
Blind Men and a Room Full of Elephants

Vadim Zaytsev
Raincode Labs

Brussels, Belgium
vadim@grammarware.net

The world of legacy software exists [1–8]. De-
spite numerous prognoses about certain languages go-
ing out of fashion and disappearing, many languages
resist this natural process: COBOL (1959), RPG
(1959), VISION:BUILDER (1960 as MARK IV), PL/I
(1964), RAMIS (1965), CLIST (1970), FOCUS (1970),
PACBASE (1973), BIS (1975 as MAPPER), REXX
(1979), TELON (1981), CA GEN (1987 as IEF), jBA-
SIC (1991), etc. They continue to be used extensively
across billions of lines of code, literally decades after
going out of fashion [9–11]. The world of legacy soft-
ware evolves and grows, absorbing new languages as
years go by. Only a handful of legacy systems are suit-
able for complete redesign and rewrite, while the bulk
of software systems in finance, banking, insurance, lo-
gistics, booking, as well as in a number of other do-
mains, are too large, too complex and too expensive
to be replaced in simplistic ways. Hence, we need to
develop methods and tools to analyse such software to
aid in this never-ending battle by providing compil-
ers, analysers, transformers, refactorers, testers, lin-
ters, validators.

During this keynote, participants were confronted
with a carefully selected subset of features encountered
by industrial compiler engineers in legacy code. Con-
densed by language design magic into one deliberately
small language called BabyCOBOL [12], this collec-
tion is meant to represent the challenge of processing
legacy code to the software evolution community, such
as:

• parsing indentation-driven notations,

• dealing with line continuations,

• identifying keywords which are not reserved,

Copyright © by the paper’s authors. Use permitted under Cre-
ative Commons License Attribution 4.0 International (CC BY
4.0).

In: D. Di Nucci, C. De Roover (eds.): Proceedings of the 18th
Belgium-Netherlands Software Evolution Workshop, Brussels,
Belgium, 28-11-2019, published at http://ceur-ws.org

• resolving symbols with case insensitivity,

• syntax highlighting with insignificant whitespace,

• implementing the picture clause data type,

• preprocessing lexical imports,

• unpuzzling sufficiently qualified identifiers,

• unfolding contracted conditions,

• relying on name-based deep traversing assign-
ments,

• using context-dependent figurative constants,

• altering unconditional branching addresses at
runtime,

• branching to sentence-based code locations,

• executing paragraphs in a serial way,

• having detachable clauses in structured loops,

• combining exception handling with other features.

The participants have witnessed the first public
exposure of this meeting point between the indus-
trial community that is creating tools for handling
real legacy languages (each demanding several human-
years of professional investment and therefore com-
pletely unsuitable for research prototyping) and the
academic community which consists of many comfort
bubbles of idealised toy languages (with consistent de-
sign that rewards emergence of glorified techniques
that optimistically assume overly rational language
features).

We hope that by designing university courses on
compiler construction, software language engineering
and software evolution around BabyCOBOL instead
of MiniJava or While, will help preparing students for
the future, arming them with the skill to build tools to
deal with the software systems of the past. At the same

1



time, trying out any new technique on BabyCOBOL
seems feasible to quickly prototype and fit within an
academic paper, and ensures the technique’s applica-
bility to a range of legacy languages.

References

[1] S. Matthiesen and P. Bjørn, “Why Replacing
Legacy Systems is So Hard in Global Software
Development: An Information Infrastructure
Perspective,” in CSCW. ACM, 2015, pp.
876–890. [Online]. Available: https://doi.org/10.
1145/2675133.2675232

[2] J. Q. Ning, A. Engberts, and W. Kozaczynski,
“Recovering Reusable Components from Legacy
Systems,” in Proceedings of Working Conference
on Reverse Engineering. IEEE CS, 1993, pp.
64–72.

[3] M. Feathers, Working Effectively with Legacy
Code. Prentice-Hall, 2004.

[4] A. A. Terekhov and C. Verhoef, “The Realities of
Language Conversions,” IEEE Software, vol. 17,
no. 6, pp. 111–124, Nov./Dec. 2000. [Online].
Available: https://doi.org/10.1109/52.895180

[5] V. Zaytsev, “Open Challenges in Incremental
Coverage of Legacy Software Languages,” in
Post-proceedings of the Third Edition of the
Programming Experience Workshop (PX/17.2),
L. Church, R. P. Gabriel, R. Hirschfeld, and
H. Masuhara, Eds., 2017, pp. 1–6.

[6] R. Khadka, P. Shrestha, B. Klein, A. Saeidi,
J. Hage, S. Jansen, E. van Dis, and M. Bruntink,

“Does Software Modernization Deliver What It
Aimed for? A Post Modernization Analysis
of Five Software Modernization Case Studies,”
in ICSM. IEEE, 2015, pp. 477–486. [Online].
Available: https://doi.org/10.1109/ICSM.2015.
7332499

[7] E. Aeschlimann, M. Lungu, O. Nierstrasz,
and C. F. Worms, “Analyzing PL/I Legacy
Ecosystems: An Experience Report,” in WCRE.
IEEE, 2013, pp. 441–448. [Online]. Available:
https://doi.org/10.1109/WCRE.2013.6671320

[8] D. Blasband, “Compilation of Legacy Lan-
guages in the 21st Century,” in GTTSE, ser.
LNCS, vol. 7680. Springer, 2011, pp. 1–
54. [Online]. Available: https://doi.org/10.1007/
978-3-642-35992-7 1

[9] D. Cassel, “COBOL Is Everywhere. Who
Will Maintain It?” https://thenewstack.io/
cobol-everywhere-will-maintain/, May 2017.

[10] T. Hartman, “COBOL blues,” Reuters Graphics,
http://fingfx.thomsonreuters.com/gfx/rngs/
USA-BANKS-COBOL/010040KH18J/index.
html, Apr. 2017.

[11] R. Lämmel and C. Verhoef, “Cracking the
500-Language Problem,” IEEE Software, vol. 18,
pp. 78–88, 2001. [Online]. Available: https:
//doi.org/10.1109/52.965809

[12] V. Zaytsev, “BabyCOBOL,” Software Language
Engineering Body of Knowledge, http://slebok.
github.io/babycobol, 2019.

2

https://doi.org/10.1145/2675133.2675232
https://doi.org/10.1145/2675133.2675232
https://doi.org/10.1109/52.895180
https://doi.org/10.1109/ICSM.2015.7332499
https://doi.org/10.1109/ICSM.2015.7332499
https://doi.org/10.1109/WCRE.2013.6671320
https://doi.org/10.1007/978-3-642-35992-7_1
https://doi.org/10.1007/978-3-642-35992-7_1
https://thenewstack.io/cobol-everywhere-will-maintain/
https://thenewstack.io/cobol-everywhere-will-maintain/
http://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/010040KH18J/index.html
http://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/010040KH18J/index.html
http://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/010040KH18J/index.html
https://doi.org/10.1109/52.965809
https://doi.org/10.1109/52.965809
http://slebok.github.io/babycobol
http://slebok.github.io/babycobol

