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Abstract. For the past years, many researchers and engineers have been devel-

oping and optimising deep neural networks (DNN). The process of neural archi-

tecture design and tuning its hyperparameters remains monotonous, time-

consuming, and do not always ensure optimal results. In his regard, the auto-

matic design of machine learning (AutoML) has been widely utilised, and neu-

ral architecture search (NAS) has been actively developing in recent years. De-

spite meaningful advances in the field of NAS, a unified, systematic approach 

to explore and compare search methods has not been established yet. In this pa-

per, we aim to close this knowledge gap by summarising search decisions and 

strategies and propose a schematic framework. It applies quantitative and quali-

tative metrics for prototyping, comparing, and benchmarking the NAS methods. 

Moreover, our framework enables categorising critical areas to search for better 

neural architectures. 

Keywords: deep neural network, AutoML, neural architecture search, scheme 

modelling, efficient neural network. 

1 Introduction 

Nowadays, NAS studies focus on enhancing the viability of DNNs in three ways: 

increasing network accuracy, decreasing computational costs, and reducing network 

weight. For instance, some applications require high-level precision from neural net-

works [1]. For real-time applications, hardware requirements can be vital [2]. Some 

applied systems depend on swift yet straightforward methods [3]. According to [4,5], 

among the various optimisation methods, NAS shows the most noticeable outcomes. 

In general, the goal of NAS can be defined as a construction of an optimal architec-

ture limited by certain conditions, iteratively searching for better architectures that 

satisfy those conditions. Considering the significant benefits of automation, AutoML 

has been rapidly developing in recent years. Unfortunately, the scientific community 

has not standardised a comprehensive approach to explore, compare and select effi-

cient NAS methods. Consequently, we aim to suggest a new framework to promote 

this field of research. 
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We consider an N -dimensional architecture space to construct an optimal neural 

network. The search space covers the scope of all possible combinations of neural 

architectures. Every structure represents an N -tuple, where N  stands for the number 

of parameters of the architecture search space. To search for a capable topology that 

meets all the constraints of a given problem, we must assign a set of cost conditions to 

those constraints. Restricted search narrows the search space and focuses on low-cost 

architectures. 

2 Related Work 

Several studies in the NAS area are based on either manual or automatic searching 

techniques. As stated in [6], a manual search is to modify the neural elements of 

DNNs by imposing sparse constraints on the target function during training. Another 

work [7] proposes to replace 3 3  convolutional blocks with individual building 

blocks. Such blocks embody a combination of 3 3  and 1 1  convolutional operators 

with a reduction in the number of input channels on each convolutional block. Fur-

thermore, the authors of this work achieved increasing classification accuracy by 

implementing manual down-sampling. In [8], authors presented a universal cascade 

decoder, which is embedded into the network by sequential adding of each convolu-

tional building block. Li et al. [9] combined dense skip connections as specific micro-

blocks from a 2D DenseUNet with a 3D equivalent to hierarchically accumulate vol-

umetric features so that their network can maximise the use of spatial information 

during the classification of 3D images. Dolz [10] enhanced the previous approach by 

applying an operator level to the building blocks of convolutional neural networks 

(CNN). Their HyperDense-Net utilises dense skip connections between convolutional 

layers in each building block. In [11], researchers proposed a hierarchical group con-

volution operation that can effectively compress the deep neural model. In [12], a 

hierarchical DNN consists of multiple CNNs on each network layer. The proposed 

network grows in the tree form with new data classes on each to identify previously 

trained ones. Kokiopoulou [13] presented a gradient-based approach to design effec-

tive DNN architectures. In this work, authors applied the modification called subnet-

work level to decrease the inference time. The idea is that the proposed structure splits 

the DNN into several subnetworks, where each subnetwork specialises and runs only 

on a separate set of input classes. 

Despite successful examples of manual methods, they are still highly dependent on 

the input conditions of a given task. The use of manual search requires comprehensive 

expertise and time-consuming work. To address these issues, researchers have further 

developed advanced methods to automate the design process of DNN [14]. In this 

study, the parameterised underlying architecture is utilised to search for a suitable 

architecture for every dataset separately. In [15], authors independently trained an 

ensemble of small building blocks with a homogeneous averaged output. In [16], 

researchers proposed a modified reinforcement learning method which selects differ-

ent neural building blocks to construct DNNs. Guo [17] demonstrates how the inverse 



reinforcement learning approach can search for efficient network structures topologi-

cally inspired by manual search. 

In order to resolve computational-cost issues, Yan et al. [18] presented a capable 

NAS based on the parameter sharing approach with a hierarchical search space. In 

[19], a novel hierarchical evolution representation scheme simulates the modularised 

design template commonly utilised by human experts. In [20], researchers suggested 

an automatic designing strategy that empowers particle vectors to encode building 

blocks of DNN easily. Chu [21] utilised a fixed hierarchical macro-architecture as a 

search space. In [22], authors applied a transfer learning approach to automatic NAS 

and proposed a generic search space, including fixed macro-architecture and hyperpa-

rameter choices. Zeng [23] implemented various sampling procedures into an auto-

matic selection method which significantly reduced the search time for the architec-

ture. Recently, researchers started to implement a directed acyclic graph (DAG) as a 

search space, as in [24], to store dozens of subgraphs, each of which denotes the type 

of sample architecture. In [25,26], authors suggested an evolutionary NAS. In their 

work, search space comprises a diverse set of hyperparameters, activation functions, 

and normalisation layers. Parkashi [27] applied multi-label classification into the cas-

cade neural network for efficient hyperparameter tuning. 

3 Evaluation Criteria 

The main problem of NAS methods in terms of evaluation is their limitation by the 

performance of optimised architecture. In other words, the better a produced architec-

ture performs (measured by quantitative criteria), the better the corresponding NAS 

technique is. The most used quantitative metrics [5,6,14,28] to measure search meth-

ods are described below. 

• Training and validation loss. Training loss signals whether the network is im-

proving in the search procedure and if so, shows the speed of improvement. The 

validation loss checks if the model is overfitting or underfitting. The goal is to 

measure how fast the output network converges and how well it will perform on 

new datasets. 

• The number of parameters. This criterion records the number of parameters the 

output model contains. The more parameters and weights a model comprises, the 

heavier it is. The idea behind it is to estimate and compare the amount of physical 

memory the models require. 

• Amount of training data. In the real world, training data could be a precious re-

source, depending on the expense of data collection and labelling. This criterion 

aims to assess whether the search method can find an optimal architecture on a lim-

ited dataset. 

• Training and test CPU time. This metric records the total CPUs and GPUs time 

used to run all training and test epochs. The goal is to measure how much system 

resources the search method might consume. 

• Memory requirement. The metric is vital when an output architecture is intended 

to be used in limited performance devices such as smartphones, digital cameras, or 



quadcopters. The goal is to check whether a model is suitable for restricted sys-

tems. 

Despite the simplicity and practicality of quantitative indicators, they do have signifi-

cant disadvantages. The efficiency of neural modals crafted by either manual or au-

tomatic search techniques may vary significantly due to the influence of stochastic 

processes of a particular domain [29]. Currently, used metrics focus mostly on the 

performance of a network. Such criteria do not account the required level of expertise 

in a subject area and the level of effort needed to apply the search method to another 

issue or dataset. To this context, the evaluation of variance on performance might be 

considered a proper criterion to select a suitable candidate architecture. Another es-

sential aspect is the level of manual changes to the search procedure. Even automatic 

search methods may depend on human interventions, although their principal purpose 

is to reduce its level. Besides, the reproducibility is a common pitfall in NAS. There-

fore, within our framework, we consider the variance on performance and the level of 

human intervention as qualitative criteria. Below we describe a five-step evaluation 

strategy that must be followed successively. 

• Search space design. Standard manual search spaces usually reduce the efficiency 

of the further search strategy. The goal here is to check the suggested heuristic 

search procedure for non-standard search placements.  

• Requirements. Predetermine the signs of optimality of the underlying architecture. 

The purpose of this step is to reduce the likelihood of obtaining suboptimal archi-

tecture upon the completion of training. 

• Search process. Like the type of defined search space, this step differentiates the 

model’s ultimate performance from basic training strategies. The goal is to check 

whether a predetermined underlying architecture can be trained in a standard way 

or whether a specific training strategy should be employed. 

• Adaptation to changes. The search procedure can be repeated either from scratch 

or using prior knowledge by applying additional methods. The aim is to consider in 

advance the computational cost of any human interventions. 

• Code availability. NAS methods are especially challenging to replicate. Their 

effectiveness depends on the implementation details. The goal is to open source a 

programming code and ensure its reproducibility so that the exploring NAS meth-

od can be proved on other machines and datasets. 

4 Algorithm 

This paper proposes a solution that promotes exploring, comparing and estimating 

search methods, both quantitatively and qualitatively. Our approach is dedicated to 

identifying the strengths and weaknesses of search methods and suggest improve-

ments that can be implemented to them. In total, the framework consists of four stag-

es, plus the evaluation block. Below we briefly describe the algorithm, the consistent 

execution of which allows efficient modelling and assessing of any search method. 



1. Setup stage. In this step, we define the search space and initialise the underlying 

architecture. 

2. Framing stage. This step is devoted to measuring the computational and memory 

cost and configuring the architecture search techniques. 

3. Adaptation stage. In the adaptation stage, we accommodate the various architec-

tural improvements based on the decisions made in the previous step. 

4. Assessment stage. Here we assess the performance of training strategy and evalu-

ate output architectures. If the resulting model satisfies the initial conditions or ex-

pectations, then the search stops. Otherwise, adaptation techniques must be reused. 

The third and fourth stages form a cycle during which the studied architecture is im-

proved iteratively. Fig. 1 illustrates the above algorithm. 

 

Fig. 1. The scheme of the framework 

In the following sections, we provide more detailed instructions based on the analysis 

of the literature on how each step can be applied to real-world modelling. 

5 Setup Stage 

In this section, we describe the first stage of the framework. Setup stage specifies the 

search environment and comprises the initialisation of search space and the definition 

of underlying architecture. The metrics used in this stage are the amount of training 

data, memory requirement, search space design and requirements. 

5.1 The Definition of Search space 

The architecture search space depends primarily on the intended use since different 

datasets impose different constraints on the neural architecture. Also, the search space 

is affected by existing computational resources. To find an optimal architecture, we 



need to compromise between the network flexibility, target coverage and computa-

tional requirements during the search space. 

It should be mentioned that automatic search requires a precise definition of the 

search space. Concurrently, such requirement is not crucial for handmade framing. In 

Fig. 2, we categorised search spaces into four groups. 

 

Fig. 2. Types of search space 

Hierarchical search spaces consist of two search levels: micro- and macro-architecture 

search spaces. The macro-layer explains the architecture combination of micro-layer 

to create the whole network. Sometimes, hierarchical search space [11,12,18,19] can 

contain fixed micro- [9,24] and macro-architectures [21,22], as in, to provide the 

managed search. Global search space means that the architecture search is performed 

among the entire scope of the underlying network. Moreover, as described in [6,7,17], 

the search scope, in this case, is not limited by any architecture requirements. Search 

spaces with consecutive blocks apply similar blocks at different network levels. For 

instance, in [8,10,15,20], the final networks comprise repeatedly attached building 

blocks and subnetworks. According to [13,17,23,25-27], when input requirements are 

unknown in advance, a good practice is to utilise variable search spaces. 

The Kendall coefficient   [30] is a commonly utilised metric to calculate the cor-

relation between two rankings. According to [28], the   indicator is well suited for 

estimating the search space and can be calculated as 
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5.2 The Initialisation of Underlying Architecture 

In this step, it is necessary to initialise the underlying architecture that fits into the 

previously defined search space. This architecture further serves as a starting point for 

experiments in both manual and automatic search techniques. Fig. 3 shows types of 

underlying architectures. 

 

Fig. 3. Approaches for specifying underlying architecture 

Different types of underlying architectures serve for various applications. In 

[12,18,21], all possible topologies organise a superposition called supernetwork. In 

DAG, each subgraph is assigned as a convolutional block or down-sampling opera-

tion [24]. Genetic and reinforced-based algorithms imply the underlying architecture 

as a randomising of the network blocks [20,23,25]. Sometimes, researches utilise set 

state-of-the-art architectures, for example, DenseNet [9,10,16], ResNet [17,19], or 

[26], as an underlying one and after that apply modifications to search for an optimal 

solution. In cases [6,7,11,13,22], the convolutional module serves as the underlying 

architecture, and the originating module, gradually expanding, performs the search for 

an optimal architecture. 

6 Framing Stage 

In this section, we determine a way to measure the cost of the explored architecture 

and select a search strategy. The criteria employed here are the amount of training 

data, training and test CPU time, memory requirement and search process. 

6.1 The Establishment of Architecture Dependent Costs 

Architecture cost designates the requirements which optimal architecture must fit. 

Having analysed the literature mentioned in the previous sections, we identified a set 

of cost terms that every NAS method encounters. We illustrate the defined costs and 

appropriate ways to eliminate them in Fig. 4. 



 

Fig. 4. NAS costs and corresponding ways to reduce them 

Determining the expanses is necessary to select a search strategy in the following 

steps. Also, well-defined cost metrics allow comparing different architectures to 

choose the best one. 

6.2 The Selection of Search Strategy 

Here, based on the defined search space, we chose an appropriate search strategy to 

seek an optimal architecture. As stated in [28], the search space established from the 

set of all probable architectures is tremendously vast, sometimes endless. Therefore, 

the task of scanning all the topologies within such search space becomes practically 

impossible to solve. Besides, the architecture cost impacts the search strategy and is 

used to compare different architectures in the search space. Fig. 5 presents the most 

utilised NAS strategies. 

 

Fig. 5. Manual and automatic search strategies 

Manual search serves as a guide or set of rules for designing architectures. An exam-

ple rule can be implying additional architectural components such as cascades [8,27] 

or sequences [15]. One suggestion for manual search is a dense architecture by typing 

bandwidths or searching for compact architectures [9-11]. Some manual techniques 



depend on searching for bifurcated structures to enhance feature maps and weight 

sharing [6,7,12]. In other cases, researchers search for an ensemble of networks and 

calculate its average output to obtain the desired result [13,15,23]. 

In contrast to manual search, automated search methods are more advanced ap-

proaches. Reinforced-based search strategy assigns the reward by reducing the overall 

cost of architecture, which in turn leads to a better network configuration [16,17]. 

Random [18,19,22] and evolutionary [20,25,26,27] search strategies achieve signifi-

cant results at a low cost compared to other search strategies. Nowadays, modern 

state-of-the-art technique – differentiable architecture search (DART) – uses gradient 

descent approaches to minimise the overall cost function of architecture [21,24]. 

7 Adaptation Stage 

In this stage, we apply various improvements to exploring architecture. This proce-

dure comprises establishing level, position and sampling techniques. The metrics 

utilised here are the number of parameters and adaptation to changes. 

7.1 The Selection of Level and Position Modifications 

Network design can be refined based on two criteria: the level and position of modifi-

cations. The level commonly corresponds to operator level [6,11,16,26], building 

block level [7,9,15,18], subnetwork level [18], cell-based level [22,27] or their con-

nection between each other [10-12,16,19,21,24]. Some studies are based on global 

position [19,21], others use layer-based [8,10,17]. Different upgradings can also be 

applied as group-based [6,11,12] or hybrid positions [9]. Many methods apply pool-

ing position and its varieties as an additional layer [10,12,17,20,21,25]. Fig. 6 depicts 

common instances of adaptation procedure. 

 

Fig. 6. Modification techniques commonly used in NAS 

Manual search methods involve various enhancements through the lens of intuition 

and experience. Automated search methods instead define the level and position by 

the parameterised architecture of the search space. Choosing the right level and posi-

tion depends on the computational constraints and the input datasets. 



7.2 The Application of Sampling Techniques 

In this step, we tune the architecture parameters. Implemented modifications result in 

the distribution of the architecture configuration. Such distribution allows obtaining a 

combination of architectures that best meet the requirements defined for the intended 

application. The sampling methods can differ from each other and usually dependent 

on specific search spaces and search strategies. In general, sampling techniques are 

the varieties of pruning. They allow removing redundant or unnecessary blocks from 

an architecture. Fig. 7 shows the instances of the sampling methods. 

 

Fig. 7. Sampling techniques 

In [22,24], researchers apply a parameter sharing technique, while [21] employs 

SoftMax block prediction to improve network robustness. Works [18,24] implement-

ed pathfinding through a DAG to reduce computational time cost. Thresholding or 

pre-processing a network is a common technique to comprise all sparse architectures 

within the search space into one efficient neural network [18,21]. Manual methods do 

not contain parameterised architecture distribution that must be determined. For that 

reason, sampling procedures are not applied to a manual search but are widely used in 

an automated one. 

8 Assessment Stage 

In the last step, we train and evaluate the sampled architecture. Researchers should 

consider the training and validation loss, the number of parameters, training and 

test CPU time, search process and code availability. Fig. 8 illustrates the assess-

ment stage. 

 

Fig. 8. The procedure of the evaluation of a search method 



Practitioners can apply various training strategies, depending on the initial conditions 

of the task. For example, progressive training means the training of only the modified 

part of the network, while the rest of the network parameters are remaining fixed [23]. 

While performing a bifurcated exercise, one trains various subnetworks, connected to 

a shared subnetwork, in parallel [15,21]. Also, a practical approach is to combine 

different training strategies presenting them as training steps [5,19]. When the training 

finishes, the explored architecture is being evaluated on the validation set. If the found 

architecture satisfies the initial metrics, the search process stops, and the architecture 

is accepted as an expected result. Otherwise, it is needed to return to the previous step 

and implement additional improvements to find an architecture that satisfies optimisa-

tion criteria. 

9 Framework Application 

In this section, we demonstrate an attempt to summarise the NAS procedure using the 

proposed framework. In total, upon the suggested measures, we analysed and evaluat-

ed state-of-the-art search methods developed in recent years. Table 1 and Table 2 

presents the results of the analysis. 

Table 1. Analysis of NAS methods outlined by the proposed framework (part 1) 

Study NAS approach Search space Underlying 

architecture 

Search strategy 

[6] Manual Global Module Bifurcated search 

[7] Manual Global Module Bifurcated search 

[8] Manual Consecutive blocks Set Cascade 

[9] Manual Hierarchical micro Set Skip connections 

[10] Manual Consecutive blocks Set Skip connections 

[11] Manual Hierarchical Module Skip connections 

[12] Manual Hierarchical Supernetwork Bifurcated search 

[13] Manual Variable Module Ensemble 

[16] Automatic Global Set Reinforcement 

learning 

[17] Automatic Variable Set Reinforcement 

learning 

[18] Automatic Hierarchical Supernetwork Random search 

[19] Automatic Hierarchical Set Random search 

[21] Automatic Hierarchical macro Supernetwork Differential 

[22] Automatic Hierarchical macro Module Random search 

[24] Automatic Hierarchical micro DAG Differential 

[26] Automatic Variable Set Evolutionary 

[27] Automatic Variable Set Cascade, 

Evolutionary 



Table 2. Analysis of NAS methods outlined by the proposed framework (part 2) 

Study Cost Adaptation techniques Sampling 

techniques 

Code availability 

[6] Task error Operator level, 

Group-based position 

– Not available 

[7] Task error Building block level – Available and 

replicable 

[8] Task error Layer-based position – Not available 

[9] Task error Building block level 

Hybrid position 

– Available and 

replicable 

[10] Task error Connection level, 

Layer-based, 

Pooling 

– Available and 

replicable 

[11] Computational 

cost, 

Memory 

Operator level, 

Connection level, 

Group-based position 

– Not available 

[12] Task error, 

Inference effi-

ciency 

Connection level, 

Group-based position, 

Pooling 

– Not available 

[13] Task error, 

Computational 

cost 

– – Available, not 

replicable 

[16] Memory, 

Energy 

Operator level Pathfinding Not available 

[17] Task error, 

Training time 

Layer-based position, 

Pooling 

Pathfinding Available and 

replicable 

[18] Task error Subnetwork Thresholding, 

Pathfinding 

Not available 

[21] Task error Connection level, 

Global position, 

Pooling 

SoftMax, 

Thresholding 

Available and 

replicable 

[22] Computational 

cost 

Cell-based level Parameter 

sharing 

Not available 

[24] Task error, 

Training time 

Connection level, 

Pooling 

Parameter 

sharing, 

Pathfinding 

Available and 

replicable 

[26] Inference effi-

ciency, 

Energy 

Operator level – Not available 

[27] Task error, 

Inference effi-

ciency 

Cell-based level Pathfinding Not available 

 



The framework allows combining and analysing various processes that are occurring 

during the design of neural networks. According to Table 1, search spaces are usually 

represented as hierarchical structures. Set of handcrafted recognised networks remains 

the popular type of underlying architecture. Bifurcated and cascaded search strategies 

are widely prevalent among the manual NAS methods. In contrast, automatic search 

methods are mostly based on reinforcement and evolutionary strategies. 

From table 2, we can see that the primary goal of most search methods remains 

task error reduction. Individual building blocks and divorce levels are commonly 

utilised in the adaptation stage. Among sampling techniques, pathfinding and parame-

ter sharing are in favour. The number of works with open source code is approximate-

ly equal to the number of works without code. 

10 Conclusion 

Recently, there has been a variety of methods and technologies for searching optimal 

neural network architectures. Nevertheless, the issue of summarising and evaluating 

different procedures and approaches in NAS remains open. In this paper, we propose 

a new framework for exploring and modelling new NAS techniques. Our method is 

based on the standard quantitative metrics that measure both individual architectures 

and search methods. Within the proposed framework, we introduce five qualitative 

assessments to ensure the variance on performance and the level of human interven-

tion. Our work describes all the critical aspects of state-of-the-art search methods and 

summarises known approaches. The proposed framework imparts a better understand-

ing of recent and noticeable contributions made in the development of NAS methods. 

In future research, we plan to expand our framework by covering image and text clas-

sification tasks. 
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