
The Acceleration of the Determination of the Median of

Nested Subarrays Using Two Binary Pyramids

Alexander Shportko
1’[0000-0002-4013-3057]’

, Veronika Shportko
2’[0000-0002-9460-0781]’

1Department of Information Systems and Computing Methods, Academician Stepan

Demianchuk International University of Economics and Humanities,

4, Acad. S. Demianchuk Str, Rivne, Ukraine
2Software Department, Lviv Polytechnic National University, 12, Bandera Str, Lviv, Ukraine

ITShportko@ukr.net, veronikashportko@gmail.com

Abstract. A new method for determining the median of the array and subarrays

using two binary pyramids is described. The duration of determining the medi-

ans for different types of arrays and continuous subarrays of by both the tradi-

tional algorithms and the proposed method is analyzed. The C# program snip-

pets for the implementation of the algorithms for determining medians by the

investigated methods are presented. It is shown that to determine the medians of

different arrays and unrelated subarrays, it is advisable to use the Hoare’s parti-

tion instead of the known sorting methods. To identify the median of sequence

of nested continuous subarrays, the method of two pyramids should be used. To

find the median of neighboring subarrays of the same length, it is better to use

the binary search in their sorted analogues. According to the results of experi-

ments, the usage of the proposed method of two binary pyramids allows to ac-

celerate the determination of the median of embedded continuous subarrays,

generated randomly, in more than 10 times.

Keywords: array median, subarray medians, binary search and inclusion,

method of two binary pyramids.

1 Introduction

As it is known, in statistics to analyze economic indicators the median of the array is

used more frequently than arithmetic mean of all elements of the array, their mini-

mum or maximum values. Let us remind you that in statistics, the median is a value

that is in the middle of a series of values in ascending or descending order. The medi-

an divides a sequence of values into two equal parts [1], so to determine the median of

an array, you must first order its elements, and then, if the number of these elements is

odd, you need to select the value of the central element, and if even - then calculate

the arithmetic mean of the two central elements. The median of the array characteriz-

es economic activity more objectively. For example, if in a firm there are 9 employees

who receive a salary of 5000 UAH per month and one employee who earns

25000 UAH for a month. The average employee of this company earns not

15000 UAH and not 7000 UAH, but still 5000 UAH per month. Therefore, it is not

Copyright © 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:ITShportko@ukr.net

surprising that in recent times, tasks to accelerate the calculation of the median of

array occur more frequently. So, let's explore ways of accelerating the definition of

medians for unbound arrays, for nested arrays, and for continuous fixed-length arrays

that start from adjacent elements. Fragments of the programs for demonstrating the

logic of the algorithms of the proposed methods are in C # programming language [2],

since today it is one of the most popular programming languages.

2 The traditional way to determine the median of the array by

Hoare’s partition

Let us find the median of the array 110 ,...,, NxxxX , where 1000N – is the

number of its elements. We will index the array elements from zero, as it is in all

C programming languages. Obviously, in the process of determining the median, we

will need to use additional memory to sort the copies of array elements or store dy-

namic structures (pyramids, binary trees) so for not to distort the original array. It is

also clear that a standard method of sorting of a programming language can be used

(for example, in C# there is the Array.Sort() method) or one of the fast sorting meth-

ods [3] can also be used to find the median of the array, and then select the elements

that will then be in the middle. But this calculation will be time-consuming because

during this process all the elements of the array will be analyzed, but we only need to

know what values will be after sorting in the middle. Therefore, in practice, the

C. A. R. Hoare’s partition is used to determine the medians of the array [4]. This

method works according to the "Divide and conquer" principle: between the elements

of the array the pivot element is selected and all elements that are not larger than it

move in the array to the left of this element, while smaller elements are moved to the

right. After permutations if the pivot element is in the middle of the array (for odd-

length arrays) or in one of the central positions (for even-length arrays), then the me-

dian of the array is calculated with this pivot element. Otherwise, if the support ele-

ment is on the right side from the center, then the partitioning of the left side is con-

tinued, otherwise, the elements placed to the right of the pivot element are analyzed.

The function for implementing this method can be the following:

static double MedianaHoare(double[] h, int len) {...

if (len == 0) return 0;

if (len == 1) return t[0];

if (len == 2) return (t[0] + t[1]) / 2;

if (len%2==0) //the number of elements is odd

 {indexMaxMed = len/2; indexMinMed = indexMaxMed - 1;}

else

 indexMaxMed=indexMinMed = len/2;

//the main partition cycle

i = 0; j = len - 1; //first we break the whole array

while (true)

{//selecting the new pivot element

 indexPivot = i + R.Next(j - i);

 pivot = t[indexPivot];

 t[indexPivot] = t[i];

 t[i] = pivot; //the pivot element is written

 //at the beginning of the fragment

 i1 = i + 1; j1 = j; //the borders of the unordered part

 while (i1 < j1)

 {while (i1 < j1 && t[i1] < pivot)

 i1++; //looking for not smaller element on the left

 while (t[j1] > pivot)

 j1--; //looking for not larger element on the right

 if (i1 < j1)

 {//rearranging the elements that violate ordering

 prom = t[i1]; t[i1++] = t[j1]; t[j1--] = prom; }}

 if (t[j1] > pivot) j1--; //move to the not smaller item

 //returning the pivot element to the ordered part

 t[i] = t[indexPivot = j1]; t[indexPivot] = pivot;

 if (indexPivot==indexMaxMed)

 //a pivot element is near the center

 {if (indexMinMed!=indexMaxMed)

 //the pivot element is to the right of the center

 {//finding the maximum on the left side

 max = t[i]; index = i;

 for (k = i+1; k <= indexMinMed; k++)

 if (t[k] > max) {max = t[k]; index=k; }

 //we place the maximum to the left of the center

 if (index != indexMinMed)

 {t[index] = t[indexMinMed]; t[indexMinMed] = max; }}

 break; }

 if (indexPivot==indexMinMed)

 {if (indexMinMed!=indexMaxMed)

 //the pivot element is to the left of the center

 {//finding the minimum on the right side

 min = t[indexMaxMed]; index = indexMaxMed;

 for (k = indexMaxMed+1; k <= j; k++)

 if (t[k] < min) {min = t[k]; index=k; }

 //we put the minimum to the right of the center

 if (index!=indexMaxMed)

 {t[index]=t[indexMaxMed]; t[indexMaxMed] = min; }}

 break; }

 //the support element is not near the center –

 //we move on to the next iteration

 if (indexPivot>indexMaxMed) j=indexPivot-1;

 else i=indexPivot+1; }

if (indexMinMed==indexMaxMed) //for odd length arrays

 return t[indexMinMed]; //we return the central element

//else we return the mean of the two central elements

return (t[indexMinMed]+t[indexMaxMed])/2; }

Then it is enough to output the median

Console.WriteLine(MedianaHoare(x, N));

The computational complexity (in terms of the number of comparisons) of the imple-

mentations of this method depends on the positions of the supporting elements: if the

value of this element at each iteration is contained approximately within the analyzed

fragment of the array, then the average computational complexity will be N2 [5],

since for the next iteration it is necessary to compare each element of the fragment

with the pivot element. But if at each iteration the support element is mini-

mum/maximum value of its fragment, then in the right/left part of it after transfor-

mation all other elements will move and the length of the fragment for the next itera-

tion will be reduced by only one element. In this case, the iteration depth will be N-1

and therefore the overall computational complexity of the algorithm will be

 2NO [5]. The choice of such an pivot element is not unlikely, especially when its

values are taken from the first or last element of the fragment, and the array itself is

pre-sorted. Even the author of the QuickSort method and the considered Hoare’s par-

tition have emphasized the importance of choosing the correct pivot element [4].

There he suggested two options for forming the value of a reference element: either to

set it to the median of a subset of elements (for example, from the first, last and mid-

dle element of a fragment), or to select it randomly among the elements of a fragment.

And if for the first variant of formation it is still possible to pick up elements of an

array so that the computational complexity of sorting is 2NO , then it is almost im-

possible for the second option. That is why in practice, the pivot element is often cho-

sen randomly, as it is in the above implementation. Today, some other methods of

finding the median of the array that have a theoretical computational complexity of

 NO [5; 6] are also developed, but in practice their implementation is slower than

the Hoare’s partition [5].

3 Determining the median of arrays by Hoare’s partitions

We show below that Hoare’s partition is not always the most efficient solution for

determining the median of subarrays. Consider, for example, the usage of this parti-

tion to determine the median of continuous nested subarrays. Let such arrays not to

begin with a zero element: iii xxxxY ,,...,, 110 , 1,0 Ni . For example, for

the array X=<44, 55, 12, 42, 94, 18, 6, 67> [7] such subarrays will be 0Y =<44>, 1Y

=<44, 55>, 2Y =<44, 55, 12>, ..., 7Y =X. In fact, the next subarray is derived from the

previous subarray by supplementing it with another element. As it was noted above,

the Hoare’s partition arranges the elements of fragments relative to the pivot ele-

ments, forming an "almost ordered" subarray. Therefore, to find the median of anoth-

er subarray by this method, it is advisable to use not the subarray itself, but the result

of Hoare’s partition for the previous subarray by supplementing it with the last ele-

ment:

for (i=0; i<N; i++)

{array[i]=x[i]; //supplement with a new element

 Console.WriteLine(MedianaHoare(array, i)); }

This option of finding the median for nested subarrays iY has a significant drawback -

the Hoare’s partition is applied to every subarray every time. Since the average com-

putational complexity of finding the median by Hoare’s iterative partitions is twice

the size of the subarray, the complexity of calculating the median of all such nested

subarrays will be NNN 2=2+...6+4+2 and, as it will be shown below, this is

not the best option.

Let us now explore the possibilities of using the Hoare partition to determine the

median of adjacent continuous subarrays 11 ,...,, subNiiii xxxZ , 1,0 subXi ,

where subN is fixed length of the arrays, subX – their number (

1, subNNsubXNsubN), that is what we consider neighboring contiguous

subarrays of the same length starting with adjacent elements of the input array X. For

example, for array X=<44, 55, 12, 42, 94, 18, 6, 67> adjacent three-element arrays

will be 0Z =<44, 55, 12>, 1Z =<55, 12, 42>, 2Z =<12, 42, 94>, ..., 5Z =<18, 6, 67>.

In fact, the next neighboring subarray is derived from the previous subarray by re-

moving the first element and supplementing it with the next element. Therefore, hav-

ing an "almost ordered" subarray after processing the previous subarray by Hoare’s

partition and replacing the element to be removed with a new element and again to

use iterative Hoare’s partitions are enough to determine the median of the next neigh-

boring subarray. But the point is that after the Hoare’s partition, the elements of the

array are not sorted, and that is why the search of the element to remove 1іx should

be consistent, not binary. The only thing you can do to speed up this search is to com-

pare it 1іx with the median of the previous subarray, and if this value is less than the

previous median, the search for the element to be removed should be conducted from

left to right and otherwise from left to right. As experiments have shown, for arrays

generated randomly, choosing the direction of such linear search accelerates the me-

dian definition by an average of 8%, because then the computational complexity of

search of the element to be extracted will not exceed subN/2. A fragment of a pro-

gram to determine the median of adjacent subarrays with a given length can be the

following:

for (j = 0; j < subN; j++) //form a zero subarray

 array[j] = x[j];

for (i = 0; i < subX; i++) //loop on arrays

{if (i > 0) //replace the following arrays 1іx into 1subNix

 //it is more profitable to look from left to right

 if (x[i - 1]<medMethod)

 array[indexSearchLeftToRight(array, x[i - 1])] =

 x[i + subN - 1];

 else

 array[indexSearchRightToLeft(array, x[i - 1])] =

 x[i + subN - 1];

 Console.WriteLine(MedianaHoare(subMas, subN)); }

The option of determining the median for adjacent subarrays iZ has the same disad-

vantage as for nested subarrays. Hoare’s partition applies to each subarray. The aver-

age computational complexity of determining these medians is subXsubN 2.5 .

4 Determining the median of arrays using binary search

It is common knowledge that the binary search of the element in subarray is faster

than linear search [3], but to perform the binary search it is necessary for the subarray

to be sorted. Let's first consider the mechanism of applying the binary search to de-

termine the median of nested arrays. Let 0Y contains only one element, which is its

median. This subset is already sorted. If the initial array 0Y contained more elements,

then its copy should be sorted by one of the known sorting algorithms and then the

median should be determined. But for a faster (relatively Hoare’s partition) search for

the median of the following nested arrays iY , 1,1 Ni we apply the binary inclu-

sion [7] of a new element ix in the sorted subarray from the elements of the previous

subarray. To perform each binary inclusion, we should firstly find the insert index

indexInsert of the new element in the pre-sorted subarray after small elements, then

move to the right all the elements from the indexInsert index to the end of the subar-

ray, and then insert ix into position indexInsert:

//binary search function within a given

//position range to include an item

static int BinarySearchIndexToIncludeElement(double[] t,

 int left, int right, double element)

{while (left<right) //while as there is a search interval

 {int j = (left + right) / 2;//middle index

 if (t[j] <= element) left = j + 1; //fold to the left

 else right = j; } //we reject the case

 return left; }

//the procedure for printing the median of a subarray

//with the specified length

static void WriteMediana(double[] t, int len)

{if (len % 2==0)

 Console.WriteLine((t[len/2]+t[len/2-1])/2);

 else Console.WriteLine(t[len/2]); }

...

//determining the median of nested arrays

array[0]=x[0]; Console.WriteLine(x[0]);

for (i = 1; i < N; i++) //index of the element to include

{indexInsert =

 BinarySearchIndexToIncludeElement(array, 0, i, x[i]);

 if (indexInsert < i)

 //you must move the items to the right to enable

 for (k = i - 1; k >= indexInsert; k--)
 array[k + 1] = array[k];

 array[indexInsert] = x[i]; }

 WriteMediana(array, i); }

The given fragment of the program implements the sorting of array by binary inclu-

sions [7], but additionally after each inclusion displays the median of the received

subarray. The computational complexity of such inclusions on comparison operations

is 5.0loglog eNN [7], that is much less than the complexity of the Hoare’s

partitioning method. The weak point of the binary inclusion is the need to move for

each subarray of the group of elements from the position of inclusion to its end.

Let us show how to apply the binary search to determine the median of adjacent ar-

rays iZ . As it was noted above, iZ is obtained from 1iZ remove the first item 1іx

and adding a new element 1subNіx (1,1 subXi). To speed up the determination of

the median by binary search, these adjustments must be made not on unordered ar-

rays. 1iZ , but on their sorted copies 1

~
iZ . Of course, you could first do a binary

search and remove the element 1іx , and then make the binary inclusion of the new

element 1subNіx , but then you would have to move the elements twice to the end (or

top) of the sorted subarray. Therefore, to determine the median of adjacent arrays iZ

we apply the following algorithm:

1. Sort 0Z by one of the known algorithms of sorting and find the median of the re-

sulting subarray;

2. For all subsequent neighboring subarrays (1,1 subXi) repeat steps 3-6;

3. By binary search find in the sorted subarray the index of the element to be removed

1іx and write it into a variable indexDel;

4. Find the index of insertion of the new element in a sorted subarray by binary

search 1subNіx after not smaller elements and write it into a variable indexInsert;

5. If indexInsert > indexDel, then move the sub-elements from the position in-

dexDel+1 to the position indexInsert-1 one item to the left and paste 1subNіx into

the sorted subarray into the position indexInsert-1;

6. Otherwise move the sub-elements from the position indexDel-1 to the position in-

dexInsert one item to the right and paste 1subNіx into the sorted subarray into posi-

tion indexInsert.

Moving elements of the sorted subarray only from the position of deletion to the posi-

tion of inclusion, but not twice from each of these positions to the end of the subarray,

accelerates the determination of the median of neighboring arrays by more than twice.

The program to determine these medians may be the following:

//function of binary element search in the array

static int IndexBinarySearchElement

 (double[] t, double element)

{int left = 0, right = x.Length-1, j = right;

 while (left < right)

 {j = (left + right) / 2;

 if (t[j] < element) left = j + 1;

 else if (t[j] > element) right = j - 1;

 else break; }

 if (left == right) return left;

 return j; }

...

//determining the median of the original subarray

for (j = 0; j < subN; j++)

 array[j] = x[j];

Array.Sort(array); WriteMediana(array, subN);

//determining the median of the next adjacent arrays

for (i = 1; i < subX; i++)

 {indexDel = IndexBinarySearchElement(array, x[i-1]);

 indexInsert = BinarySearchIndexToIncludeElement(

 array, 0, subN-1, x[i+subN-1]);

 if (indexInsert > indexDel)

 {for (k = indexDel + 1; k < indexInsert; k++)

 array[k - 1] = array[k]; //move to the place removed

 array[indexInsert-1]=x[i+subN-1]; }

 else

 {for (k = indexDel; k > indexInsert; k--)

 arrayx[k] = array[k-1];

 array[indexInsert]=x[i+subN-1]; }

 WriteMediana(array, subN); }

The computational complexity of such definitions of the median by comparison oper-

ations is subNsubX log2 , which is much less difficult to find using Hoare’s

partitions. The disadvantage of this method and the previous algorithm is the need to

move for each subset of the group of elements from the removal position to the inclu-

sion one. The following algorithms are essentially aimed at reducing the number of

moving elements, which can accelerate the determination of the median.

Generally speaking, the average number of comparisons to perform two binary

searches (positions for extraction and insertion) in the sorted subarray while replacing

elements is subNlog2 . Defining the median of the same subarray by Hoare’s parti-

tion requires subNlog2 comparisons. Therefore, if the neighboring arrays are less

than by subNsubN log/ elements, then to determine their median, it is advisable not

to use the Hoare’s partition, but to sort the initial subarray and sequentially perform

binary searches in it.

5 Finding the median of arrays and subarrays using two

pyramids

From the sequence of elements of the input array X we construct two binary pyra-

mids [8]
 12/10 ...,,, NaaaA and

 12/10 ...,,, NbbbB with the same size, so that

the pyramid A is non-ascending

 2212 , mmmm aaaa , (1)

and pyramid B is non-descending

 2212 , mmmm bbbb (2)

and)12/,0,(Njiba ji , so that the elements of pyramid B must be smaller

than the elements of pyramid A. The numbers of elements in these pyramids must be

the same after each step of sequentially processing of the elements of array X. An

example of such pyramids is given in Fig. 1. From the principles of construction of

these pyramids, it follows that if N is even, then the median of the array X will be

equal to the arithmetic mean of the elements of the vertices of the pyramids a0 and b0,

and if it is odd, the median will be a mean of a0, b0 and xN-1. We will calculate the

medians of nested and adjacent arrays on the same principle.

Fig. 1. The non-ascending pyramid A=<42, 12, 18, 6> and the non-descending pyramid

B=<44, 55, 94, 67>, built for array X=<44, 55, 12, 42, 94, 18, 6, 67>

Two auxiliary procedures are used to form pyramid A. The first of them inserts the

value of item that is not less than each of the elements of this pyramid into the top a0,

previously moving the existing items in the direction of the new node:

static void InsertTopA(double item)

 {int j=countNH-1; //index of new node

 while (j>0) //moving items until we reach the top

 {arrayA[j]=arrayA[indexTop[j]]; j=indexTop[j]; }
 //inserting a new value into the top

a0

a1

a3

a2

b0

b1

b3

b2

 a0=arrayA[0]=item; }

The second procedure inserts the value of item in pyramid A, starting from the speci-

fied node, so as not to violate the principle (1). To do this, the item is first alternately

rearranged with higher values until they are less than item, and then with values of

subordinate nodes [7] if they are larger than the item (its insertion index actually

changes):

static void InsertA(int index, double item)

 {//lifting at higher nodes

 while (index>0 && arrayA[indexTop[index]]<item)

 {arrayA[index]=arrayA[indexTop[index]];
 index=indexTop[index]; }

 //lowering towards larger lower-level values
 int indexBottom;

 while (true)

 {indexBottom=indexLeft[index];

 if (arrayA[indexBottom+1]>arrayA[indexBottom])

 indexBottom++;

 if (item<arrayA[indexBottom])

 {arrayA[index]=arrayA[indexBottom];

 index=indexBottom; }

 else break; }
 arrayA[index]=item; }

Only the second procedure is sufficient to form the pyramid A, but the first procedure

inserts the value that is not less than each of the elements of this pyramid into its top

without performing additional comparisons, and therefore accomplishes this task

much faster. The two procedures for inserting values into pyramid B are similar to the

above mentioned procedures, but in the second one, the comparisons of the elements

are reversed to ensure that the ordering principle is fulfilled (2).

Let us now give a verbal description of the algorithm of sequential formation of

pyramids A and B. Since these pyramids should always contain the same number of

elements, the elements of the input array X will be sequentially treated in pairs. In the

first step of the algorithm we assign 100100 ,max),,min(xxbxxa . The next

steps are for the other pairs 12/,1 Ni . Firstly, we calculate

),min(122 ii xxminPair and 122 ,max ii xxmaxPair , and then insert them into

the pyramids. Six variants of ordering of the vertices of the pyramids a0, b0 and

minPair, maxPair (Figure 2) are possible and, accordingly, six options for inserting

the last two variables can take place.

Fig. 2. Options for ordering the values of the vertices of the pyramids a0, b0 and the minimum

and maximum values of the pair of following array elements X

The code snippet for implementing these inserts could be the following:

countNH++;//increased the number of nodes in the pyramids

if (minPair>b0) //first ordering
 {InsertB(countNH-1, maxPair);

 InsertTopA(b0);

 InsertB(0, minPair);

 b0=arrayB[0]; }

else

 if (minPair>=a0)

 {InsertTopA(minPair);

 if (maxPair>b0) //the second option

 InsertB(countNH-1, maxPair);

 else //the third option

 InsertTopB(maxPair); }

 else //minPair<a0

 {InsertA(countNH-1, minPair);

 if (maxPair>b0) //the fourth option

 InsertB(countNH-1, maxPair);

 else

 if (maxPair>=a0) //the fifth option

 InsertTopB(maxPair);

 else //the sixth option

 {InsertTopB(a0);

 InsertA(0, maxPair);

 a0=arrayA[0]; }}

As it follows from the implementation of the algorithm, the insertion for the third-

order variant is the most quickly performed, when the next values of the input array

are placed between the vertices of the pyramid. In this case, the less value is inserted

b0 a0 minPair maxPair

1)

b0 a0 minPair maxPair

2)

b0 a0 minPair maxPair

3)

b0 a0 minPair maxPair

4)

b0 a0 minPair maxPair

5)

b0 a0 minPair maxPair

6)

into the top of pyramid A and larger value is inserted into the top of pyramid B with-

out additional comparisons. But this variant is extremely rare. The results of experi-

ments on arrays generated randomly showed that the relative frequency of occurrence

of the first and sixth variants orderliness is about 25 %, the fourth – 49.9999%, the

second and fifth – 0.00004%, and the third – only 0.00002%. An example of the re-

sults of the first three steps of the pyramid forming algorithm is shown in Figure 3,

and the fourth one is shown in Figure 1. Here, in the second step of pyramid for-

mation, the sixth variant of insertion is implemented, and in the third and fourth steps,

the fourth insertion options.

1)

2)

3)

Fig. 3. The results of the first three steps of pyramid formation A and B

of array elements X=<44, 55, 12, 42, 94, 18, 6, 67>

In the process of building pyramids A and B, each element of the input array X is ac-

tually inserted into one of these two pyramids, and therefore the average computa-

tional complexity of this algorithm for determining the median arrays and nested

subarrays, both by comparison operations and by the number of assignments is close

to NN log . The same calculation is done using binary search with approximately the

same number of comparisons, but with much higher number of assignments.

Unfortunately, the use of two binary pyramids of the same size is unsuitable for de-

termining the median of neighboring arrays, because when passing to a neighboring

arrays іZ you will need to remove the item from the pyramids 1іx and then insert an

item into them 1subNіx . And if the insertion requires on average only subNlog op-

erations of comparisons, the search for the element to be extracted can run through

almost all over the pyramid A or B, so the average computational complexity of de-

termining the median of adjacent subarrays using two pyramids by comparison opera-

tions is subNsubNsubX log4/ , which exceeds the complexity of determining

the same medians using binary search.

a0 b0

a0

a1

b0

b1

a0

a1 a2

b0

b1 b2

6 Experimental results

Let us first analyze the duration of the determinations of the median arrays of 10 mil-

lion real numbers by the algorithms of different methods (Table 1). We implemented

the algorithms of the considered methods in Microsoft Visual Studio 2017 program in

C# programming language [2]. To implement the quick sort, we used the standard

method of the Array.Sort(). Testing was carried out on a computer with an Intel Pen-

tium 4 processor with 3 GHz clock speed and size of RAM 4Gb.

Table 1. The duration of the determinations of the median arrays of 10 million real numbers

algorithms of different methods, ms

Method of

determining the

median

Array variant

Generated ran-

domly

Sorted in as-

cending order

Sorted in de-

scending order

Of the same

elements

Quick sorting 3906 1328 2153 2086

Binary inclusion over 22.8 million 6992 over 24 million 6953

Hoare’s partition 625 273 328 602

Two binary

pyramids

5718 9521 8833 5030

We see that it is expedient to use Hoare’s partition to determine the median of large

arrays. It is faster than sorting algorithms because it does not order the elements of the

array completely and is also faster than the algorithm of the method of two binary

pyramids, because it does not form common hierarchical structures.

Now let us compare the duration of the definitions of the median of 10 thousand

nested sub-arrays of real numbers by algorithms of different methods (Table 2).

Table 2. The duration of finding the median of 10 thousand nested arrays of real numbers

algorithms of different methods, ms

Method of

determining

the median

Using

pre-

ordered

data

Array variant

Generated

randomly

Sorted in

ascending

order

Sorted in

descending

order

Of the

same

elements

Quick sorting No 11414 4714 6605 6145

Yes 4868 3877 6233 5498

Hoare’s parti-

tion

No 4118 2678 2477 2516

Yes 1070 1063 1102 828

Binary inclu-

sion
Yes 250 16 469 23

Two binary

pyramids
Yes 23 16 16 16

We see that to determine the median of nested subarrays, it is advisable to modify the

processing data of a previously nested subarrays rather than process their data. As it

was predicted, the method of two binary pyramids proved to be the most effective and

stable for determining the median of such arrays, since it uses on average NN log

comparisons and the same number of assignments.

Finally, let us analyze the duration of finding the median of 10 thousand adjacent

subarrays of real numbers of 5 thousand elements each by algorithms of different

methods (Table 3).

Table 3. The duration of the determinations is a median of 10 thousand adjacent subarrays of

real numbers 5 thousand elements each by algorithms of different methods, ms

Method of

determining

the median

Using pre-

ordered

data

Array variant

Generated

randomly

Sorted in

ascending

order

Sorted in

descending

order

Of the

same

elements

Quick sort-

ing

No 12790 4678 6544 8192

Yes 6258 5757 6047 7304

Hoare’s

partition

No 5125 1117 1453 3609

Yes 771 734 867 1594

Binary

search
Yes 234 591 606 281

Two binary

pyramids
Yes 477 1138 906 16

As for nested arrays, we see that to determine the median of the next neighbor arrays,

it is necessary to adjust the data of the previous sub-array (for sorting algorithms it is

sorted counterpart; for Hoare’s partition it is the result of permutations of the previous

array; for two pyramids method it is previous hierarchical structures) and not process

the elements of the next subarray first. As it was predicted, the method of two pyra-

mids does not show the best results for the neighboring arrays, since when searching

for an element to extract it can analyze one of the two pyramids completely. The most

effective method for determining the median of adjacent arrays was the binary ele-

ment search method for extraction and insertion, since it uses only

subNsubX log2 comparisons on average and moves elements only between

extraction and insertion positions.

7 Conclusions

1. There are no universal methods for determining the medians that are effective for

all the sequences of arrays or subarrays - it all depends on the number of elements

that differ.

2. To determine the median of individual arrays and adjacent subarrays that differ by

more than subNsubN log/ elements, it is advisable to use Hoare’s partition in-

stead of the known sorting methods, since it rearranges only individual elements

and does not order the entire array.

3. While finding the median of adjacent subarrays that differ by no more than

subNsubN log/ elements, it is advisable to sort the initial arrays and then sequen-

tially perform the binary search for the deletion and insertion positions in it, move

the elements between them in the direction of the deletion position and insert the

new element.

4. The method of two binary pyramids should be used to determine the median se-

quence of nested subarrays, since its implementation perform on average NN log

comparisons and as many assignments.

In the future researches to accelerate definitions medians neighboring subarrays we

plan to use binary trees with a fixed height, which are expected to reduce the number

of items being moved.

References

1. Malistov A.: The Search of medians arrays for linear time. In: Math education, Vol. 21,

pp. 265–270 (2017) (In Ru).

2. C# Language Specification. Standard ECMA-334, 5-ed. ECMA International (2017).

3. Knuth D.: The Art of Computer Programming, Vol. 3. Sorting and Searching, 2-ed. In: :

Addison Wesley Longman, Massachusetts, 791 p. (1997).

4. Hoare C. A. R.: Quicksort. In: The Computer Journal, No 5 (1), pp. 10-16 (1962).

5. Cohen R.: My Favorite Algorithm: Linear Time Median Finding

https://rcoh.me/posts/linear-time-median-finding/ (accessed by Jan 15, 2018).

6. Blum M., Floyd R. W., Pratt V., Rivest R. L., Tarjan R. E.: Time bounds for selection. In:

Journal of computer and system sciences, Vol. 7, No 4. pp. 448–461 (1973).

7. Vlasyuk A.: Workshop on Programming in the Turbo Pascal environment. Vol. 1. In:

NUWEE, Rivne, 179 p. (2005) (In Ukr.)

8. Williams, J. W.: Algorithm 232 – Heapsort. In: Communications of the ACM, No 7 (6),

pp. 347–348 (1964).

9. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein: Introduction

to Algorithms, Third Edition. In: Williams, Moscow, 1328 p. (2014) (In Ru).

http://www.ecma-international.org/publications/standards/Ecma-334.htm
https://ru.wikipedia.org/wiki/Ecma_International
http://comjnl.oxfordjournals.org/content/5/1/10
https://rcoh.me/posts/linear-time-median-finding/
https://en.wikipedia.org/wiki/J._W._J._Williams
https://en.wikipedia.org/wiki/Communications_of_the_ACM

