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Abstract

Compilers play a crucial role in software devel-
opment, and demands for their correctness are
high. Testing them is a challenging process,
involving many layers of complexity and many
interwoven methodologies. One of the popu-
lar techniques that is known to increase the
effectiveness of manually written test cases,
is fuzzing: seeded with an initial test case,
a fuzzer can mutate it to automatically infer
multitudes of mutated test cases. Yet, not all
is well when you try to apply fuzzing to test
an industrial compiler of a legacy assembler-
level language, since most research on fuzzing
was done on C, and such results are not easy
to generalise. In this paper, we explain the
complications and show a number of mutation
strategies that we successfully applied to fuzz
HLASM code. So far we have tested 24000
mutated files and have been able to flag 621
of them as triggering a bug, and found and
fixed at least one unique bug in Raincode As-
sembler Compiler.

Index terms— legacy software, compiler testing,
random testing, fuzzing, mutation strategy

1 Introduction

Compilers are known to be among the most impor-
tant, widely-used and complex software and we expect
them to be correct. In practise, however, compilers are
significantly vulnerable to bugs [1]. Bugs can lead to
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crashes or miscompilations [2], resulting in unexpected
behavior. Unexpected behaviour can result in serious
software failures [3]. A single erroneous compiler can
produce many erroneous programs. Given the vital
role of compilers in the creation of the code that is
executed, it is important that confidence should be
created in their correctness.

Compilers are mainly intensively tested by special
test suites, which are are manually written and ex-
tended over time. However, this traditional way of
testing often revolves around positive testing (i.e. test-
ing that features work as specified), rather than neg-
ative testing (i.e. testing that the system does not
do things that it is not supposed to do). Some errors
cannot be found using only positive testing [4, 5]. In
addition, it is known that human testers have blind
spots. It has been shown that test cases are more ef-
fective when they have been written by someone other
than the original programmer [5]. It is likely that a
blind spot in the implementation also poses a blind
spot in testing. Furthermore, as these tests are written
by hand, they cost a substantial amount of time and
effort, which makes manual tests expensive [5]. It is
common to use fuzzing in addition to these test suites
in an attempt to overcome these issues [4]. Fuzzing
is an approach to software testing where the System
Under Test (SUT) is bombarded with test cases gener-
ated by another program. The technique relies on pro-
viding unexpected or random input, such as randomly
generated test programs. Fuzzing revolves around neg-
ative testing. As fuzzing focuses on random and un-
expected input, it overcomes the blind spot problem.
As the process can be automated, it can be more cost-
efficient. Fuzzing has shown to be very effective at
exposing non-obvious errors that had been missed by
other testing techniques [4, 6].

One such well known and successful fuzzing tool
is Csmith [7]. Csmith generates random C programs
and has proven to be useful for testing compilers and
other tools that process C code. The tool is based on
differential testing, which implies that test programs

1



get compiled by different compilers and after their ex-
ecution the results are compared. Csmith is a gen-
erative fuzzer, but there is also a lot of interest re-
cently in research dedicated to mutative approaches,
which do not require two or more comparable compil-
ers, and in general require less human effort [5]. Such
techniques apply equivalence transformations on exist-
ing test programs to automatically generate more test
programs. An equivalence transformation is a trans-
formation that is applied to a seed program and that
does not change the output of the program. A seed
program is a trivial but valid program that is used as
the initial program in this method. These mutation
strategies can be rather language specific and many
different strategies are possible depending on the syn-
tax and grammar.

2 Problem Context

Raincode Labs [8] is a compiler company that works
with compilers, interpreters, grammars, refactoring
tools, assemblers, etc. We often provide consulting
services to other companies and provide compiler ser-
vices such as migration off the mainframe platform.
One of our tools to enable this migration is the Rain-
code Assembler Compiler [9, 10]. This tool is specifi-
cally designed for legacy code bases that contain, be-
sides commonly encountered COBOL, PL/I and other
“third generation languages”, also some code in the
IBM assembler. HLASM, or High Level Assembler,
is IBM’s low level programming language for z/Archi-
tecture mainframe computers. Just like other assem-
bler languages, the assembler language supported by
HLASM is specific to a particular computer architec-
ture and operating system. As HLASM is an assembler
language, it is very close to the machine language in
both form and content. HLASM operates under the
z/OS operating system, the CMS component of the
z/VM operating system, the z/VSE operating system,
and Linux for System z [11]. The Raincode Assembler
Compiler is a relatively new tool and currently its in-
tegration testing infrastructure mainly consists of 40
manually written issue-driven test cases.

To increase the reliability of a compiler, it is com-
mon to apply complementary testing methods [12],
as manually written tests presumably lack coverage.
However, random testing of assemblers is uncharted
territory. Tools like Orange4 [13] and Orion [14] are
examples of successful random compiler testing tools
that are based on mutative testing1. Their work sug-

1Following McNally et al [5], we use the term “mutative test-
ing”, which is not to be confused with much researched nowa-
days “mutation testing” [15, 16]. Mutative testing techniques
tweak test cases to produce more test cases to improve test suite
quality. Mutation testing techniques tweak the code under test
to measure test suite quality.

gests that the ideas behind methods of random com-
piler testing are generic. However, these tools are
based on the syntax of the C programming language
to specifically test C compilers. As different program-
ming languages have different syntax, it is not possible
to use the same tool for a syntactically different pro-
gramming language. For this reason, it is unclear if
and how random testing can be applied to HLASM.

In the next section we provide an overview of related
work on testing compilers with generated test data,
covering both generative (subsection 3.2) and mutative
(subsection 3.1) approaches.

3 Related work

Despite active ongoing initiatives in compiler verifica-
tion [17], testing is still the dominant technique that
is used for assuring compiler quality [9, 12]. The most
common compiler testing approach, also used at Rain-
code Labs, is manually creating, growing and main-
taining a test suite for each compiler implementation.
There are also popular commercial compiler test suites
available, such as PlumHall [18] and SuperTest [19].
As test suites presumably lack coverage, other meth-
ods like random testing are used to provide extra test-
ing coverage [5]. Random testing of compilers is not a
replacement of test suites, but rather a complementary
method. Other comparable methods aimed specifically
at extending existing test suites, are called test plan
augmentation [20] and test suite augmentation [21–24],
or simply test augmentation [25]. Out of those, meta-
morphic testing appears to be the closest to our ap-
proach [26].

As suggested by McNally et al [5], we divide the
related random testing work into two categories: mu-
tative approaches and generative approaches. For a
comprehensive overview of all compiler testing meth-
ods available before 2005, we refer to Kossatchev and
Posypkin [27].

3.1 Mutative approaches

In our research, we explore possibilities for applying
random compiler testing with equivalence transforma-
tion on HLASM. Equivalence transformation is a mu-
tative testing method. At the moment we are unaware
of research that does similar work related to equiv-
alence transformation and HLASM. However, there
are several projects that apply the same technique
of mutative testing, which we also drew inspiration
from. The initial approach to mutative compiler test-
ing was presented by Tao et al. [28]. They present
the Mettoc tool, which concentrates on open-source
compilers for C. Mettoc was able to generate equiva-
lent programs and to expose multiple bugs. A more
recent tool, the Orange4 presented by Nakamura and
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Ishiura [13], introduced a new mutation method for
generating C programs. They start with a trivial ini-
tial program that includes only “return 0;” in the
main function and repeatedly apply equivalence trans-
formations. Examples are new variable declarations
and if/for-statements. The Orange4 was able to de-
tect bugs in the latest versions of GCC and LLVM.
Their research is currently limited to C and to the
above mentioned trivial seed program.

Le et al. [14] introduce Orion, which is based on a
new technique called Equivalence Modulo Inputs, or
in short: EMI. In contrast to Orange4, they take ex-
isting real-world code and transform it in a systematic
way to produce equivalent variants of the original code.
More precisely, they analyse real-life code by detecting
dead code and then prune these sections stochastically.
They have been able to find 147 new bugs in 3 big C
compilers in 11 months. This technique is said to be
generally applicable, but has only been tested with
C compilers. Also, the only mutation strategy used is
pruning. Moreover, the proposed technique only works
on, and with, dead code. It does not include live code
in the transformations, which means that the applied
transformations are limited to deleting code fragments
which are not on the execution path of the programs.

Complementary to Orion, Proteus [29], Athena [30]
and Hermes [31] are other examples of recent random
test tools that have proven to be successful. These
three tools are also based on equivalence transforma-
tion by generating single-file test programs from ex-
isting ones. It transforms a seed program into mul-
tiple compilation units and randomly assigns each of
them to an optimisation level. In addition to Orion
they support both deletion and insertion. However,
the transformations of Athena and Proteus are still
and all limited to code fragments that are not on the
execution paths of the programs. Hermes, however,
also applies equivalence transformations on live code.

3.2 Generative approaches

A very successful compiler testing tool, known as
Csmith [7], has been able to find several hundred bugs
in C compilers GCC and LLVM. Their method is based
on differential testing, thus their generated programs
are compared across compilers and compiler versions
to detect potential deviant behavior. Csmith covers a
broad range of syntax, including arrays, function calls,
loop statements, etc. They avoid undefined behaviour
by placing conservative restrictions on the syntax of
the generated test programs [13]. Csmith is limited to
C and their technique is limited to cases that have two
or more comparable compilers.

Another generative approach, presented by Lindig
[32], concentrates on generating C programs with com-

plex data structures. These are loaded with constant
values and passed to functions that check the received
values. These received values are compared to the ex-
pected values. Any inconsistencies are exposed by an
assertion failure. The tool, named Quest, is not based
on differential testing as their tests are self-checking.
Quest was mainly used to test GCC, LCC and ICC
and they were able to find 13 bugs.

Alternatively, generation of test programs can re-
volve around extensive coverage of the language—or,
as a proxy, coverage of the grammar of the language.
For instance, there is a famous algorithm of generating
a small set of short test sentences from a context-free
grammar, initially proposed by Purdom [33] and later
extended with backtracking [34], actions [35], con-
trolled coverage [36], etc. Just as with mundane soft-
ware testing, in parser testing rule coverage is known
to be important but fundamentally insufficient [37].
Coverage can be seen as two-dimensional [38] with a
syntactic axis (nonterminals, rules, etc.) and a seman-
tic one (computations, calculations, attributes, etc).
Fischer et al. [39] use grammar-based test data gen-
erators to compare several alternative grammars for
reportedly “the same” language.

As for making the next step and going from the test
case exposing a possible defect, to the place where
defect can be found and fixed, recently it has been
shown that spectrum-based fault localisation methods
can help to identify problematic grammar rules corre-
sponding to test case failures [40]. The applicability
of this method to HLASM remains to be investigated,
since it requires instrumentation of the parser to col-
lect grammar spectra.

4 Equivalence transformation

4.1 Overview

In this section, we present a method for automatically
generating equivalent programs using a mutative
approach. Valid HLASM programs are generated
starting from a trivial seed program and by repeatedly
applying mutations.

When a seed program P is fed to the compiler C, it
produces an executable E (1).

c : P → E (1)

The behaviour of the executable c(P ) ought to behave
exactly as the semantic of the seed program P pre-
scribes. As follows, if a seed program satisfies a certain
property, then the executable should satisfy the same
property (2) [28].

R(P1, P2, . . . , Pn)⇒ R(c(P1), c(P2), . . . , c(Pn)) (2)
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When we create equivalent programs, we expect them
to behave the same as the seed program when they
have the same input (3) [28].

P1 ≡ P2 ≡ · · · ≡ Pn

⇒
c(P1) ≡ c(P2) ≡ c(. . .) ≡ c(Pn)

(3)

The HLASM language consists of different types of
instructions, namely machine instructions, assembler
instructions and macro instructions. As our method
is mutative and the results should be equivalent, it is
very important to preserve the semantics of the seed
program. As the assembler language lies very close to
the machine language, every little change can have a
big impact as you can work on byte- or even bit level.
This is especially true for machine instructions and
assembler instructions. These given instructions pro-
vide the opportunity to, for example, make jumps in
the program specified by bytes rather than symbolic
addresses. However, the third type of instructions,
macro instructions, have shown a lot more mutative
testing potential by providing an environment that is
less prone to semantic changes. As macro instructions
are more high-level than machine- and assembler in-
structions, it provides better means for mutative test-
ing. With macro instructions we were able to apply
mutations that created valid programs that did not
alter the semantics of the program.

As for the seed programs, we use Raincode’s 40
issue-driven test cases, as these test cases have an ex-
pected output.

4.2 Mutation strategies

All mutation strategies are restricted to strategies that
preserve the semantics of the seed program. Below we
give four examples of mutation strategies that we have
already implemented and deployed.

1. Label mutation simply changes the name of a
label in the program along with all its occurrences.
If this is done consistently, the behaviour of all
branching instructions will not change.

2. Simple code injection involves adding new
valid instructions and expressions to the program.
Examples are casting instructions and declara-
tions. For HLASM, this is only possible to per-
form on the level of macro instructions, since in-
jecting actual assembler instructions will change
the byte code representation of the compiled pro-
gram, and semantic preservation cannot be guar-
anteed.

3. Expression derivation uses mathematical prop-
erties to generate or mutate arithmetic expres-
sions. It uses a target value as a starting point and

applies mathematical operations that evaluate to
the target value. In our current implementation
these mathematical operations can be addition,
subtraction or division, selected at random. The
target value is randomly selected from what can
be guaranteed by the current state of the program.

4. Control structure mutation allows to control
the sequence in which the statements of the pro-
gram are processed by the assembler. By adding
certain macro branching instructions, we are able
to mutate the control flow without changing the
byte code representation of the program, and thus
preserving its behaviour. Examples are uncondi-
tional branches or branches depending on logical
expressions. No original lines are skipped in the
process.

5 Experimental results

We fed the mutated files generated by our tool to
the Raincode Compiler Tester (a proprietary regres-
sion testing tool we use to test all our compilers) and
investigated if we were able to detect any bugs. For
this experiment we generated HLASM programs with
3 different numbers of mutation rounds: 150, 300 and
600 (the higher the number, the farther the result from
the seed). With each seed program we generated 200
equivalent programs. All mutation strategies were in-
cluded during the mutation phase.

In addition, we generated HLASM programs with
single mutation strategies to be able to compare them.
We generated 1000 programs for each strategy. Each
program underwent 150 mutations.

In total, the Raincode Compiler Tester flagged 621
programs out of the 24000 mutated programs pro-
duced with our tool. Per round of 8000 mutated
programs, an average of 207 mutated programs were
flagged. An overview of these results can be found in
Table 1. An important side note to these results is
that not all flagged files indicate unique bugs, as one
bug can trigger multiple miscompilations.

When running experiments with single mutation
strategies, we were able to flag 30 mutated files with
the simple code injection strategy. We were not able
to flag any mutated files with the other three mutation
strategies. An overview of these results can be found
in Table 2.

Table 1: Overview of first experiment results

Mutations Mutated files Flagged files % flagged files
150 8000 171 2.14
300 8000 224 2.80
600 8000 226 2.83
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1 NONTERMINAL CLASS CDuplicationFactor;
2 INHERITS BaseNonTerminal;
3 GRAMMAR LPar TheCount RPar;
4 VAR TheCount: CArithExpression;
5 METHOD Apply(scope: Scope; string: STRING): STRING;
6 VAR count: INTEGER;
7 BEGIN
8 count := TheCount.Evaluate(scope);
9 RESULT.CREATE(count*string.SIZE);

10 FOR I := 0 TO count - 1 DO

11 FOR J := 0 TO string.SIZE DO

12 FOR J := 0 TO string.SIZE - 1 DO

13 RESULT[I*string.SIZE+J] := string[J];
14 END;
15 END;
16 END Apply;
17 END CDuplicationFactor;

Figure 1: An example of a bug acknowledged by other Raincode engineers and fixed. The red marking indicates
the line of code that contains the bug. This line was removed when the bug was fixed. The green marking
indicates the fix. This line was added when the bug was fixed.

One flagged file has already been chosen, analysed
and acknowledged as a bug (see Figure 1). The bug
was fixed in the process. The acknowledged and fixed
bug clearly falls into an off-by-one category, since it
iterates one too many times over an array and pro-
duces an out of bound exception that terminates the
compilation process abnormally.

6 Conclusion

In this short paper we have presented a complementary
method for HLASM compiler random testing based
on equivalence transformation of seed test programs.
To the best of our knowledge, this is the first at-
tempt to apply mutative testing to a compiler of an
assembler-level language such as HLASM. The main
problem with the inapplicability of straightforward C-
level equivalence transformations to HLASM, lies in
the fact that assembler-level programs depend on their
own bytecode representation: use code as data and
data as code, modify themselves at runtime, perform
relative jumps, etc. After noticing this inapplicability,
we still found a way to apply mutative compiler test-
ing to HLASM, if operating on the level of the macro
language. Thus, our prototype is limited to macro
code, but it might be a fundamental limitation that
can only be lifted by imposing heavy and uncheckable
restrictions on the seed programs, which would make
it possible to fuzz machine instructions and assembler

Table 2: Overview of second experiment results

Mutation strategy Mutated files Flagged files
Label mutation 150 0 (0%)
Simple code injection 150 30 (3%)
Expression derivation 150 0 (0%)
Control structure mutation 150 0 (0%)

instructions in some contexts. We have presented a
list of possible mutation strategies and explored their
added value: the list is open for extension, and one
should read it as a list of examples, as well as the list
of strategies that have already been implemented and
shown to work. With the described infrastructure, we
were able to find at least one unique bug, which has
then been easily fixed. The finding of more unique
bugs is considered possible, as many flagged files have
to be analysed in the nearest future.
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