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Abstract

Duplication in source code is often seen as one
of the most harmful types of technical debt as
it increases the size of the codebase and cre-
ates implicit dependencies between fragments
of code. Detecting such problems can pro-
vide valuable insight into the quality of sys-
tems and help to improve the source code. To
correctly identify cloned code, contextual in-
formation should be considered, such as the
type of variables and called methods.

Comparing code fragments including their
contextual information introduces an opti-
mization problem, as this information may be
hard to retrieve. It can be ambiguous where
contextual information resides and tracking it
down may require to follow cross-file refer-
ences. For large codebases, it could become
time-consuming due to the sheer number of
referenced symbols.

We propose a method to efficiently detect
clones taking into account contextual infor-
mation. We introduce a tool that uses an
AST-parsing library named JavaParser to de-
tect clones and retrieve contextual informa-
tion. Our method parses the Abstract Syntax
Tree retrieved from JavaParser into a graph
structure, which is used to find clones. This
graph maps the following relations for each
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statement in the codebase: the next state-
ment, the previous statement, and the previ-
ous cloned statement.

We find that, when taking into account con-
textual information in our clone detection,
11% fewer clones are found. Manually inspect-
ing a sample of the difference, we find that
they are less relevant for refactoring.

Index terms— clone detection, context, java,
parsing, static code analysis

1 Introduction

Duplicate code fragments are often considered as bad
design [1]. They increase maintenance efforts or cause
bugs in evolving software [2]. Changing one occur-
rence of a duplicated fragment may require changes in
other occurrences [3]. Furthermore, duplicated code
often significantly increases total system volume [4],
entailing more code to be maintained.

Several tools have been proposed to detect dupli-
cation issues [5, 6, 7]. These tools can find matching
fragments of code, however they do not take into ac-
count contextual information of code. An example of
such contextual information is the name of used vari-
ables: many different methods with the same name
can exist in a codebase. This can obstruct refactoring
opportunities.

We describe a method to detect clones while taking
into account the contextual information and introduce
a tool to detect clones taking into account such con-
textual information. Next, we collect and discuss sta-
tistical information regarding the difference in output
when contextual information is considered and when
it is not.
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1 package com . sb . game ; 1 package com . sb . f ru i tgame ;
2 2
3 import java . u t i l . L i s t ; 3 import java . awt . L i s t ;
4 4
5 pub l i c c l a s s GameScene 5 pub l i c c l a s s LoseScene
6 { 6 {

7 pub l i c void addToList ( L i s t l ) { 7 pub l i c void addToList ( L i s t l ) {

8 l . add ( ge tC la s s ( ) . getName ( ) ) ; 8 l . add ( ge tC la s s ( ) . getName ( ) ) ;

9 } 9 }
10 10
11 pub l i c void addTen ( i n t x ) { 11 pub l i c void concatTen ( St r ing x ) {

12 x = x + 10 ; // add number 12 x = x + 10 ; // concat s t r i n g

13 No t i f i e r . noti fyChanged (x ) ; 13 No t i f i e r . noti fyChanged (x ) ;

14 re turn x ; 14 re turn x ;
15 } 15 }
16 } 16 }

Figure 1: Example of a clone that, although textually equal, is contextually different.
2 Background

We first explain relevant code clone terminology and
definitions. Next, we describe the JavaParser tool,
used to retrieve contextual information of source code.

2.1 Code clones

We use two concepts to argue about code clones [8]:
Clone instance: A single cloned fragment.
Clone class: A set of similar clone instances.

Duplication in code is found in many different
forms. Most often duplicated code is the result of a
programmer reusing previously written code [9, 10].
Sometimes this code is then adapted to fit the new
context. To reason about these modifications, several
clone types have been proposed [8]:
Type I: Identical code fragments except for variations
in whitespace (may be also variations in layout), and
comments.
Type II: Structurally/syntactically identical frag-
ments except variations in identifiers, literals, types,
layout, and comments.
Type III: Copied fragments with further modifica-
tions. Statements can be changed, added or removed
next to variations in identifiers, literals, types, lay-
out, and comments. Many studies adopt these clone
types, analyzing them further and writing detection
techniques for them [11, 12, 13]. To limit the scope of
this study, we mainly focus on expanding type 1 clone
detection to take into account contextual information.

2.2 JavaParser

JavaParser [14] is a Java library which allows pars-
ing Java source files to an abstract syntax tree (AST).
Integrated into JavaParser is a library named Symbol-
Solver. This library allows for the resolution of sym-
bols using JavaParser. For instance, we can use it
to trace references (methods, variables, types, etc) to
their declarations (these referenced identifiers are also
called “symbols”). Using this, we can find the required
contextual information.

To be able to trace referenced identifiers, Symbol-
Solver requires access to not only the analyzed Java
project but also all its dependencies. This requires us
to include all dependencies with the project. Along
with this, SymbolSolver solves symbols in the JRE
System Library (the standard libraries coming with
every installation of Java) using the active Java Vir-
tual Machine (JVM).

3 Motivating example

Most clone detection tools [15, 16, 17, 18, 6] detect
type 1 clones by textually comparing code fragments
(except for whitespace and comments). Although tex-
tually equal, method, type and variable references can
still refer to different declarations. In such cases, refac-
toring opportunities could be invalidated. This can
make the detected clones less suitable for refactoring
purposes, as they require additional judgment regard-
ing the refactorability of such a clone.

Figure 1 shows two clone classes. Merging these
clone classes is very hard (and likely not desirable),
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as both cloned fragments describe different functional
behavior. The first cloned fragment is a method that
adds something to a List. However, the List objects
to which something is added are different. Looking
at the import statement above the class, one frag-
ment uses the java.util.List and the other uses the
java.awt.List. Both happen to have an add method,
however their implementation is completely different.

The second cloned fragment shows how equally
named variables can have different types and thus per-
form different functional concepts. The cloned frag-
ment on the left adds a specific amount to an integer.
The cloned fragment on the right concatenates a num-
ber to a String.

This shows that not all textually equal clones can
be easily refactored.

4 Contextual information
To solve the issues identified in Section 3, we expand
clone detection by taking into account contextual in-
formation: cloned fragments have to be both textually
and contextually equal. We check contextual equality
of two fragments by validating the equality of the fully
qualified identifier (FQI) for referenced types, meth-
ods and variables. If an identifier is fully qualified, it
means we specify the full location of its declaration
(e.g. com.sb.fruit.Apple for an Apple object).

4.1 Referenced Types

Many object-oriented programming languages (like
Java, Python, and C#) require the programmer to
import a type (or the class in which it is declared)
before it can be used. Based on what is imported,
the meaning of the name of a type can differ. For
instance, if we import java.util.List, we get the in-
terface which is implemented by all list data structures
in Java. However, importing java.awt.List, we get a
listbox GUI component for the Java Abstract Window
Toolkit (AWT). These are entirely different functional
concepts. To be sure we compare between equal types,
we compare the FQI for all referenced types.

4.1.1 Called methods

A codebase can have several methods with the same
name. The implementation of these methods might
differ. When two code fragments call methods with
an identical name or signature, they can still call dif-
ferent methods. Because of this, textually identical
code fragments can differ functionally.

We compare the fully qualified method signature
for all method references. A fully qualified method
signature consists of the fully qualified name of
the method, the fully qualified type of the method

plus the fully qualified type of each of its argu-
ments. For instance, an eat method could become
com.sb.Apple.eat(com.sb.Tool).

4.1.2 Variables

In typed programming languages, each variable decla-
ration should declare a name and a type. When we
reference a variable, we only use its name. If we use
variables with the same name but different types in
different code fragments, the code can be functionally
unequal but still textually equal.

The body of both methods in Figure 1 is equal.
However, their functionality is not. The first method
adds two numbers together and the other concatenates
an integer and a String. Because of this, we compare
cloned variable references by both their name and the
FQI of their type.

5 Clone Detection
We develop a tool named CloneRefactor1 that detects
clones that can (relatively) easily be refactored. This
tool uses JavaParser [14] to build an AST and to find
contextual information (e.g. resolve symbols). We
then propose a novel clone detection technique to de-
tect clones using JavaParser.

CloneRefactor uses JavaParser to read a project
from disk and build an AST. Each AST is then con-
verted to a directed graph that maps relations between
statements. Based on this graph, CloneRefactor de-
tects clone classes and verifies them using the config-
ured thresholds. This process is explained in further
detail over the following sections.

5.1 Generating the clone graph

CloneRefactor parses the AST obtained from Java-
Parser into a directed graph structure. We have cho-
sen to base our clone detection around statements as
the smallest unit of comparison. This means that a
single statement cloned with another single statement
is the smallest clone we can find. The rationale for
this lies in both simplicity and performance efficiency.
This means we won’t be able to find when a single ex-
pression matches another expression, or even a single
token matching another token. This is in most cases
not a problem, as expressions are often small and do
not span the minimal size to be considered a clone in
the first place.

5.2 Filtering the AST

As a first step towards building the clone graph, we
preprocess the AST to decide which AST nodes should

1CloneRefactor is available on GitHub: https://github.
com/SimonBaars/CloneRefactor
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VariableDeclarator
Fruit.java, line 10-10, col 4-32
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MethodDeclaration
Game.java, line 24-25, col 0-42

VariableDeclarator
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Figure 2: Example of a clone graph built by CloneRefactor.
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Figure 3: CloneRefactor extracts statements and declarations from source code.
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become part of the clone graph: we exclude package
declarations and import statements. These are omit-
ted by most clone detection tools, as package declara-
tions and import statements are most often generated
by the IDE and not relevant for refactoring purposes.

5.3 Building the clone graph

Building the clone graph consists of walking the AST
in-order for each declaration and statement. For each
declaration/statement found, we map the following re-
lations:

• The declaration/statement preceding it.

• The declaration/statement following it.

• The last preceding declaration/statement with
which it is cloned.

We do not create a separate graph for each class file, so
the statement/declaration preceding or following could
be in a different file. While mapping these relations,
we maintain a hashed map containing the last occur-
rence of each unique statement. This map is used to
efficiently find out whether a statement is cloned with
another. An example of such a graph is displayed in
Figure 2.

The relations next and previous in this graph are
represented as a bidirectional arrow. The relations
representing duplication are directed.

5.4 Comparing Statements/Declarations

In the previous section, we described a “duplicate”
relation between nodes in the clone graph built by
CloneRefactor. Whether this duplicate relation ex-
ists between two nodes is determined by taking into
account the contextual information. For method calls
we determine their fully qualified method signature for
comparison with other nodes. For all referenced types
we use their fully qualified identifier (FQI) for compar-
ison with other nodes. For variables we compare their
fully qualified type in addition to their name.

5.5 Mapping graph nodes to code

The clone graph, as explained in Section 5.3, contains
all declarations and statements of a software project.
However, declarations and statements may themselves
have child declarations and statements. To avoid re-
dundant duplication checks, we exclude the body of
each node.

Figure 3 shows an example of how source code
maps to AST nodes. On line 24-25 of the code
fragment is a MethodDeclaration. The node corre-
sponding with this MethodDeclaration denotes all to-
kens found on these two lines, line 24 and 25. Al-

though the statements following this method declara-
tion (those that are part of its body) officially belong
to the method declaration, they are not included in
its graph node. Because of that, in this example, the
MethodDeclaration on line 24-25 will be considered
a clone of the MethodDeclaration on line 205 even
though their bodies might differ. Even the range (the
line and column that this node spans) does not include
its child statements and declarations.

5.6 Detecting Clones

After building the clone graph, we use it to detect clone
classes. We start our clone detection process at the
final location encountered while building the graph.
As an example, we convert the code example shown in
Figure 3 to a clone graph as displayed in Figure 2.

Using the example shown in Figure 2 and 3 we can
explain how we detect clones on the basis of this graph.
Suppose we are finding clones for two files and the final
node of the second file is a variable declarator. This
node is represented in the example figure by the purple
box (1). We then follow all “duplicate” relations until
we have found all clones of this node (2 and 3). We
now have a clone class of three clone instances each
with a single node (1, 2 and 3).

Next, we move to the previous line (4). Here again,
we collect all duplicates of this node (4 and 5). For
each of these duplicates, we check whether the node
following it is already in the clone class we collected
in the previous iteration. In this case, (2) follows (5)
and (1) follows (4). This means that node (3) does not
form a ‘chain’ with other cloned statements. Because
of this, the clone class of (1, 2 and 3) comes to an
end. It will be checked against the thresholds, and if
adhering to the thresholds, considered a clone.

We then go further to the previous node (6). In this
case, this node does not have any clones. This means
we check the (2 and 5, 1 and 4) clone class against
the thresholds, and, if it adheres, consider it a clone.
Dependent on the thresholds, this example can result
in a total of two clone classes.

Eventually, following only the “previous node” re-
lations, we can get from (6) to (2). When we are at
that point, we will find only one cloned node for (2),
namely (3). However, after we check this clone against
the thresholds, we check whether it is a subset of any
existing clone. If this is the case (which it is for this
example), we discard the clone.

6 Experiments and Results
To compare the difference in detected clones when con-
textual information is considered, we compared the
number of clones found when considering contextual
information with when it is not considered. For this,
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we use a corpus of 2,267 Java projects including their
dependencies [19].

We find that 167,913 clones are found when contex-
tual information is not considered, whereas 149,569
clones are found when it is considered. We manually
analyse a random sample of 50 clones that are not
found when considering contextual information. We
find that these clones are indeed hard to refactor be-
cause they describe different functional operations and
can thus not be extracted to a new method. Also, most
often they were not relevant because, based on our ex-
pert intuition, refactoring would not improve the code
design. Often, different methods were called or vari-
ables of different types were used.

We also look into the difference in performance
when taking into account contextual information. De-
tecting the clones in all 2,267 projects took 20.83 min-
utes when considering contextual information. When
contextual information was not considered, it took 1.58
minutes. This is mainly because contextual informa-
tion may be hard to retrieve, because the location of
the contextual information may not be explicit. To
find contextual information it may also be required to
follow cross-file references.

7 Conclusion
We propose a method to detect clones taking into ac-
count contextual information of source code. Contex-
tual information is important because different func-
tional concepts may turn up as clones because they are
textually identical.

We define three aspects of source code as the con-
textual information: a) the type of variable references;
b) the location of method references; and c) the loca-
tion of type references. When these references have
the same name but point to different locations, clones
may not be easily refactorable. Our results show that
most such clones are not relevant for refactoring. This
accounts for about 11% of clones. This comes how-
ever with a performance trade-off: detecting clones
with contextual information took 13 times longer than
when not taking contextual information into account
(1.6min vs 20.8min).
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