
Flaky Tests: Problems, Solutions, and Challenges

Fabio Palomba
SeSa Lab - University of Salerno, Italy

fpalomba@unisa.it

Test cases represent the first defensive line against
the introduction of software faults, especially when
developers test for regressions: Unfortunately, how-
ever, test cases are not immune to defects. One of
the most critical issues affecting tests is called “flak-
iness” and appears when a test exhibits a seemingly
random outcome (i.e., pass or fail) despite exercising
code that has not been changed. The presence of flaky
tests may cause substantial problems to developers:
(1) they may hide read faults, other than being hard
to reproduce because of their non-determinism; (2)
they increase maintenance costs, as developers might
spend additional time to debug failures that are not
connected to any fault; and (3) they can reduce the
overall developer’s confidence in testing.

1 Problems
Luo et al. [1] empirically explored the reasons behind
flaky tests. They discovered that 45% of the flaky
tests considered were due to Async Wait issues: in
particular, these tests make asynchronous calls but do
not properly wait for the result of these calls. As an
example, a test that waits for the response of a remote
server using a Thread.sleep statement may be flaky
depending on either the milliseconds passed to the
sleep method or how fast the server responds. Other
common causes relate to Concurrency issues. These
results were later confirmed and extended by Eck et
al. [2], who surveyed developers on the root causes
of flaky tests. The authors confirmed the categories
of the previous studies, but also identified three new
root causes. Furthermore, they discovered that in some
cases the flakiness can be due to problems originating in
the production code, i.e., changes applied by developers
when enhancing source code may eventually lead to
disrupt the associated tests and make them flaky.

Copyright © by the paper’s authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY
4.0).

In: D. Di Nucci, C. De Roover (eds.): Proceedings of the 18th
Belgium-Netherlands Software Evolution Workshop, Brussels,
Belgium, 28-11-2019, published at http://ceur-ws.org

2 Solutions

Besides studying the root causes of flaky tests, re-
searchers have been also working on their automatic
identification. The simplest solution is given by the Re-
Run approach: it consists of re-running tests multiple
times and checking whether their outcome change at
least once. Anecdotal evidence suggests to re-run tests
ten times, however no previous study has systematically
assessed this aspect. The ReRun approach, however,
has a major drawback: scalability. An alternative is
represented by DeFlaker [3]: this is a technique based
on a mix of static and dynamic analysis that is suitable
to be ran within continuous integration pipelines. In
particular, starting from a newly committed change
available in the repository, DeFlaker runs a differen-
tial coverage analysis, with which it identifies the lines
of code that have been modified or added to a file F
in the commit c. Afterwards, the approach runs test
cases and monitors the statement coverage they have
on F at both times c−1 and c: this step outputs the
lines of code that the tests cover on the current and
previous version of F . Finally, DeFlaker identifies
flaky tests in two cases: (1) if a test passes when ran
on F at time c−1 but fails when ran at time c and does
not cover the lines that have been modified or changed
in c; or (2) if a test fails when ran on F at time c−1

but passes when ran at time c and does not cover the
lines that have been modified or changed in c.

3 Challenges

Eck et al. [2] identified a number of critical open issues
to deal with flakiness. First and foremost, developers
indicated that understanding the context of the failure
represents the most critical part of the identification
and fixing process. When a test fails, diagnosing it and
designing a solution might take long because developers
have to understand what led the test to fail. As such,
they highlighted flaky test replay approaches as the
most desirable.

The second challenge for developers is to understand
the root cause of flaky tests: flakiness can arise in

1



several different manners and a timely identification
of the root cause can help developers with both the
allocation of resources and the actual identification
of the problem. Hence, creating techniques that can
automatically classify the root causes of flaky tests
represents a priority for the research community.

Finally, it is crucial for developers to quickly un-
derstand where to look at when diagnosing flaky tests.
This would substantially decrease the time required to
fix the flakiness. Thus, this challenge represents a call
for researchers, who may either adapt existing fault
localization approaches or define specialized methods
for locating the root cause of flaky tests.

References
[1] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and

Darko Marinov. An empirical analysis of flaky tests.

In Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software
Engineering, pages 643–653. ACM, 2014.

[2] Moritz Eck, Fabio Palomba, Marco Castelluccio,
and Alberto Bacchelli. Understanding flaky tests:
The developer’s perspective. 2019.

[3] Jonathan Bell, Owolabi Legunsen, Michael Hilton,
Lamyaa Eloussi, Tifany Yung, and Darko Marinov.
Deflaker: automatically detecting flaky tests. In
Proceedings of the 40th International Conference on
Software Engineering, pages 433–444. ACM, 2018.

2


	Problems
	Solutions
	Challenges

