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Abstract. When developing a robotic excavator, one of the main issues is track-
ing the given trajectories using its manipulator. This task is complicated by the 
fact that the system is subject to disturbances and measurement noise, which 
can most naturally be modelled as stochastic white noise processes. This paper 
describes an LQG regulator aimed at improving tracking performance at the 
levelling operation made by the robotic excavator. Simulation is performed on 
the attached backhoe equipment of the Boreks 2201excavator. The results show 
that the proposed control algorithm is effective for improving the trajectory 
tracking accuracy. 
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1 Introduction 

Hydraulic excavators are widely used in many areas, such as construction, mining and 
agriculture, as well as in dangerous areas for rescue and recovery operations. Strict 
requirements for improving the quality of digging operations and reducing energy and 
time costs for the entire workflow lead to a change in the look of traditional hydraulic 
excavators. For instance, the number of degrees of freedom for working equipment 
has increased; articulated booms and sticks have appeared; multi-handed excavators 
have become available on the market, etc. However, growing complexity of the exca-
vator requires great skill to control it, and now even an experienced operator cannot 
realize the full capabilities of the machine. Thus, automation of excavators is consid-
ered as a challenge in modern construction machinery. Moreover, as excavators are 
often used to accomplish dangerous tasks, an unmanned robotic excavator can greatly 
improve the safety. 

Nevertheless, the lack of information about the environment and unpredictable me-
chanical parameters such as flexibility, friction, various nonlinearities in hydraulic 
actuators prevent the extensive use of unmanned excavators. To mitigate the above 
problems varieties of studies have been made recently concerning adaptive and robust 
control of an excavator arm. 



In particular, Kim [1] has proposed a nonlinear proportional-derivative (PD) con-
troller coupled with the µ-controller to compensate parametric and unstructured un-
certainties. Wang [2] has introduced the nonlinear proportional-integral (PI) controller 
combined with a cross-coupled pre-compensation algorithm to improve tracking accu-
racy by an unmanned excavator bucket edge. PI-based adaptive velocity controller for 
each cylinder of a mini excavator has been presented by Wind in [3]. 

Some researchers have utilized Genetic Algorithms [4], artificial neural networks 
and fuzzy logic [5–9], ant colony optimization [10, 11] in order to adjust the parame-
ters of the traditional proportional-integral-derivative (PID) and PD controllers. Slid-
ing-mode and Time delay controls have been applied to compensate for the non-
linearity of complex dynamics of hydraulic manipulators in [12, 13, 14]. Besides, in 
some studies, other intelligence algorithms are used, such as guaranteed cost control 
[15, 16], model predictive control [17], model reference adaptive control [18], a ro-
bust stochastic control, based on the method of analytical design of aggregated regula-
tors (ADAR) [19], that were applied to control the trajectory of the excavator. 

All the mentioned and other related works have contributed significantly to robotic 
excavator development. However, these controllers are quite complex; their use re-
quires significant re-equipment of excavators, in particular, replacement of the hy-
draulic system. Therefore, no unmanned excavator is mass-produced today. Thus, 
automation of the excavators remains a topical issue.  

Since in the process of digging the values of external disturbances and measure-
ment noise are unknown, it is expedient to assume them as stochastic white noise 
processes. In such a case, a well-known in modern control theory Linear Quadratic 
Gaussian regulator (LQG), which is relatively easy to design and implement [20], can 
be used to control the excavator manipulator.  

Thus, this paper aims at designing and applying the LQG in a hydraulic robotic 
excavator to control the manipulator trajectory. 

The remainder of this paper is organized as follows. The formal statement of the 
problem is given in Section 2. Section 3 is dedicated to the excavator modelling; non-
linear as well as linearized models of the excavator manipulator are described in this 
section. Section 4 presents the design procedure of the controller. The simulation 
results are provided in Section 5. Finally, Section 6 presents concluding remarks and 
future directions for this work. 

2 Formal Problem Statement 

It is assumed that the excavator manipulator model is linearized and the state equa-
tions of its motion look like: 
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where y(t) is the (r  1) observation vector of the true state (n  1) vector x(t) at time t; 
u(t) is the control input (m  1) vector, w(t) and v(t) are stochastic processes associ-
ated with the working process and the manipulator state measurement, respectively. 



The state matrix A (n  n), control input gain matrix B (n  m) and measured state 
matrix C (r  n) are all linear time invariants, n = 6, m = 3, r = 3. 

The process noise w(t) and measurement noise v(t) are white Gaussian random se-
quences with zero mean value, and V(t) and W(t) are the v(t) and w(t) covariance ma-
trices. 

It is necessary to obtain a control law in the form of static linear feedback: 

 ( ) ( )u t Kx t , (2) 

where the gain matrix K is meant to minimize a quadratic cost function formulated as 
follows: 
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where Q and R are symmetric positive definite matrices of compatible dimensions. 

3 Excavator manipulator modelling 

In this paper, the attached working equipment of the Boreks 2201 excavator is con-
sidered as an example. To study this excavator, its 3D model was originally built in 
Autodesk Inventor 2016, and afterwards it was imported into MATLAB Simscape 
Multibody [21]. The general view of the model is given in Fig. 1. The adequacy of the 
model was proved by the comparison with the results of a real excavator testing. The 
inputs of the model are the desired rods displacements of the boom, the stick and the 
bucket hydro cylinders, calculated on the base of the desired rotations of the corre-
sponding joints [21]. 
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Fig. 1. General view of the excavator manipulator model 



The model in Fig. 1 is a nonlinear one; however, the LQG theory is developed for 
linear systems described by (1). Therefore, in this section, the linear model of the 
excavator manipulator is under consideration. In robotics the feedback linearization 
[22] in widely known, though the obtained model is quite complex and requires 
knowledge of all the dynamic parameters of the manipulator. On the other part, a 
model of the manipulator link can be simplistically described by the second order 
system [14, 22]: 
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where mi, bi, ci are positive parameters to be determined, Gi(s) is a transfer function 
from the desired di to the actual i rotation angle of the excavator manipulator links, 
and i = 1,2,3. 

The transfer function (4) can be rewritten in the state-space form by the following 
relation: 
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where xi(t) = i(t), i = 1,2,3. 
In order to obtain the linear dynamic model of the excavator manipulator, step re-

sponses of the system in Fig. 1 were obtained for each joint (Fig. 2).  
The values of mi, bi and ci in (4) can be estimated using any of the numerical opti-

mization methods that minimize the error between the outputs of the real system and 
its model based on the known information about the inputs and outputs of the real 
system. Here, to automate this procedure, the MATLAB System Identification Tool-
box was used. The estimated values are given in Table 1, and Fig. 2(d) presents the 
errors between the actual outputs of each link and the outputs of the corresponding 
linear models.  

Table 1. Estimated values of the linearized model for each joint 

 m b c 
Boom 1.128510–4 0.020057 1.000 
Stick 1.006510–4 0.020011 1.000 
Bucket 1.000110–4 0.020000 1.000 

 
Fig. 2(d) shows that the results of the linear model coincide with the nonlinear one. 

The response of the linear model is somewhat slower but the agreement is satisfactory 
with respect to the high degree of simplification in the linear model. Therefore, it can 
be concluded, that the established linear model is accurate and credible. 
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Fig. 2. Desired and actual joint angles of the boom (a), the stick (b) and the bucket (c), and the 
errors of the linearized model (d) 

4 Controller design 

4.1 LQG general form 

LQG control is a modern state-space technique for designing optimal dynamic regula-
tors [20]. It is rooted in optimal stochastic control theory and combines both the con-
cepts of Linear Quadratic Regulators (LQR) for full state feedback and Kalman filters 
for state estimation. The plant is described by the state and output equations (1) and 
the controller design methodology enables a controller to be synthesized which is 
optimal with respect to the quadratic cost function (3), where Q and R are weighting 
matrices that define the trade off between regulation performance and control efforts. 
Taking into consideration the second term in (3) allows getting control signals of 
limited amplitude at its minimization, which is especially important when designing 
control systems of such unmanned vehicles as excavators. 



The gain matrix K in the control law (2) has the following form  

 1 TK R B P , (6) 

and is obtained by solving the algebraic Riccati equation (CARE): 

 1 0T TA P PA PBR B P Q    , (7) 

where P is the unknown (nn) symmetric matrix. 
Due to uncertainties, the Kalman filter is used to obtain the estimate of the state 

vector x̂  (Fig. 3): 
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The Kalman filter gain L in (8) equals: 

 1 TL V C S , (9) 

where S is the solution of the following matrix Riccati equation: 

 1 0T TA S SA SCV C S W    . (10) 
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Fig. 3. Block diagram of the excavator control system with LQG regulator 

4.2 Controller design  

The controller design was accomplished in MATLAB. According to the common 
approach [20], the LQG design was split into two independent steps: first, the LQR 
was designed, using the combined state space model of the manipulator as (1): 
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where x1, x3, x5 are joint angles of the boom, the stick and the bucket, x2, x4, x6 are 
their angular velocities, respectively. 

The initial values of the weighting matrices in (3) were selected by using Bryson’s 
rule, relating the reciprocal of the maximum squared values of the states with Q and 
the reciprocal of the maximum squared values of the control inputs with R: 
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and then were refined experimentally. Satisfactory closed-loop responses were ob-
tained using weighting matrices 
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The obtained gain matrix K is: 

386.30 7.06 0 0 0 0

0 0 386.30 7.06 0 0

0 0 0 0 446.21 4.46

K

 
   
  

. 



4.3 Kalman filter design  

At the second step, the Kalman filter was designed in MATLAB using noise covari-
ances W = diag{0.1}, V = diag{0.02}. The Kalman gain matrix is: 
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5 Simulation results 

The effectiveness of the proposed controller was verified by simulation, which was 
performed for levelling works using the nonlinear model in Fig.1. The desired bucket 
edge path and the initial and final configurations of the manipulator are given in Fig. 4.  
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Fig. 4. The desired bucket edge path and extreme positions of the manipulator 

During digging, resistance force Fr acts at the cutting edge of the bucket teeth, this 
force is a resultant reaction force of the tangential, Ft and the normal Fn forces. At the 
simulation, the tangential force was simplistically determined as  

 t сF k b h x  , (13) 

where kc is the specific cutting force, that takes into account soil resistance to cutting, 
frictional resistance of the bucket with the soil, resistance to the movement of the 



prism of soil and all other forces; h and b are the thickness and width of the cut slice 
of soil; x is an increment of the bucket teeth path along the x-axis [15].  

The normal component Fn was calculated as: 

 n tF F , (14) 

where  is a dimensionless factor depending on the digging angle, digging conditions 
and the cutting edge where  = 0.1–0.45. Higher values of  correspond to more blunt-
ing of the bucket teeth edge. 

It was assumed that kc181.3 kN/m2, b0.75 m, h0.1 m 0.1. The forces Ft 
and Fn were unknown for the controller during simulation. 

Figs. 5(a)–(c) show the desired, actual and measured trajectories of the boom, the 
stick and the bucket respectively, and the tracking errors are depicted in Fig. 5(d). 
Fig. 6 describes the levelling error. 
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Fig. 5. Displacements of the manipulator links: a – for the boom, b – for the stick; c – for the 

bucket; d – links trajectories tracking errors 



 

zx

 

a          b 

Fig. 6. Levelling error: a – in x-z plane; b – on each of the coordinates 

There is a good agreement between the desired and measured displacements of the 
manipulator links (Fig. 5), and the fit to the desired trajectories is near 99%. As can be 
seen from Fig. 6, the error of the levelling does not exceed 4 cm along the x-axis and 
1.5 cm – along the z-axis. These values are far higher than those obtained using the 
PID controller [21] (1 cm and 0.1 cm, respectively), however, in [21] the simulation 
was performed under ideal conditions, without taking into account the disturbances. 
Hence, the results prove that the LQG control ensures good system performance. It 
should be noted, though, that backlashes, which have not taken into the consideration 
in the model in Fig. 1, as well as variability of soil properties can increase the tracking 
error. 

6 Conclusion and future work 

In this paper, we have shown how an LQG regulator can be used to control robotic 
excavator trajectory. For this purpose, a linear model of the excavator manipulator 
was obtained, and its parameters were identified by the comparison with the nonlinear 
model, described in the previous work.  

The control system is designed in the way that it provides a deviation of the bucket 
edge from a given path no more than 4 cm along the x-axis and 1.4 cm along the z-
axis at the levelling operation in the presence of random measurement noise and un-
known forces appearing when the bucket touches the soil. Tracking accuracy can be 
improved by adding the integrator to the controller. However, this can cause difficul-
ties associated with time delays [20], which may not be taken into account in the 
model in Fig. 1. Moreover, the simulation was carried out for uniform soil, so more 
significant tracking deviations can be expected in real conditions. Therefore, our fu-
ture work will be focused on reducing tracking errors under unknown external distur-
bances, including the variability of soil properties. 
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