the search space.

It should be mentioned that automatic search requires a precise definition of the

search space. Concurrently, such requirement is not crucial for handmade framing. In

Fig. 2, we categorised search spaces into four groups.

Fig. 2. Types of search space

Hierarchical search spaces consist of two search levels: micro- and macro-architecture

search spaces. The macro-layer explains the architecture combination of micro-layer

to create the whole network. Sometimes, hierarchical search space [11,12,18,19] can

contain fixed micro- [9,24] and macro-architectures [21,22], as in, to provide the

managed search. Global search space means that the architecture search is performed

among the entire scope of the underlying network. Moreover, as described in [6,7,17],

the search scope, in this case, is not limited by any architecture requirements. Search

spaces with consecutive blocks apply similar blocks at different network levels. For

instance, in [8,10,15,20], the final networks comprise repeatedly attached building

blocks and subnetworks. According to [13,17,23,25-27], when input requirements are

unknown in advance, a good practice is to utilise variable search spaces.

The Kendall coefficient  [30] is a commonly utilised metric to calculate the cor-

relation between two rankings. According to [28], the  indicator is well suited for

estimating the search space and can be calculated as

()1 1

2

c tS S

n n


−
=

−
, (1)

where cS and dS stand for the number of concordant and discordant pairs, respec-

tively, n is the number of elements that define search space. The Kendall coefficient

is determined in  1;1− , where −1 corresponds to a perfect negative correlation and 1

to a perfect positive correlation. If 0 = , the space rankings are completely inde-

pendent. Thus, an ideal NAS method has

1;

1.



= 
−

5.2 The Initialisation of Underlying Architecture

In this step, it is necessary to initialise the underlying architecture that fits into the

previously defined search space. This architecture further serves as a starting point for

experiments in both manual and automatic search techniques. Fig. 3 shows types of

underlying architectures.

Fig. 3. Approaches for specifying underlying architecture

Different types of underlying architectures serve for various applications. In

[12,18,21], all possible topologies organise a superposition called supernetwork. In

DAG, each subgraph is assigned as a convolutional block or down-sampling opera-

tion [24]. Genetic and reinforced-based algorithms imply the underlying architecture

as a randomising of the network blocks [20,23,25]. Sometimes, researches utilise set

state-of-the-art architectures, for example, DenseNet [9,10,16], ResNet [17,19], or

[26], as an underlying one and after that apply modifications to search for an optimal

solution. In cases [6,7,11,13,22], the convolutional module serves as the underlying

architecture, and the originating module, gradually expanding, performs the search for

an optimal architecture.

6 Framing Stage

In this section, we determine a way to measure the cost of the explored architecture

and select a search strategy. The criteria employed here are the amount of training

data, training and test CPU time, memory requirement and search process.

6.1 The Establishment of Architecture Dependent Costs

Architecture cost designates the requirements which optimal architecture must fit.

Having analysed the literature mentioned in the previous sections, we identified a set

of cost terms that every NAS method encounters. We illustrate the defined costs and

appropriate ways to eliminate them in Fig. 4.

Fig. 4. NAS costs and corresponding ways to reduce them

Determining the expanses is necessary to select a search strategy in the following

steps. Also, well-defined cost metrics allow comparing different architectures to

choose the best one.

6.2 The Selection of Search Strategy

Here, based on the defined search space, we chose an appropriate search strategy to

seek an optimal architecture. As stated in [28], the search space established from the

set of all probable architectures is tremendously vast, sometimes endless. Therefore,

the task of scanning all the topologies within such search space becomes practically

impossible to solve. Besides, the architecture cost impacts the search strategy and is

used to compare different architectures in the search space. Fig. 5 presents the most

utilised NAS strategies.

Fig. 5. Manual and automatic search strategies

Manual search serves as a guide or set of rules for designing architectures. An exam-

ple rule can be implying additional architectural components such as cascades [8,27]

or sequences [15]. One suggestion for manual search is a dense architecture by typing

bandwidths or searching for compact architectures [9-11]. Some manual techniques

depend on searching for bifurcated structures to enhance feature maps and weight

sharing [6,7,12]. In other cases, researchers search for an ensemble of networks and

calculate its average output to obtain the desired result [13,15,23].

In contrast to manual search, automated search methods are more advanced ap-

proaches. Reinforced-based search strategy assigns the reward by reducing the overall

cost of architecture, which in turn leads to a better network configuration [16,17].

Random [18,19,22] and evolutionary [20,25,26,27] search strategies achieve signifi-

cant results at a low cost compared to other search strategies. Nowadays, modern

state-of-the-art technique – differentiable architecture search (DART) – uses gradient

descent approaches to minimise the overall cost function of architecture [21,24].

7 Adaptation Stage

In this stage, we apply various improvements to exploring architecture. This proce-

dure comprises establishing level, position and sampling techniques. The metrics

utilised here are the number of parameters and adaptation to changes.

7.1 The Selection of Level and Position Modifications

Network design can be refined based on two criteria: the level and position of modifi-

cations. The level commonly corresponds to operator level [6,11,16,26], building

block level [7,9,15,18], subnetwork level [18], cell-based level [22,27] or their con-

nection between each other [10-12,16,19,21,24]. Some studies are based on global

position [19,21], others use layer-based [8,10,17]. Different upgradings can also be

applied as group-based [6,11,12] or hybrid positions [9]. Many methods apply pool-

ing position and its varieties as an additional layer [10,12,17,20,21,25]. Fig. 6 depicts

common instances of adaptation procedure.

Fig. 6. Modification techniques commonly used in NAS

Manual search methods involve various enhancements through the lens of intuition

and experience. Automated search methods instead define the level and position by

the parameterised architecture of the search space. Choosing the right level and posi-

tion depends on the computational constraints and the input datasets.

7.2 The Application of Sampling Techniques

In this step, we tune the architecture parameters. Implemented modifications result in

the distribution of the architecture configuration. Such distribution allows obtaining a

combination of architectures that best meet the requirements defined for the intended

application. The sampling methods can differ from each other and usually dependent

on specific search spaces and search strategies. In general, sampling techniques are

the varieties of pruning. They allow removing redundant or unnecessary blocks from

an architecture. Fig. 7 shows the instances of the sampling methods.

Fig. 7. Sampling techniques

In [22,24], researchers apply a parameter sharing technique, while [21] employs

SoftMax block prediction to improve network robustness. Works [18,24] implement-

ed pathfinding through a DAG to reduce computational time cost. Thresholding or

pre-processing a network is a common technique to comprise all sparse architectures

within the search space into one efficient neural network [18,21]. Manual methods do

not contain parameterised architecture distribution that must be determined. For that

reason, sampling procedures are not applied to a manual search but are widely used in

an automated one.

8 Assessment Stage

In the last step, we train and evaluate the sampled architecture. Researchers should

consider the training and validation loss, the number of parameters, training and

test CPU time, search process and code availability. Fig. 8 illustrates the assess-

ment stage.

Fig. 8. The procedure of the evaluation of a search method

Practitioners can apply various training strategies, depending on the initial conditions

of the task. For example, progressive training means the training of only the modified

part of the network, while the rest of the network parameters are remaining fixed [23].

While performing a bifurcated exercise, one trains various subnetworks, connected to

a shared subnetwork, in parallel [15,21]. Also, a practical approach is to combine

different training strategies presenting them as training steps [5,19]. When the training

finishes, the explored architecture is being evaluated on the validation set. If the found

architecture satisfies the initial metrics, the search process stops, and the architecture

is accepted as an expected result. Otherwise, it is needed to return to the previous step

and implement additional improvements to find an architecture that satisfies optimisa-

tion criteria.

9 Framework Application

In this section, we demonstrate an attempt to summarise the NAS procedure using the

proposed framework. In total, upon the suggested measures, we analysed and evaluat-

ed state-of-the-art search methods developed in recent years. Table 1 and Table 2

presents the results of the analysis.

Table 1. Analysis of NAS methods outlined by the proposed framework (part 1)

Study NAS approach Search space Underlying

architecture

Search strategy

[6] Manual Global Module Bifurcated search

[7] Manual Global Module Bifurcated search

[8] Manual Consecutive blocks Set Cascade

[9] Manual Hierarchical micro Set Skip connections

[10] Manual Consecutive blocks Set Skip connections

[11] Manual Hierarchical Module Skip connections

[12] Manual Hierarchical Supernetwork Bifurcated search

[13] Manual Variable Module Ensemble

[16] Automatic Global Set Reinforcement

learning

[17] Automatic Variable Set Reinforcement

learning

[18] Automatic Hierarchical Supernetwork Random search

[19] Automatic Hierarchical Set Random search

[21] Automatic Hierarchical macro Supernetwork Differential

[22] Automatic Hierarchical macro Module Random search

[24] Automatic Hierarchical micro DAG Differential

[26] Automatic Variable Set Evolutionary

[27] Automatic Variable Set Cascade,

Evolutionary

Table 2. Analysis of NAS methods outlined by the proposed framework (part 2)

Study Cost Adaptation techniques Sampling

techniques

Code availability

[6] Task error Operator level,

Group-based position

– Not available

[7] Task error Building block level – Available and

replicable

[8] Task error Layer-based position – Not available

[9] Task error Building block level

Hybrid position

– Available and

replicable

[10] Task error Connection level,

Layer-based,

Pooling

– Available and

replicable

[11] Computational

cost,

Memory

Operator level,

Connection level,

Group-based position

– Not available

[12] Task error,

Inference effi-

ciency

Connection level,

Group-based position,

Pooling

– Not available

[13] Task error,

Computational

cost

– – Available, not

replicable

[16] Memory,

Energy

Operator level Pathfinding Not available

[17] Task error,

Training time

Layer-based position,

Pooling

Pathfinding Available and

replicable

[18] Task error Subnetwork Thresholding,

Pathfinding

Not available

[21] Task error Connection level,

Global position,

Pooling

SoftMax,

Thresholding

Available and

replicable

[22] Computational

cost

Cell-based level Parameter

sharing

Not available

[24] Task error,

Training time

Connection level,

Pooling

Parameter

sharing,

Pathfinding

Available and

replicable

[26] Inference effi-

ciency,

Energy

Operator level – Not available

[27] Task error,

Inference effi-

ciency

Cell-based level Pathfinding Not available

The framework allows combining and analysing various processes that are occurring

during the design of neural networks. According to Table 1, search spaces are usually

represented as hierarchical structures. Set of handcrafted recognised networks remains

the popular type of underlying architecture. Bifurcated and cascaded search strategies

are widely prevalent among the manual NAS methods. In contrast, automatic search

methods are mostly based on reinforcement and evolutionary strategies.

From table 2, we can see that the primary goal of most search methods remains

task error reduction. Individual building blocks and divorce levels are commonly

utilised in the adaptation stage. Among sampling techniques, pathfinding and parame-

ter sharing are in favour. The number of works with open source code is approximate-

ly equal to the number of works without code.

10 Conclusion

Recently, there has been a variety of methods and technologies for searching optimal

neural network architectures. Nevertheless, the issue of summarising and evaluating

different procedures and approaches in NAS remains open. In this paper, we propose

a new framework for exploring and modelling new NAS techniques. Our method is

based on the standard quantitative metrics that measure both individual architectures

and search methods. Within the proposed framework, we introduce five qualitative

assessments to ensure the variance on performance and the level of human interven-

tion. Our work describes all the critical aspects of state-of-the-art search methods and

summarises known approaches. The proposed framework imparts a better understand-

ing of recent and noticeable contributions made in the development of NAS methods.

In future research, we plan to expand our framework by covering image and text clas-

sification tasks.

References

1. Ghavami, N., Hu, Y., Gibson, E., Bonmati, E., Emberton, M., Moore, C.M., Barratt, D.C.:

Automatic segmentation of prostate MRI using convolutional neural networks: Investigat-

ing the impact of network architecture on the accuracy of volume measurement and MRI-

ultrasound registration. Med. Image Anal. 58, (2019). doi:10.1016/j.media.2019.101558

2. Feng, X., Jiang, Y., Yang, X., Du, M., Li, X.: Computer vision algorithms and hardware

implementations: A survey. Integration. Elsevier 69, 309–320 (2019).

doi:10.1016/j.vlsi.2019.07.005

3. Park, D.S., Chan, W., Zhang, Y., Chiu, C.-C., Zoph, B., Cubuk, E.D., Le, Q. V.: Spe-

cAugment: A simple data augmentation method for automatic speech recognition. Proc.

Interspeech 2019, 2613-2617 (2019). doi:10.21437/Interspeech.2019-2680

4. Bashar, A.: Survey on evolving deep learning neural network architectures. J. Artif. Intell.

Capsul. Networks. 1, 73–82 (2019). doi:10.36548/jaicn.2019.2.003

5. Drozdal, J., Weisz, J., Wang, D., Dass, G., Yao, B., Zhao, C., Muller, M., Ju, L., Su, H.:

Trust in AutoML: Exploring information needs for establishing trust in automated machine

learning systems. (2020). doi:10.1145/3377325.3377501

https://doi.org/10.1016/j.vlsi.2019.07.005

6. Smithson, S.C., Yang, G., Gross, W.J., Meyer, B.H.: Neural networks designing neural

networks: Multi-objective hyper-parameter optimisation. In: 2016 IEEE/ACM Internation-

al Conference on Computer-Aided Design (ICCAD). pp. 1–8 (2016). doi:

10.1145/2966986.2967058

7. Zoph, B., Vasudevan, V., Shlens, J., Le, Q. V: Learning transferable architectures for scal-

able image recognition. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition. pp. 8697–8710 (2018). doi:10.1109/CVPR.2018.00907

8. Liang, P., Chen, J., Zheng, H., Yang, L., Zhang, Y., Chen, D.Z.: Cascade decoder: A uni-

versal decoding method for biomedical image segmentation. In: 2019 IEEE 16th Interna-

tional Symposium on Biomedical Imaging (ISBI 2019). pp. 339–342 (2019). doi:

10.1109/ISBI.2019.8759430

9. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.-W.W., Heng, P.-A.A.: H-DenseUNet: Hybrid

densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans.

Med. Imaging. 37, 2663–2674 (2018). doi:10.1109/TMI.2018.2845918

10. Dolz, J., Gopinath, K., Yuan, J., Lombaert, H., Desrosiers, C., Ben Ayed, I.: HyperDense-

Net: A hyper-densely connected CNN for multi-modal image segmentation. IEEE Trans.

Med. Imaging. 38(5), 1116–1126 (2019). doi:10.1109/TMI.2018.2878669

11. Xie, X., Zhou, Y., Kung, S.-Y.: HGC: Hierarchical group convolution for highly efficient

neural network. arXiv preprint arXiv:1906.03657 (2019)

12. Roy, D., Panda, P., Roy, K.: Tree-CNN: A hierarchical deep convolutional neural network

for incremental learning. Neural Networks 121, 148–160 (2018).

doi:10.1016/j.neunet.2019.09.010

13. Kokiopoulou, E., Hauth, A., Sbaiz, L., Gesmundo, A., Bartok, G., Berent, J.: Fast task-

aware architecture inference. arXiv preprint arXiv:1902.05781 (2019)

14. Mendoza, H., Klein, A., Feurer, M., Springenberg, J.T., Hutter, F.: Towards automatically-

tuned neural networks. In: Hutter, F., Kotthoff, L., and Vanschoren, J. (eds.) Proceedings

of the Workshop on Automatic Machine Learning. pp. 58–65. PMLR, New York, New

York, USA (2016). doi:10.1007/978-3-030-05318-5_7

15. Macko, V., Weill, C., Mazzawi, H., Gonzalvo, J.: Improving neural architecture search

image classifiers via ensemble learning. arXiv preprint arXiv:1903.06236 (2019)

16. Zhong, G., Jiao, W., Gao, W., Huang, K.: Automatic design of deep networks with neural

blocks. Cognit. Comput. 12, 1–12 (2020). doi:10.1007/s12559-019-09677-5

17. Guo, M., Zhong, Z., Wu, W., Lin, D., Yan, J.: IRLAS: Inverse reinforcement learning for

architecture search. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). pp. 9013–9021 (2019). doi: 10.1109/CVPR.2019.00923

18. Yan, S., Fang, B., Zhang, F., Zheng, Y., Zeng, X., Xu, H., Zhang, M.: HM-NAS: Efficient

neural architecture search via hierarchical masking. CoRR. abs/1909.0, (2019)

19. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical represen-

tations for efficient architecture search. In: International Conference on Learning Repre-

sentations (ICLR). (2017)

20. Wang, B., Sun, Y., Xue, B., Zhang, M.: Evolving deep convolutional neural networks by

variable-length particle swarm optimisation for image classification. In: 2018 IEEE Con-

gress on Evolutionary Computation (CEC). pp. 1–8 (2018). doi:

10.1109/CEC.2018.8477735

21. Chu, X., Zhou, T., Zhang, B., Li, J.: Fair DARTS: Eliminating unfair advantages in differ-

entiable architecture search. arXiv preprint arXiv:1911.12126 (2019)

22. Wong, C., Houlsby, N., Lu, Y., Gesmundo, A.: Transfer learning with neural AutoML. In:

Proceedings of the 32nd International Conference on Neural Information Processing Sys-

tems. pp. 8366–8375. Curran Associates Inc., Red Hook, NY, USA (2018)

https://doi.org/10.1007/s12559-019-09677-5

23. Zeng, X., Luo, G.: Progressive sampling-based Bayesian optimisation for efficient and au-

tomatic machine learning model selection. Heal. Inf. Sci. Syst. 5, 2 (2017).

doi:10.1007/s13755-017-0023-z

24. Dong, X., Yang, Y.: Searching for a robust neural architecture in four GPU hours. In: 2019

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1761–

1770 (2019). doi: 10.1109/CVPR.2019.00186

25. Van Wyk, G.J., Bosman, A.S.: Evolutionary neural architecture search for image restora-

tion. Proc. Int. Jt. Conf. Neural Networks. 2019-July (2018).

doi:10.1109/IJCNN.2019.8852417

26. Suzuki, T., Takeshita, S., Ono, S.: Adversarial example generation using evolutionary mul-

ti-objective optimisation. In: 2019 IEEE Congress on Evolutionary Computation (CEC).

pp. 2136–2144 (2019). doi:10.1109/CEC.2019.8790123

27. Pakrashi, A., Mac Namee, B.: CascadeML: An automatic neural network architecture evo-

lution and training algorithm for multi-label classification. Lect. Notes Comput. Sci. (in-

cluding Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 11927 LNAI, 3–17

(2019). doi:10.1007/978-3-030-34885-4_1

28. Yu, K., Sciuto, C., Jaggi, M., Musat, C., Salzmann, M.: Evaluating the search phase of

neural architecture search. arXiv preprint arXiv:1902.08142 (2019)

29. Belli, M.R., Conti, M., Crippa, P., Turchetti, C.: Artificial neural networks as approxima-

tors of stochastic processes. Neural Networks. 12, 647–658 (1999). doi: 10.1016/S0893-

6080(99)00017-9

30. Kendall, M.G.: A new measure of rank correlation. Biometrika. 30, 81–93 (1938). doi:

10.2307/2332226

https://doi/

