CEUR-WS.org/Vol-2605/9.pdf

On the Usage of Badges in Open Source Packages on
GitHub

Damien Legay, Alexandre Decan, Tom Mens
Software Engineering Lab, University of Mons
Mons, Belgium
{damien.legay, alexandre.decan, tom.mens}@umons.ac.be

Abstract

Continuously attracting contributors is key to
the health of open source software projects.
The appearance of badges in online collabora-
tive development platforms affords maintain-
ers the opportunity to advertise the quality
of their project to potential contributors. In
this preliminary research, we analyse 14,592
GitHub package repositories for Cargo and
203,029 repositories for Packagist. We mea-
sure how prevalent badges are in those repos-
itories, which badges are used, when and how
they are introduced, and which combinations
of badges co-occur. We find that the most
widespread badges convey static information
or relay information about the build status of
a project. Those badges are typically added
early in projects and prior to or at the same
time as other badges.

1 Introduction

The rise of distributed collaborative development plat-
forms, such as GitHub, BitBucket and GitLab, allowed
thousands of people to remotely work together on
the same projects. These platforms provide addi-
tional features on top of their underlying version con-
trol system to further support distributed collabora-
tive development. Examples of such features are is-
sue tracking, code review, integration with external
tools, etc. These features are usually provided through

Copyright ©) by the paper’s authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY
4.0).

In: D. Di Nucci, C. De Roover (eds.): Proceedings of the 18th
Belgium-Netherlands Software Evolution Workshop, Brussels,
Belgium, 28-11-2019, published at http://ceur-ws.org

a centralised web-based graphical interface that acts
as a portal to showcase a project. Given the vari-
ety and quantity of information that can be communi-
cated through such interfaces, it is not surprising that
project maintainers have sought a simpler, faster and
more concise way to communicate essential informa-
tion or advertise specific aspects of a software project.

Badges are small images conveying one specific in-
formation to the reader at a glance. We found evidence
of their use in GitHub dating back to 2011. They typ-
ically appear at the top of a project’s README file,
which is displayed by GitHub on the project reposi-
tory homepage. Badges can advertise various aspects
of a project, e.g., its license [T EaaaEd, the code
coverage of its test suite [T, the adopted
code style RIS, etc. Some badges act
as an incentive to maintain excellence in the qualities
they display, lest a bad signal be sent to the project’s
users and potential contributors. For instance, a code
coverage badge creates an incentive to maintain a high
code coverage, as otherwise, potential contributors can
easily see that the project is poorly tested and, there-
fore, prone to have hard to detect bugs. Similarly, a
badge that measures the quality of the code provides
an incentive to maintain a high code quality, to not
display on the project’s homepage that the code base
is of poor quality.

Trockman et al [1] observed a relation between the
presence of some badges and specific aspects of the
software development process. They found that the
presence of dependency management badges correlates
with fresher dependencies and the presence of code
coverage badges correlates with larger test suites in
a project and more tests in pull requests. Contrarily
to their expectations, they found that the presence of
badges dedicated to offering user support was related
to a higher issue resolution time.

As contributors in open source projects are volun-
teers, they typically have little time to devote to the

projects they contribute to, so they must select such
projects with care as they can ill afford to contribute to
projects of low quality, which are harder to contribute
to and more likely to fail [2-4]. On their part, project
integrators need to maintain an influx of contributions
in order to keep their projects evolving and growing, as
it has long been known that software performing real-
world activities must continually grow and continually
change to adapt to the environment it evolves in [5].
These laws also apply to open source software [6,7].

It is known that the number of stars, the time taken
to merge pull requests and number of programming
languages are the factors most likely to attract contrib-
utors [8]. However, little is known about the impact
of badges on contributor attraction.

Our overall research goal is to investigate the rela-
tion between the presence of badges and the influx of
new contributors and new contributions in a project,
as well as on the health of projects. It is known, for
instance, that the use of continuous integration tools
helps catch bugs more efficiently and integrate pull
requests faster [9,10] but not whether badges adver-
tising the use of these tools have any impact on qual-
ity. This paper focuses on preliminary but manda-
tory steps towards this goal by addressing the fol-
lowing research questions. RQo: How prevalent are
badges? This question will help us determine whether
the research goal is worthwhile to pursue: if badges
are sparsely used, results about the impact of their
adoption on contributions may not be statistically sig-
nificant. Since badges can convey a wide variety of
information whose impact on potential contributions
may vary, we examine RQi: What are the most fre-
quent badge categories? As many badges can be used
simultaneously in a project, we analyse RQs: How fre-
quent are combinations of badge categories? The an-
swer to this question will determine whether the effect
of badges of one category can be dissociated from those
of another category: if two badge categories are always
found together and introduced simultaneously, differ-
entiating their impact will be impossible. Finally, we
enquire into RQ3: When are badges introduced? This
elucidates whether badges are introduced late enough
in a project to compare project characteristics prior to
and after the adoption of the badge.

2 Methodology

To conduct this study, we need a large dataset of can-
didate repositories hosted on online collaborative de-
velopment platforms. As we are interested in study-
ing the effect of badges on contributions, the dataset
should exclude git repositories created merely for ex-
perimental or personal reasons, or that only show spo-
radic traces of commit activity [11]. Ideally, it should

include a wide range of projects serving different pur-
poses and exhibiting a wide variation in longevity and
size.

Online package registries of open source libraries for
popular software programming languages constitute
good candidates, since they contain a lot of projects,
many of them being publicly available on GitHub. We
arbitrarily selected two such package registries because
we knew from previous work that many of their pack-
ages have an associated git repository publicly avail-
able on GitHub. These registries are Cargo for Rust
libraries, and Packagist for PHP libraries.

We collected a list of 15,625 packages on Cargo
and 216,613 packages on Packagist using their respec-
tive official API. We downloaded package metadata for
those packages and extracted the link to their associ-
ated git repositories. We filtered packages (1) with-
out an associated git repository; (2) whose git repos-
itory is no longer available; and (3) corresponding to
“spam” packages'. Since GitHub hosts nearly all the
git repositories of remaining packages (> 94%), and
since it is far easier to deal with only a single col-
laborative development platform, we excluded repos-
itories that were not available on GitHub. The final
dataset contains 14,592 package repositories for Cargo
and 203,029 package repositories for Packagist.

We cloned all these repositories in July 2019 to ex-
tract badge-related historical information. To iden-
tify badges, we focused on images contained in the
projects’ README files. We extracted all images from
these README files, taking into account the various
supported markup languages (HTML, Markdown and
ReST). We manually identified those corresponding to
badges following the iterative approach proposed by
Trockman et al. [1]. Then, we used git log to anal-
yse the history of these README files to pinpoint the
introduction date of each badge.

3 Results
RQo: How prevalent are badges?

With this first question, we aim to determine the ex-
tent of badge usage in project repositories. We identi-
fied for each of the two considered datasets the badges
used by their projects. We found 21,884 instances of
109 distinct badges in Cargo projects, and 239,529 in-
stances of 366 distinct badges in Packagist. While
there are more badges than projects in both datasets,
that does not necessarily imply that all projects use
badges. Figure 1 shows the evolution of the number

1We manually identified more than 200 packages on Packagist
that are not related to software projects, e.g., iphonex-giveaway,
captain-marvel-pelicula-completa-uncut, etc. These spam pack-
ages are usually quickly removed from Packagist by the main-
tainers of the registry.

and proportion of projects using at least one badge
in Cargo and Packagist. For Cargo, we do not report
before 2014 as this only concerns 90 projects out of
which only 19 had a badge.

g
o

—— proportion (left) .
=== number (right) -

—— cargo
1 — packagist

o
©

[60000

o
o

[40000

°
IS

20000

number of projects

o
N

prop. of projects with badges

0.0 T T T + T T T T
2011 2012 2013 2014 2015 2016 2017 2018 2019

Figure 1: Proportion and number of projects using
badges

While there are far more projects with badges in
Packagist than in Cargo, we observe a markedly higher
badge penetration within Cargo (topping off at 57%)
than within Packagist (the highest observed propor-
tion is 36%). For both datasets, the adoption rate
eventually reaches a plateau: even though the num-
ber of projects using badges keeps increasing more
than linearly, it does not supersede the rate of cre-
ation of new projects. In both datasets, the most fre-
quent badge is the one reporting the build status of
the Travis continuous integration tool (30% and 20%
of all badges used, respectively).

RQ@,: What are the most frequent badge cate-
gories?

RQq revealed that badges are widely used. However,
not all projects use the same badges, and projects may
use badges for a variety of different purposes. Fur-
thermore, many badges fulfil a similar role (e.g., sev-
eral badges can be used to relay the build status of
a project, based on different providers such as Travis
and Appveyor).

Therefore, we grouped these badges into 7 cate-
gories, following the approach of Trockman et al [1]:
(1) build status (Build) badges signal whether the lat-
est build of a project succeeded or not, e.g., passed
all tests [FEEIEESEN; (2) dependency management
(DepMgr) badges inform about dependency fresh-
ness, e.g., whether dependencies are up-to-date or
not EEEREREER et (3) popularity (Pop) badges
provide characteristics related to the popularity of a
project, e.g., number of downloads [EEIIaE; (4)
quality assurance (QA) badges report on aspects re-
lated to code quality, e.g., based on the output of some
linters [EXERIERd 0; (5) support badges provide links
to chats and user forums, e.g., [EESERES; and (6) in-
formation (Info) badges communicate various types of
information independent of any tool, e.g., the project’s
license [EEESEY, version and authors or a link to the

project’s documentation or website; (7) other badges
correspond to any badge that does not fit within the
previous categories, e.g., donation links [EEimikEd-

Table 1: Number (#) and proportion (%) of badge oc-
currences per badge category for Cargo and Packagist.

Cargo Packagist
category | first occ. 7 % # %
Info 2014-01-18 || 11,000 | 50% | 69,016 | 29%
Build 2011-11-12 8,130 | 37% | 53,478 | 22%
QA 2012-08-31 964 4% | 56,167 | 23%
Pop 2013-06-01 606 3% | 33,581 | 14%
DepMgr | 2013-03-21 534 2% | 18,936 8%
Support | 2014-01-30 464 2% | 3,631 2%
Other 2011-05-24 181 0% 4556 2%

Table 1 reports, for each of these categories, the
date of first identification and the number of occur-
rences and the proportion of badges belonging to each
category relative to all of badge occurrences in the
dataset. While Cargo projects tend to use more badges
than Packagist (on average 1.50 badges per project for
Cargo, 1.18 for Packagist), there is less diversity in the
badges they use. The starkest contrast is in the us-
age of QA badges, which constitute 23% of the badges
found in Packagist projects, but only 4% of the badges
in Cargo projects. This is partially explained by the
popularity of the Scrutinizer tool in Packagist (18,196
badges are associated with it) which inspects the qual-
ity of PHP, Python and Ruby code, but not Rust code.
Even other maintainability analysis tools that do sup-
port Rust, such as Codeclimate, remain rarely used
in Cargo (4 badges found) while they are frequent for
Packagist (4,289 badges). The rest of this paper will
focus on the categories that account for at least 10%
of the badges in at least one of the datasets.

RQs: How frequent are combinations of badge
categories?

Since a project can make use of several badges at once,
this research question aims to quantify co-occurring
badges and to identify which combinations of badges
are most frequent. Co-occurring badges are clearly not
an exception in either dataset: we found that 76% of
projects with at least one badge in Cargo have two
or more badges at once (77% in Packagist). On aver-
age, a project with badges makes use of 2.68 distinct
badges in Cargo, and of 3.59 distinct badges in Pack-
agist. If we group badges by category, we have on av-
erage 1.94 badge categories in Cargo and 2.89 in Pack-
agist. Badge categories are counted as co-occurring in
a project whenever at least one badge of each cate-
gory is present. Figure 2 shows a Venn diagram of
co-occurring badge categories in both datasets.

In Cargo, the most frequent combination by
far is the one containing Build and Info badges,

Cargo

Packagist

Figure 2: Combinations of badge categories used in Cargo and Packagist projects.

both of them occurring more frequently to-
gether (62.4%=48.3+4.448.6+1.1) than apart
(23.9%=21.9+1.7+0.3 and 13.6%=12.3+1.24+0.1,
respectively). We also observe that the lesser-
used badges are rarely found alone, they tend to
be paired up with a Build or an Info badge. In
Packagist, too, Build and Info badges are more fre-
quently found together (42%=19.4+9.848.24+4.6)
than apart (37.4%=19.7+14.4+1+2.3 and
17.4%=1042+40.7+4.7, respectively). We also
observe that nearly one out of five projects with
badges in Packagist (19.4%) uses the four considered
badge categories at once. In Packagist, badges are
less frequently found in isolation. For instance, the
proportion of isolated badge categories in Packagist
is 27.5% (=19.7+1.341.8+4.7) while this proportion
reaches 34.2% in Cargo (=21.9+412.3). In both
datasets, we found that Build is the most frequent
isolated badge category by far (21.9% in Cargo, 19.7%
in Packagist).

Table 2: Proportion of co-occurring badge categories
that were adopted simultaneously in Cargo and Pack-
agist projects.

‘ QA ‘ Pop Info
Build | 54% 38% | 64% 71% | 65% 71%
QA 51% 49% | 50% 43%
Pop 80% 92%

Since we found a non-trivial amount of co-occurring
badge categories, in a second step, we examine how fre-
quently badges belonging to different categories were
added on the same calendar day in a project. When-
ever a category is represented by several badges within
a same project, the introduction date of the old-
est badge is considered. Table 2 shows the propor-
tion of co-occurring badge categories that were intro-
duced simultaneously. We observe for Cargo that most
co-occurring badge categories are adopted simultane-
ously. For Packagist, it mainly depends on the con-
sidered combination. For instance, a large majority
of the combinations involving Build+Pop, Build+Info
or Pop+Info corresponds to badges introduced on the
same day. On the other hand, we observe that 62%
(=100-38) of the combinations with Build+QA are not
adopted simultaneously but in subsequent events.

RQ@3: When are badges introduced?

With RQs we found that most co-occurring badge cat-
egories correspond to badge instances introduced on
the same day in a project. We now focus on when those
badges were introduced in a project. For each badge
category, we computed the proportion of projects with
at least one badge making use of a badge of this cat-
egory. Figure 3 shows the evolution of these propor-
tions for both datasets. For Cargo, we observe a fast
and somewhat massive adoption of Build badges: the
proportion of projects using such badges went from
2% (September 2013) to 77% (August 2014). A sim-
ilar observation can be made for Info badges to a
lesser extent, going from 2% (January 2015) to 59%
two years later. The situation is different for Packag-
ist where many projects already existed before badges
were available. Indeed, around 5% of projects using
badges in Packagist were created before the availability
of such badges. This proportion is only 2% for Cargo,
which is not surprising given that Rust appeared in
2010. The adoption of badges in Packagist is therefore
more gradual, going from practically 0% (June 2013)
to 35-40% in two years; with the notable exception of
Build badges, whose adoption occurred much faster.
By August 2012, these badges had been adopted by
60% of the projects, a probable consequence of the
introduction of Travis-CI in March 2011.

cargo

n 1.0
g
gos

9 -

506 _—

‘504 Build Pop
5 — QA —— Info
So0.2 @

2 /

0.0

2012 2013 2014 2015 2016 2017 2018 2019

ackagist
9 1.0 p 9
308

o
506 S

5 0.4 /}/—A’—

So0.2
o
0.0

2012 2013 2014 2015 2016 2017 2018 2019

Figure 3: Evolution of the proportion of projects,
grouped by badge category.

For each project and badge category, we measured
the elapsed time before the first introduction of a
badge of a given category in a given project. Since
some projects predate the availability of (services ad-
vertised by) badges, we measure this time with respect

to the date of the first opportunity to introduce those
badges. So, if the project was created prior to the first
occurrence of a category in our dataset, then the date
of this first occurrence is used as a baseline. Other-
wise, we relied on the creation date of the project as a
baseline.

Table 3: Elapsed time before the first instance of a
badge category in a project (Cargo and Packagist)

in days proportionally
category median mean median mean
Info 6 3119 155 | 7% 3% | 26% 31%
Build 3 2| 8 156 | 3% 2% | 21% 30%
QA 10 5| 157 163 | 11% 5% | 29% 61%
Pop 4 3| 107 170 4% 3% | 25% 24%
All categories 6 4| 112 166 | 5% 4% | 25% 39%

Table 3 reports on the median and mean of these
durations, aggregated by badge category. The left part
of the table expresses these durations in days since the
date of first opportunity, while the right part expresses
them proportionally to the opportunity window (i.e.,
time between the date of the first opportunity and the
last known commit of a project). The huge difference
between median and mean values suggests skewed dis-
tributions: while a majority of badges are quickly in-
troduced in projects, there are some outliers taking
a while to introduce badges. This is especially visi-
ble in Packagist: its median values are lower than the
ones for Cargo but its mean values are much higher.
We also observe that, on average, quality assurance
badges were added much later in Cargo projects (me-
dian is 10 days vs. 5 for Packagist). In both datasets,
Build badges are introduced earlier than other badges.

4 Conclusion

We carried out an empirical analysis of the usage of
badges in GitHub repositories, with the ultimate goal
of determining their impact on contributions to open
source projects. As a preliminary step, we sought to
determine whether badges were widely used in projects
for two popular programming language library reg-
istries: Packagist and Cargo.

We found that they are used in more than a third
of Packagist projects and more than half of Cargo
projects, and that more and more projects tend to use
them. Still, badge adoption rates lag behind the rate
of appearance of new projects. Then, we categorised
badges in seven categories, according to the type of in-
formation being relayed by each badge, and measured
the relative prevalence of each category. We observed
that Packagist projects use a more diverse set of badges
than Cargo, the latter mostly sticking to Build and
Info badges. We examined the frequency at which the
most common categories co-occurred within the same
projects, finding that Build badges and Info badges are

usually found together and that the other categories
of badges were rarely found without a corresponding
Build or Info badge. We also found that co-occurring
badges were frequently adopted simultaneously. We
next examined the temporal aspect of badge adoption
and found that the adoption rates of badge categories
were either increasing or stable. We also showed that
badges were usually added early on, within the first 5%
of a project’s lifetime, but still a significant amount of
projects adopt badges much later. The results we ob-
tained are in line with those of Trockman et al [1] for
npm.

As future work, we intend to investigate the impact
of badge adoption on contributions. In doing so, an
aspect to take into account will be the comparative ef-
fort required to maintain some badges over others. We
also will quantify the phenomenon of badge removal,
determine the reasons why it occurs and what is the
impact on contributions.

References

[1] Asher Trockman, Shurui Zhou, Christian
Késtner, and Bogdan Vasilescu. Adding sparkle
to social coding: An empirical study of repository
badges in the npm ecosystem. In Proceedings of
the 40th International Conference on Software
Engineering, ICSE ’18, pages 511-522, New
York, NY, USA, 2018. ACM.

[2] D. Riehle, P. Riemer, C. Kolassa, and
M. Schmidt. Paid vs. volunteer work in open
source. In 2014 47th Hawaii International Con-
ference on System Sciences, pages 3286-3295, Jan
2014.

[3] Israr Qureshi and Yulin Fang. Socialization in
open source software projects: A growth mix-
ture modeling approach. Organizational Research
Methods, 14(1):208-238, 2011.

[4] Jailton Coelho and Marco Tulio Valente. Why
modern open source projects fail. In Proceedings
of the 2017 11th Joint Meeting on Foundations
of Software Engineering, pages 186-196. ACM,
2017.

[5] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E.
Perry, and W. M. Turski. Metrics and laws of
software evolution-the nineties view. In Proceed-
ings Fourth International Software Metrics Sym-
posium, pages 20-32, Nov 1997.

[6] Taranjeet Kaur, Nisha Ratti, and Parminder
Kaur. Applicability of Lehman laws on open
source evolution: a case study. International
Journal of Computer Applications, 93(18):0975—
8887, 2014.

[7]

Godfrey and Qiang Tu. Evolution in open source
software: a case study. In Proceedings 2000 In-
ternational Conference on Software Maintenance,
pages 131-142; Oct 2000.

Felipe Fronchetti, Igor Wiese, Gustavo Pinto,
and Igor Steinmacher. What attracts newcom-
ers to onboard on OSS projects? tl;dr: Popular-
ity. In Francis Bordeleau, Alberto Sillitti, Paulo
Meirelles, and Valentina Lenarduzzi, editors,
Open Source Systems, pages 91-103. Springer,
2019.

Michael Hilton, Timothy Tunnell, Kai Huang,
Darko Marinov, and Danny Dig. Usage, costs, and
benefits of continuous integration in open-source
projects. In Proceedings of the 31st IEEE/ACM

[10]

International Conference on Automated Software
Engineering, pages 426-437. ACM, 2016.

Bogdan Vasilescu, Yue Yu, Huaimin Wang,
Premkumar Devanbu, and Vladimir Filkov. Qual-
ity and productivity outcomes relating to contin-
uous integration in github. In Proceedings of the
2015 10th Joint Meeting on Foundations of Soft-
ware Engineering, pages 805-816. ACM, 2015.

Eirini Kalliamvakou, Georgios Gousios, Kelly
Blincoe, Leif Singer, Daniel M. German, and
Daniela Damian. The promises and perils of min-
ing GitHub. In Working Conference on Mining
Software Repositories (MSR), pages 92-101, New
York, NY, USA, 2014. ACM.

