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Abstract. The paper presents: an object detection algorithm for coherent recep-
tion of signals coming from a monitoring network consisting of several sensors; 
an algorithm for detecting an extended object by analog signals of sensors of a 
monitoring network. These algorithms use statistics that take into account the 
most stable features of the distribution of the source data. They can be imple-
mented in an automated decision support system. At the same time, decisions 
on the detection of a monitoring object made by an automated system will be 
more reliable  
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1 Introduction 

To carry out environmental monitoring, it is necessary to conduct continuous obser-
vations over time, based on a well-thought-out distribution of measuring instruments 
in space, for which it is necessary to use a stationary distributed multi-sensor remote 
monitoring system [1]. It should work efficiently, preferably at a real time scale. Effi-
ciency also means reducing the time frame for deciding on the classification of the 
observed object. Therefore, it is necessary to automate not only the data collection 
process, but also the classification algorithms of the monitoring object in order to 
attract the attention of the human operator only to objects that actually threaten the 
ecological state of the observed area and even at the stage of automated data process-
ing to weed out objects that do not threaten the ecological state of the zone of respon-
sibility. A stationary network of stations included in the monitoring system requires 
the availability of communication channels with a Monitoring Control Point (MCP) 
[2]. Laying a cable communication network is often unprofitable. Therefore, for 
communication purposes it is necessary to use a radio channel or satellite communica-
tion [3]. Since the sensors of the monitoring network receive energy from the batter-
ies, in order to save energy in the monitoring network, it is often justified not to pre-
process the signal on the sensor, but to send analog signals to the MCP, which is 



charged with processing the sensor signals and detecting the monitoring object [4]. 
Information exchange over the radio channel raises the problem of detecting an ana-
log signal with an unknown law of fluctuations against the background of noise with 
an unknown distribution [5].  To solve this problem, in this paper, it is proposed to 
develop the following algorithms: 

• an algorithm for detecting a monitoring object during coherent reception of signals 
coming from a monitoring network consisting of several sensors; 

• the sample size for detecting the object of the analog signals of the sensors of the 
monitoring network. 

2 Theoretical Analysis 

2.1 The most powerful accordingly to the signal-to-noise ratio criterion 
algorithm for processing spatially distributed data from a monitoring 
network consisting of several sensors  

Let us consider the problem of coherent detection of a signal from an object distrib-
uted in N resolution elements, which are sensors of a monitoring network. It was 
shown in [6] that the detector calculates the likelihood ratio:  
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where nx - detector output envelope samples , Nn ,.....,2,1   

0  and 1 - signal variances received from )( kN  sensors, that did not fix the object 

and k  sensors, fixed object accordingly . 
        From equation (1) we can see, that detector which is most powerful accordingly 
to the signal-to-noise ratio criterion  can be implemented by a rather complex circuit, 
and, in addition, for its implementation a priori information is required about the pa-
rameters of  signal )( 1 and noise )( 0 , which, as a rule, in real monitoring condi-

tions are unknown. Therefore the rule (1) characterizes the potential for detecting an 
object and cannot be realized in many practical cases. 
         It is necessary to develop an most powerful by signal / noise criterion algorithm 
for coherent detection of a signal from a monitoring object received from )( kN  sen-

sors on the background of noise interference provided that the signal and noise pa-
rameters, as well as the position of the fixed object k sensors among N  sensors of 
the monitoring network are a priory unknown. Detection is formulated as the statisti-
cal task of testing general linear hypotheses  [7-10] and the rule is found in the class 
of so-called invariant rules  [11].  
       We use the following premises: 



1. There are statistically independent radio pulses sent by  )1( NN  sensors. In the 

absence of the object of observation, these pulses have the same average power. 
The law of the distribution of the noise background is considered normal. 

2. In the presence of an object of observation, the resulting fluctuation in resolution is 
the additive sum of the signal with unknown amplitude  )...,2,1( kmm   and 

Gaussian noise with unknown variance 2 . Coherent processing is assumed. In-
dependent voltage samples are taken at the output of the linear path of the MCP  
receiver at time instants following the resolution interval.  ),...,2,1( Nnxn  . 

3. Processing is carried out during the p  periods of the signal, so that each reference 

element n  will correspond to a sample vector ),....,( 1 npn xx  with multidimensional 

normal probability density 
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The mean values and the covariance matrix of the vector are determined from the 

expressions  ;)( ninixE   ;))(( ijnjnjnini xxE    1 Aij , where E  - is the 

sign of mathematical averaging, and 0n , if )( kNn  , and 0n  at  kn . It 

is also believed that the matrix )( ijaA  - is common to all vectors N , having di-

mension  p  , but unknown . 

           The challenge is that by sample   
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determine the presence or absence of a signal about the existence  of a monitoring 
object. Matrix X  consists of p  column vectors ),.......,( 1 Nii xx , and each such vector 

has its own mean value vector  ),...,( 1 Niii   . 

Given the accepted assumptions, the task of detection is to test complex hypotheses  

0H  and 1H  regarding parameters i  and A . 

                 0:0 iH       0:1 iH      pi ,....,2,1   А is unknown (3) 

Hypothesis testing  (3) fits into the scheme of testing multidimensional linear hy-
potheses. As follows from the general theory [12], principles of invariance and  suffi-



ciency allows you to reduce the sample X  when testing hypotheses (3) to maximally 
invariant statistics of the form  
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and the set of parameters  i and )( ija - to maximal invariant  
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In expressions (4),  (5) 


 N

n
jxiji xNx

1
)(

1
)( ;   ).( )()( jiji xE  Numerator of the 

formula (4) has off center  2
p - off-center distribution with the noncentrality pa-

rameter 2 and p degrees of freedom, and the denominator has central distribution 

)(
2

pN  , so the statistics  pTpN /)(   has off-central F distribution with  p  and 

)( pN   degrees of freedom and with the noncentrality parameter 2 . 

Regarding the parameter 2  of  F - distribution initial hypotheses (3) can now be 
formulated as follows : 
 

 ;0:0 H       0:1 H  (6) 

Using the method of constructing optimal rules [13], it can be shown that the most 
powerful invariant criterion for testing hypotheses (6) has a critical region of the form  

 .CT   (7) 

Threshold level  C  determined by the given probability of false alarm   from the 
condition  

 



C

dyypNpF )()(,  (8) 

where )(, pNpF  -is central F distribution with p and )( pN   degrees of freedom. 

       The expressions (4), (7) determine the functional scheme  of the detector with 
completely unknown correlation properties of vectors ),...,( 1 npn xx . For practical 

implementation, expressions (7), (8) can be concretized, for example, in the case of 
the absence of inter-period correlation. In this case, the discovery rule and parameter 

2  take the form 
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- is the average for all N signal-to-noise ratio for one 

observation period. The detector efficiency is determined by the power function of 
rule (7), (8), which shows the dependence of the probability of correct detection on 

the parameter 2 . It can be calculated directly from off-center tables of F - distribu-
tion [14].  

2.2 A most powerful according to the signal-to-noise ratio criterion  algorithm 
for detecting an extended object by analog signals of monitoring network 
sensors  

To develop an algorithm for classifying an extended object (for example, classify-
ing the observed water surface as clean or polluted by oil emissions) using a distrib-
uted multisensor geographic information system, suppose: 

 The central post decides to detect / not detect an object (contamination) based on 
signals received from N sensors under the same observation conditions ; 

 The resulting radio signal of each sensor is the additive sum of the non-fluctuating 

signal of unknown amplitude  0)( j
i   ( j =1,2- is numbers of object  -  e.g. clean 

water surface and dirty water surface, Ni ) and Gaussian noise with unknown 

dispersion 2
i . At the output of the receiver’s linear path, the amplitude samples 

)( j
ix are taken for the signal of each sensor. 

 Observation of objects is carried out for some time T , during which readings for 
the signal of each sensor n  are taken. Thus, for each object, the sample space is 

represented as n  sample vectors ),...,( )1()1(
1

)1(
nxxx   ; ),...,( )2()2()2(

nxxx   ; 

n,1 . 

Vectors  )1(
x  and )2(

x  have a normal probability density  
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The mean values and elements of the covariance matrix are determined from the 
expressions  

1)()()()()()( )(;))((;)(  AxxExE ikik
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sign of mathematical averaging. We consider that the matrix  )( ikA  is common to 

vectors )1(
x  and )2(

x , but its elements are unknown. 

The classification task is by the sample nxx ,1,, )2()1(    determine whether ob-

jects belong to the same class or belong to different classes. 
Based on the assumptions made, this problem can be formulated as two hypotheses 

-  1. objects are of the same type; 2. objects are of the different type: 

 
)2()1(

0 : iiH   ; 
)2()1(

1 : iiH    for all  Ni ,1  (12) 

In expression  (12) the parameter 
)( j

i   is matrix column having dimension )1( n   

with elements ),...,( )()(
1

j
ni

j
i  . 

          As follows from the general theory [15], the principles of invariance and suf-

ficiency allow us to reduce the sample space nxx ,1,, )2()1(  , when testing hy-

potheses (12) for maximally invariant statistics (MI) of the form  
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and the parameter space is to MI 
 

   ))((
2

)2()1()2()1(2
kkiiik

n   (14) 

In expressions  (13) and (14) is marked: 
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It can be shown that there is uniformly the most powerful (UMP) criterion for test-
ing hypotheses (12), (12), which rejects the hypothesis  0H   in case if 

 T > C, (15) 

where С – is the  threshold constant . 
 The constant  С should be determined from the condition that under the hy-

pothesis  0H   )0( 2   the probability of the fulfillment of condition (15) was no 

more than a certain predetermined significance level  . Whereas statistics  T21 /  



under the hypothesis  0H  has central F distribution with N1 and 

)12(2  Nn  degrees of freedom [16], the constant C can be found from the ex-

pression 
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The rule (15) can be specified for the case when the matrix A is diagonal. In this 
case, it has the form  
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where )12/(1  NnCNC . 

From the expressions (13) and (17) it can be seen that  ),1;2,1(
)(

Nijx
j

i  - are 

maximum likelihood estimates for parameters )( j
i , calculated for the sensor N  sig-

nals for the first and second objects, and the value in the denominator is the sum of 

the parameter 2
i estimates calculated for the signal of the first and second object of  

i-th sensor. Thus, to distinguish between objects, it is necessary to estimate the ampli-
tudes of the N sensor signals, calculate the square of the distance between the pa-
rameters of the signals of the classified objects by the sensors of the same name, and 
sum them with weights inversely proportional to the noise variance. The amount re-
ceived is compared with a threshold, in case of exceeding which a decision is made 
on whether the objects belong to different classes. 

        Expression (15) can also be used to detect a distributed object, if we put 

nx ,1;0)2(   . Formula (17) in this case takes the form [17]: 
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, где )1/(2  NnCNC . (18) 

Considering that under the hypotesis 1H  statistics T  has off-central  F distribu-

tion  with off-center parameter 2  and 21,  degrees of freedom, the probability of 

correctly distinguishing between objects is determined by the expression [18]: 

  
0

2 ),()(
21

 dFCTP  (19) 

and can be calculated according to the tables of  off-central  F distribution  [19].  
  



3 Results 

Figure 1 shows the curves characterizing the effectiveness of the detector of oil 
pollution of the water surface depending on the resolving power of the network of 
contact sensors constructed in accordance with expressions (4), (7). Characteristics 

calculated for false alarm probability value  210  and the number of received 
signal periods  2p  provided that the value of the signal-to-noise ratio averaged 

over all N sensors for one observation period iq  is independent of resolution (uni-

form distribution of translational buoys (contact sensors) along the length of contami-
nation). For comparison, the same figure shows the power function of the potential 
most powerful rule (MP) of coherent detection of a known signal [20] in the presence 
of only one sensor ( 1N ).  

     It can be seen from the figure 1 that ignorance of the noise and signal levels in 
the decision elements leads to losses in the signal-to-noise ratio. However, with in-
creasing resolution, the detector’s efficiency increases. This is due to the fact that the 
increase allows a more accurate assessment of noise and signal levels. So, when 

8N  the loss in the signal-to-noise ratio is ~4 dB, and when 22N  - less than 1 dB.  

 

Fig. 1. The probability of detecting oil pollution of the water surface by signals received from a 
network of contact sensors 

Figure 2 shows the dependences of the probability )(NP of correct distinguishing 

between two objects, calculated by the formula (19), for different values of the signal 
sample size n.  
 



 

Fig. 2. The dependence of the probability of distinguishing objects P (N) for a different number 
of sensors in the monitoring system (N) for several values of the signal sample size (n) 

In this case, the noncentrality parameter 2  of F distribution was assumed con-

stant, independent of the number N of sensors in the monitoring system . As can be 
seen from Figure 2, the dependences have an optimum in the probability of distin-
guishing between objects, and its position depends on the size of the sample n. The 
presence of an optimum and its position are apparently due to the following reasons. 
On the one hand, with an increase in the number of sensors in the monitoring system, 
the difference in signals increases, that is, the “distance” between objects in the pa-
rameter space increases. Let us explain what was said by the following example. Let 
the objects have the same area, but a different distribution of them among the sensors. 
The value of the parameters of the amplitudes of the signals from the first and second 

objects )1(
i   and )2(

i  for N =3  is presented in table form 1. 

At N = 1, the distance in the parameter space between objects A and B is (
3

1

А
i -


3

1

B
i )2=9-9=0 and it’s not possible to distinguish between them. At the same time, 

for N= 3 we get 
3

1
( А

i - B
i )2=(3-1)2+(4-5)2+(2-3)2=6, i.e. the difference in parame-

ters is significant. On the other hand, with a decrease in the number of sensors in the 
monitoring network, the correlation between the signals of objects of various classes 
increases. Moreover, the accuracy of parameter estimates can be improved by increas-
ing the accumulation time, i.e., increasing the size of the sample  n. 

 
 
 



Table 1. The value of the parameters of the amplitudes of the signals from the first and second 
objects  

Object i 1 2 3  
A А

i  3 4 2 

3

1

А
i =9 

B B
i  

1 5 3 

3

1

B
i =9 

 

4 Conclusion 

The proposed algorithm in the sense of signal-to-noise ratio for processing spatially 
distributed data coming from a monitoring network consisting of several sensors with 
the following practically important properties: a) does not depend on a priori un-

known parameters 2  and n    ( Nn ,...,2,1 ) and provides a constant probability of 

false alarm at any noise level; b) is invariant to the location of k sensors that recorded 
the object and (N-k) sensors that have not fixed the object, among N sensors of the 
monitoring network; c) has the highest probability of correct detection, depending on 
the average signal-to-noise ratio and for large pN   close to potential.    

The proposed algorithm for detecting an extended object by the analog signal of 
sensors of the monitoring network can be used to identify objects if, for example, as 

Nixi ,1,)2(  , a priori estimates of the parameters of the recognized object are used. 

The practical significance of the results lies in the development of analog signal 
detection algorithms that are resistant to changes in the signal-to-noise ratio in the 
communication channels of the sensors of the monitoring network with a monitoring 
and control post. Algorithms can be implemented programmatically using various 
programming languages and used to automate the process of classifying monitoring 
objects at a monitoring and control point. 
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