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Abstract. The mathematical method φ-transformation in which large structures 

are regarded as a set of small and simple substructures, which may have some 

common parts that can be identified and amalgamate when constructing or re-

constructing an entire structure from a finite number of substructures has 

presentation here. 
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1. Introduction 

Let's dissolve the problem of modeling a complex system in general form and propose 

a theoretical and graphical approach as a way of thinking with artificial images-

structures. In systems modeling theory, there are mathematical methods in which 

large structures are regarded as a set of small and simple substructures, which may 

have some common parts that can be identified when constructing or reconstructing 

an entire structure from a finite number of substructures. The main object of φ-

method is creating graph (graph model) obtained as a pair of finite sets: sets of verti-

ces and sets of edges to determine the relationships between structure of vertices as 

objects. The basic idea of the method φ-transformation can be interpreted as a way to 

inherit a particular property of substructures throughout the structure, depending on 

the properties of the connection (identification of given parts of substructures). An 

example of this is the transformation of basic system programming problems into 

graph theory problems, with mathematical support for their solution algorithms. 

The graph model of a mathematical model of a complex system is presented in the 

form of an undirected graph G without multiple edges and loops and is studied by 

studying the structured properties of a graph embedded in a closed surface S of an 

undirected genus )(S ; the graph edges placed on the S will be located at least on the 

projective plane or the Mobius band glued to the oriented surface and will have no 

common points except the vertices of the graph G with genus γ(G) and may not be 

located only on the handles. A graph G is said to be minimal over S (𝛾(𝑆) -no irreduc-

ible) if for each proper subgraph H of graph G there is an inequality 𝛾(𝐻) ≤ 𝛾(𝑆) <
𝛾(𝐺). A minimal graph over S is called a graph G that decreases 𝛾(𝐺) after the edge 
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is removed or the edge is reduced to a point. For sphere S such are K5 and K3,3. The 

following results can be used for systematic analysis of graph models. 

2. Main Definitions and Results 

For a graph    (obtained as a   -image )( 0gStG n  with n vertices of the star 

)( 0gStn  amalgamate with vertices of the set X having the number of reachability 

)(XtG  and characteristics  )(),( XX GG   , [3-4]  the following inequality holds: 

1)()()()()(  XXXtG GGG  . 

Was introduced a characteristic at )(XG  is a measure of the cyclic connectivity of 

2-cells of set )(XSG  as opposed to )(XG  which characterizes the cyclicity of the 

set )(XSG .They can be used in the analysis of graph models of linguistic circuits 

which know that vertex and vertex links have some common property-context and 

some pairs of vertexes may conflict or contradict each other. To resolve these con-

flicts, we suggest placing graph models on the surface of another kind without cross-

ing the edges at the inner points. In order to investigate the behavior of a mathemati-

cal model of a complex system placed on the orienting surface S, its graph model G 

without multiple edges and loops is considered. Then it is possible to use the trans-

form method created for graphs to solve modeling problems by splitting into "sim-

pler" submodels with further identification of elements made with predefined proper-

ties. So the expansion of model G can be determined by the following transformation: 
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is the set of end vertices of the star )( 0gStn  with center 0g . Generalization of the 

characteristic relating to the cyclic structure of the set X points of the graph G embed-

ded in the surface S. Introduction of a new characteristic that measures the chain 

structure of the set X of points of graph G on S. This result will be useful in the sys-

tematic analysis of both graph models and their topological aspect. which will have 

common properties at the edges and vertices of the graph model. The solution to our 

problem is based on the method of graph transformations [1-2], whose founder is 

M.P. Khomenko, and the concepts he introduced. For the take of completeness, we 

present the most important part of them. 

Definition 1.1. A  -transformation of space  into X  relative homeomorphism 
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An important class  -transformations are  -transformations satisfying the condi-

tion:  ijij  at )()( jjii   . Then the subspace A is decomposed into 

the sum q of the subspace systems ij  homeomorphic to each other within each 

system. Thus, on the subspace A , the relation R - equivalence is given, i.e. 
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Define  -transformation ),()AX,(: AX in accordance with definition 1.1. 

We introduce the following characteristics  -transformation: 
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Possible causes are shown in figure 1. 

.  

Fig. 1. Possible causes 

The set A(𝜙𝑗) is uniquely defined. We denote 
j

rk by a number
jj

rk . 



3. Main Three Graphs 

Definition 3.1. The  - base )( jj  of reflection jjj A: with given  -

transformation ),(),(: AX  is the sum of those components of the subspace 

X that intersect with the subspace j , that is 



jJr

rj ,  0 j
rj krJ . 

Definition 2.2. The complex  -base )( ll XBB   over lX is called the prototype of 

this component at a given  -transformation, i.e. )(1
ll XB   . 

Statement 2.1. If fixed  -transformation ),(),(: AX ,  ljl BjJ  , 

mlJ ll )1(1,  , then  
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Proof of this statement follows from the fact that 
lB - the set of components of spaces 

 "glued" into a component 
lX on the subsystem

j . 

Definition 2.3. The graph of the complex  -base
lB  - transformation 

),(),(: AX is called a graph 
lZ , ),( 10

lll ZZZ  , where  lrrl BxZ 0
 

the vertices rx are joined by edges so that 0j
rk  a tree with a 1j

rk -loop in rx for 

all qjj )1(1,  is formed on all vertices. 

Definition 2.4. The graph  -base  -transformation is called a graph 
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Statement 2.2. The graph  XZ , is defined uniquely if and only if, when

2)(0 jBp  for qj )1(1 , i.e. we have no more than two connected components 

that intersect with the system
j . If )( 21 jjj  )2(  jd  for all qj )1(1 , 

then the graph  XZ ,  is uniquely defined. 

Theorem 2.1. For each graph   ZXZ ,  -bases  -transformations 

),(),(: AX
 
we have:  
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In order to ensure that these properties are valid, it is sufficient to calculate   

 

)),((1 XZ  ,      
 


q

j

j
r

j
r

q

j

m

r

j
r

q

j
j kkkpZ

11 11
01 0)1(1)( , 

 

where )(0  pm and use the formula )()()()( 0011 ZpZZZp   .  

Theorem 2.2. The graphs of the  -bases  XZ , are simple (i.e. without multiple 

edges and loops) if and only if, when 1j
rk  and      100  
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where qjmrrrr )1(1,)1(1,,  . In other words, the graphs  Z  are simple if 

and only if, when: 

 

1) we have only one subspace ij on each component r ; 
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Definition 2.5. The graph  -transformation    AXXBBB lllll  ,,:|    

of a complex  -base 
lB
 
at a given  -transformation of space   is called a graph 

l , where  
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Definition 2.6. Graph  -transformation of space   is the graph 
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1. The arbitrary 𝜙-transform graph ),( X  is uniquely defined and is simple if 

and only if, when: ;)1(1,)1(1,1
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Consider the following example in figures 2,3, where:  
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Fig. 2. Consider the following example 

 

 

 

 

 

Fig. 3. Consider the following example 

 



4.  -Transformations for Graphs on Some Surfaces 

4.1. Projective Plane 

 

The problem of studying the structure of all minimal non-planar projective graphs is 

solved by sorting through all the different variants of removing one of the vertices of 

one of the 35 minors of the projective plane and selecting non isomorphic graphs of 

nonorientable genus 1. Since [5] does not show the diagrams of these graphs, the 

construction of all minimal non-planar projective graphs, and in the study of the prop-

erties of these subgraphs of the minors of the projective plane relative to the number 

of reachability of the set of points and the genus of graph.  

The solution of this problem is to construct all minimal non-outer projective-

planar graphs by sorting out all the different variants of removing one of the vertices 

of a graph - minor of a projective plane and selecting non isomorphic graphs of 

nonorientable genus 1. Constructing similarly to how minimally projective non-planar 

graphs 5K  or 3,3K  are formed from minimal non-outer planar graphs 4K  or 3,2K  by 

gluing a simple star )(vSt  to the minimum power subset of points of graphs 4K  or 

3,2K  with number reachability equals 2. Main results: theorem 3.1 and diagrams of 

118 non-outer projective-planar graphs are given and the numbers of reachability of 

sets of vertices of minors of a projective plane and sets with points of attachment of a 

star to subgraphs of these minors are calculated. The full list of thess non-outer pro-

jective-planar graphs will be published as soon as possible. 

Theorem 3.1. For an arbitrary graph - obstruction G of the projective plane 1N

and each of its vertices v with the set )(vM of all vertices of the incident occur the 

following statements: 

 

1. For the subgraph vG \ of the nonorientable genus, the following relations 

will take place: 

a) If 1)\( vG , then we have the following relations a1) and one of a2) or a3): 

a1) 2)),(( 1\ NvMt vG , wherein the set )(vM belongs to the boundaries 21, ss   

of two cells 21, ss of the projective plane having at least one common vertex; 

a2) each edge of the subgraph vG \  is significant in relation genus )\( vG with 

respect to the removing the edge or compressing it in point;  
a3) each edge of a subgraph vG \ is significant with respect to the removal or 

compression operations of an edge; 

b) If 0)\( vG  then, one of the following two relationships will occur: 

b1) 3)),(( 1\ NvMt vG  and the set )(vM is located on the boundaries of three 

cells 321 ,, sss  of the projective plane satisfying the relation  213 sss , each edge 

of the subgraph vG \  being significant relative )),(( 1\ NvMt vG to the operations of 

removing the edge or compressing it to a point, and each point w  of the set )(vM

satisfies equality 1)),(()},{\)(( 1\1\  NvMtNwvMt vGvG ; 



b2) 2)),(( 0\ vMt vG , where )),(( 0\ vMt vG  is the number of reachability of 

the set )(vM  relative to the euclidean plane 0  , is realized by minimal embedding

0)\(: vGf  at the boundaries 21, ss   of the cells 21, ss , where )\(\},{ 021 vGfss  , 

which satisfies equality  21 ss , that is, separated by a ring from the cells, then 

relative to the projective plane, the set )(vM  will have a number of reachability 

2)),(( 1\ NvMt vG , with each point w  of the set )(vM  satisfies equality 

)),(()},{\)(( 1\1\ NvMtNwvMt vGvG   and the set }){\)(( wvMf   by some embedding 

1\:' NvGf   is placed at the boundaries 
'
2

'
1, ss   of  two cells

'
2

'
1, ss  having at least 

one common point where )\('\},{ 0
'
2

'
1 vGfss  , and equality  '

2
'
1 ss  is satis-

fied. 

2. Each minor G  of the nonorientable genus 2 (except 413 ,, GEG ) is covered 

by a maximum of 4 (eg, graphs A2, G1) subgraphs or parts homeomorphic to one of 

the following graphs: K2,3, K4, K5 \ e, K3,3 \ e, K5, K3,3  and  relatively Klein surface N2 

the number of reachability 2 for the set of vertices (for },,{ 413 GEGG we have), 

and for each removed edge e  the graph eG \  will have at N1 the number of reacha-

bility equals 2 for the set of vertices; 

3. The presence of the coating specified in the statement 2 is not sufficient to 

make the graph an obstruction of nonorientable genus 2. 

4. If 0)\( vG and on the Euclidean plane 0  made up a set )(vM  of points 

of a graph G  formed from the obstruction graph of a projective plane N1 by removal 

of a vertex v  and adjacent edges is given by an arbitrary minimal embedding 

0\: vGf  on the boundaries of two cells that have no common points and have 

end points that does not belong to their borders. Removing an arbitrary point from the 

set M leads to the failure of  relation 4. 

 
   

Fig, 4. Illustrates the relation b) of statement 1 of theorem 3.1, where sets 

{1,2,4,5,8,9} for graph 5\4C , {2,4,6,9} for graph 5\22E . 

 

Proof. We prove statements 1 of Theorem 3.1. Suppose that for each vertex v  of the 

graph - obstruction G for a projective plane 1N  with the set )(vM  of all vertices 

incident v , there is a subgraph vG \  of a nonorientable genus )\( vG . Then we will 



either 1)\( vG  have and vG \  contain a subgraph or part homeomorphic 5K , or 

3,3K , or vG \  that subgraph does not contain these partial subgraph, where 5K  has 

two non-isomorphic embeddings in 1N   and 3,3K  has one non isomorphic embedding 

in 1N . Prove the relation a1) relation a) statement 1, namely 1)\( vG , if, then 

inequality 2)),(( 1\ NvMt vG  holds. Using the opposite method, suppose that 

2)),(( 1\ NvMt vG , that is, the set )(vM  is placed by some minimal embedding f  of a 

graph vG \  in 1N  the boundaries of at least three cells of the projective plane, namely 

321 ,, sss . Let the graph G  be the φ-image of the graph vG \  and )(vStG , if the pairs of 

vertices ),( 21 ii vv  are identified, where )(1 vMv i  , }{\)(0
2 vvStv Gi  , )(deg)1(1 vi G , To con-

tinue embedding 1\: NvGf   on the graph G , it is necessary and sufficient to 

attach all the edges of the star and its center to one cell formed of two cells 21, ss , 

where )\(\},{ 121 vGfNss   whose boundaries have at least one , the common vertex w , 

where 21
0 }{\ ssvGw  , and contain the set )(vM . To form a single surface cell 

from these cells 21, ss , we attach on 1N  a Mobius strip L  on which we place

))((' wNf  by new embedding  , 2\:' NvGf  , where LwNf )((' ,

)(\)(\)(\)(\ 1111 ||'
wNvStGwNvStG

ff  , )(wN  is the smallest subset of the set of 

adjacent edges belonging to the boundary of one or to the boundaries of several cells, 

which on 1N  at least one side separate the cell 1s  from cells 2s , ),,()( 211 sswNwN    
Note that the insertion of an edge adjacent w  to the Mobius strip will be to separate 

some of the inner points of the edge, which it splits into two parts, and to place its 

copies on diametrically opposite parts of the circle, and the edges will have endpoints 

of these copies and the boundary of that edge. As a result, we get a sell 0s where

210 sss  , ))(\('\}{ 11
20 vStGfNs   in which we put vertex v  the center of the 

star and the subset )(1 vSt  of its rays of edges that terminate as a bundle of straight 

segments finished on 0s . Then we will have at least one edge ),( uv , where 

)(\ 213 sssu   there is no investment ),(' uvf  in 2N , that is 2)),(\( uvG . This con-

tradicts the condition that the graph is an obstruction graph of type 2, the assumption 

is incorrect. Then the assumption is wrong, we will have equality 2)),(( 1\ NvMt vG . 

We prove the relation a2) of the statement 1. We give the graph eG \  as an φ-

image of the graph evG \)\(  and in the identification of pairs of vertices ),( 21 ii vv , where

)(1 vMv i  , }{\)(0
2 vvStv Gi  , )(deg)1(1 vi G , which satisfies the equality 1)\( eG , 

since the graph is an obstruction of nonorientable genus 2. Since veGevG \)\(\)\(   and 

by Theorem 1[5] 1)),(()\)\(()\( 1\)\(  NvMtevGeG evG , then we will have inequality

2)),(()\)\(( 1\)\(  NvMtveG veG , so deleting an arbitrary edge leads either to a 



decrease of 1 genus of subgraph veG \)\(  and then 0)\)\(( veG , or to a de-

crease in the number )),(( 1\)\( NvMt veG  of reachability by 1 and then 

1)),(( 1\)\( NvMt veG . The materiality of the edges of the subgraph relative to the 

genus upon removal is proved. We will prove other statements similarly and present-

ed proofs as soon as possible. 

 

4.2. Klein surface 

 

Another problem is constructing all non-outer Klein-planar graphs. In [8] a solution to 

a similar problem of constructing non-Klein surface graphs by the method of relativ-

istic components was presented. 

Theorem 3.2. Each graph obstruction H  for 2N -surface of the nonorientable ge-

nus 2 satisfies the following statements: 

1. An arbitrary edge ),(, bauu   is placed on the Mobius strip by some minimal 

embedding of the graph H  in 3N  and there is a minimum on inclusion projective-

planar subgraph K  of the graph or a part of it satisfying the condition:
 

)2)},,({()1)},,({( 2\3  NbatNbat uKK ; 

2. There is a finite smallest inclusion set of different subgraphs 
iK  covering the 

set of edges of a 2-connected graph H , where K  is a local projective-planar sub-

graph or partial subgraph eH \  of a graph, homeomorphic eK \5  or eK \3,3 ; 

3. Every 8-vertex graph - obstruction of non-oriented genus 3 is covered by a min-

imum of 5 or a maximum of 6 subgraphs or parts of a homeomorphic planar graph 

with sets of points with reachability 2, or projective-planar, or non-projective-planar 

graphs (possibly without an edge) from the list of 118 non outer projective planar 

graphs or set of 103 graphs - obstructions of the projective plane [4]. 

 

 
Fig, 4. φ- transformation of the non-outer projective planar graph 18E  and 

)9(4St  give non-outer Klein planar graph 44E  

5. Conclusions 

The use of the φ-transformation of graphs method for the above problems for the 

projective plane and Klein surface can be generalized to an arbitrary nonrientable 

surface. 
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