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Abstract. Usage of the genetic algorithms for solving electric vehicles optimi-
zation problem in the scope of smart grid is an extremely actual problem nowa-
days. Electric vehicles are modern and promising alternative to conventional 
vehicles. They are characterized by lower operation cost and environment-
friendly ability to use renewable sources of energy. Smart grids can be used in 
order to avoid undesirable impact of electric vehicles. Such grids require opti-
mization and correct scheduling to handle growing number of electricity con-
sumers. This can be achieved with implementation of specifically designed ge-
netic algorithms. The goal of the paper is to select optimal method and propose 
it for using for optimization of the digital twin of the electric vehicles charging 
infrastructure. As a result of paper such method is proposed. Moreover, as a 
scientific novelty, genetic algorithm functions are compared and analyzed ap-
plying to the problem in consideration. 

Keywords. Genetic algorithm, optimization, electric vehicle, smart grid, cross-
over, selection, mutation. 

1 Introduction 

Electric vehicles (EVs) can be viewed as an eco-friendly and cost-effective alterna-
tive to conventional vehicles with internal combustion engines (ICE). EVs are pro-
duced and designed by number of different manufacturers and their production 
amount is expected to grow rapidly in the coming years [1]. EVs have lower operating 
costs with respect to ICE vehicles and can be charged with locally produced renew-
able energy sources (RESs) [2]. However, number of challenges to wide spreading of 
EVs exist. Although their operating costs are less, EVs are still more expensive to buy 
than ICE vehicles. In addition, access to charging stations is limited, and large capital 
investment is required for developing a public charging infrastructure [2]. More than 
that, EVs consume comparatively high power from the grid during charging. There-
fore, uncoordinated charging of a large number of EVs can have an adverse impact on 
the grid operation (power outages, unacceptable voltage fluctuations) [3]. Power gen-



eration can be increased in order to handle the peak demand of EVs. However, this 
will lead to significant infrastructure cost. As an alternative cost-effective solution, 
smart grid allows EVs to coordinate their charging operations, which can improve 
frequency regulation [4], smooth out intermittent power generation from RESs, and 
make the electric power usage efficient [5]. 

2 Formal problem statement 

Smart grid [6, 7] is a concept aimed at providing the next generation electricity 
network that stands out by high configurability, reactivity and self-control capability. 
This is a complex infrastructure that characterizes by following attributes [8]: 

─ multidisciplinary character, 
─ spatial distribution, 
─ network systems heterogeneousness, 
─ implementation of evolutionary development, 
─ functioning and controlled separation of its elements. 

Smart grid is expected to be a key part of the global system of interacting actors, 
which in its turn will lead to improved management of available resources and in-
creased energy efficiency. Precise monitoring and management are needed to achieve 
this goal [9]. Smart grid is created on the basis of advanced information and two-way 
digital communication technologies. Therefore, it cannot just intelligently deliver 
electricity but also manage power facilities taking advantage of real-time information 
exchange and interaction between providers and consumers [10].  

Meanwhile, EVs are new and important targets for the smart grid to manage. EVs 
are equipped with batteries having high energy-storage capacity, so EV charging im-
poses large electric load on the power system [11]. EVs are forced to be equipped 
with an electronic interface for grid connection to allow controlled energy exchanges. 
Despite high number of the researches in area, EVs still need to be charged more 
often and it takes at least tens of minutes [12]. That makes it necessary to build a large 
charging infrastructure which embraces fast charging stations, battery swapping sta-
tions, and individual charging points for slower charging [11]. 

Different types of interactions are possible between the power grid and an EV: 

─ grid to vehicle (G2V), 
─ vehicle to grid (V2G). 

In G2V, an EV’s battery can be charged from the grid using stored electricity from 
external power sources. That means that the power flow is always unidirectional In 
V2G, the power flow is bidirectional, i.e., from the grid to an EV while charging and 
from an EV to the grid while discharging. V2G-enabled EVs may earn incentives and 
sell power while discharging to the grid and make payments while charging batteries 
from the grid. Therefore, V2G-enabled EVs can facilitate the supply/demand balance 
by discharging during peak hours (peak clipping) and charging during off-peak hours 
(valley filling) as can be seen at Fig. 1. 



 

Fig. 1. Peak clipping and valley filling (Adapted from [13]) 

The impact of EVs on the power grid has been studied [14]. One solution to de-
crease the impact of EVs on the grid is to schedule their charging/discharging pro-
files. This can be done by aggregating different sets of EVs for charging or discharg-
ing with different start times and durations such that grid constraints are maintained. 
However, the aggregation of EVs differs from the aggregation of more traditional 
power resources [15]. In particular, the temporal availability of EVs along with their 
location information is an important parameter to consider while aggregating EVs for 
possible grid overload planning and management. Thus, determining and optimizing 
the appropriate charge and discharge times of EVs that do not violate grid constraints 
while maintaining acceptable degrees of user satisfaction is a challenging problem. 

3 Literature review 

The EV charge scheduling problem formulates as following. It takes a set of EVs, 
grid, user, and aggregator-side parameters as input and outputs a charging schedule. 
By charging schedule, it is meant the starting and ending times of charging of each 
EV in the set. It is an optimization problem that optimizes some grid, user, or aggre-
gator-side parameters (or a mix of them) subject to different number of constraints. 
No single mathematical formulation exists for the problem in general, forming differ-
ent optimization problems.  

The optimization intends to provide the best local or global solutions. Generally, 
the mathematical formulation of an optimization problem is to maximize or minimize 
an objective function while satisfying all considered constraints related to the inte-
grated components in the model [16]. 

Depending on the complexity and the difficulty, optimization can be addressed by 
means of exact or approximate methods.  

The exact mathematical methods can generate an optimal solution when they are 
specified in a feasible region. There are two basic categories: linear and non-linear 
model. They are based on all implemented constraints and the objective functions. 
The linear models are divided in three types: linear programming, integer program-



ming and mixed integer linear programming, according to the variables if they are 
real, integer, or both variable types, correspondingly. 

The approximate methods have an advantage that can simply manage the nonlinear 
constraints and objective functions. In the same time, they cannot always guarantee 
the quality of the obtained results because they generally employ random search 
methods [17]. More than that, the possibility to find the global solution decreases as 
soon as the size of the considered problem increases [18].  

In this paper we consider the genetic algorithms (GAs) as a part of approximate 
methods [19]. We study those for the modeling of the EV scheduling problem be-
cause it generally permits to employ the characteristics of the integrated distributed 
energy resources with employing integer and binary variables to make a decision on 
the operation status of the production systems, battery storage system, EVs and smart 
appliances of the microgrid. 

3.1 Analyze GA approaches for EV optimization problem  

GA are becoming one of the most popular search techniques for the problems hav-
ing large search space [20]. One of such problems can be EV charging scheduling GA 
can create a reasonable quality solution within a controllable time bound by means of 
a population-based directed search, which is inspired by biological evolution princi-
ples.  

In the description of GA, the workflow is a sequential change of populations con-
sisting of a fixed number of individuals corresponding to the trial points of the solu-
tion space. Individuals who respond to high-quality (more appropriate) solutions re-
ceive the advantage of producing offspring in the next population [21]. 

From the population consisting of feasible solutions called chromosomes, the next-
generation population is created through genetic operations such as selection, cross-
over, and mutation. This evolution process continues for the given number of itera-
tions or until a termination condition is met [22]. 

Authors in [23] integrated vehicular networks with smart grid and designed a 
charge scheduler for EVs based on heuristic-based approaches and GAs, which mini-
mizes the load at a charging station. Each request consists of: 

─ vehicle type, 
─ estimated arrival time, 
─ desired service completion time (deadline), 
─ current battery charge. 

On receiving the request, the power consumption profile of the vehicle is retrieved 
from the repository of vehicular information. Then, the charging station verifies 
whether it can satisfy the new request along with the other requests already submitted 
to the scheduler. The result is communicated back to the vehicle. On receiving the 
result, the driver may accept the schedule, initiate a renegotiation session, or choose 
another charging station. 

From the vehicle-side viewpoint, entering the station, the vehicle is assigned and 
plugged to a charger. The controller connects or disconnects power to each vehicle 



according to the schedule generated by either a scheduler within a charging station or 
a remote charging server running in the Internet. 

In [24] same authors evaluated the performance of a charging task scheduler for 
EV, aiming at reducing the peak load and improving the service ratio in charging 
stations. They try to achieve better results by making the initial population include 
both heuristic-generated schedules for fast convergence and randomly generated 
schedules for diversity loss compensation. The performance measurement result ob-
tained from that work reveals that scheme in consideration can reduce the peak load 
for the given charging task sets by up to 4.9%, compared with conventional schemes.  

Authors in [25] established a stochastic procedure for modeling and analyzing an 
EV fleet to generate an accurate charging and discharging profiles. They focused on 
the uncertainties that may affect EV charging/discharging profiles: 

─ EV type – battery electric vehicle (BEV) which is supplied by an electrical source 
to feed its energy storage unit and plug-in hybrid electric vehicle (PHEV) which 
has ability to utilize ICE along with electric one, 

─ EV battery capacity – authors assumed that the battery pack for a BEV has a 20-30 
kWh pack and for a PHEV, 5-15 kWh, 

─ time duration availability and scheduling time – authors hypothesized that 50% of 
EV of the fleet were plugged-in to be charged at the workplace in the parking lots 
and the other EV were connected to the grid to be charged at home in the evening. 

Comparing described previously works it can be said that in first two works au-
thors presented a chromosome as a single feasible schedule. It was represented by a 
fixed-length string of an integer-valued vector. The charging task could be started, 
suspended, and resumed at a slot boundary. They used the roulette wheel as selection 
method, random operation as crossover method. Due to the fact that each element has 
a different permissible range, the mutation was prohibited. 

In contrast, authors of third work used number of selection methods. Namely, sto-
chastic universal selection, roulette-wheel selection, tournament selection and ranking 
selection [26]. Like the first group of authors they used random operator as crossover 
method. But, unlike them they used mutation operator that would change randomly 
the genes of the chromosomes which could also change their characteristics. 

Another important distinction is that the proposed by last group of authors GA al-
gorithm allows to make the optimal trade-off between V2G and G2V operations cost 
to highly increase benefits from EV batteries by scheduling the charging mode in the 
low power price periods and discharging mode in the high-power price periods. This 
contradicts to first two works were authors only utilize and optimize charging faze of 
the EV, ignoring discharging ability. 

Therefore, it can be concluded that after analyzing and comparing GA approaches 
one can be selected as optimal. It is the third work which has critical advantages 
above other ones. 

─ it allows and supports usage of the mutation operator which should help in creating 
better GA and prevent falling into local minimums, 



─ it provides support both for V2G and G2V, which can be critical in modern EVs 
and smart grids. 

4 Model selection 

After analyzing, following method can be used for the future optimization of the 
EV charging infrastructure along the horizon T  with t  time steps. The aim of the EV 
charging/discharging scheduling is to minimize the smart grid total cost and to mini-
mize the overall cost of the power in the G2V operations of EVs. Which is given by 
following function: 
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Here: 

─ CharEV  and 
Disch

EV  are number of charging and discharging EVs respectively, 

─ Char  and Disch  are charging and discharging efficiency respectively, 

─ 
n

E  is the power received or delivered from vehicle n , 

─ ( )C t  is the hourly price of electricity. 

From that model, EV can be in one of the following states: 

─ in the charging state, 
─ in the discharging state, 
─ not charging or discharging (battery is in idle mode). 

Number of constraints need to be defined in order to achieve complete model of 
the charging process. 
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The (2) constraint describes the cost of the power delivered to the EV battery, 
while the (3) describes the cost of the power supplied from the EV battery to the grid. 
Constraints (4) and (5) ensure that the state-of-charge (SoC) is scheduled within a 

predefined range between min
nSoC and max

nSoC  (generally the customer can pre-set 

this range). Constraint (6) guarantees that the system meets each single EV’s energy 

need at the unplugging time ( need
nSoC ) at any recharging cycle.  

5 EV charging infrastructure in consideration 

Considered optimization method can be applied to the developed EV charging sta-
tion. From the perspective of the EV, the global smart grid can be separated into 
smaller EV systems. The EV system has three levels: device level, communication 
level and application level as shown in Fig. 2 [27]. 

Micro-grid was developed in order to consider EV-charging system [28] as a part 
of ISRT (Interactive platform for Embedded Software Development Study, developed 
in Zaporizhzhia Polytechnic National University [29]) infrastructure. The ISRT-server 
is a platform for remote laboratories, in order to train students in IoT-tasks. It is ideal 
for the scalability of the charging station case. A ready-made black-box charging 
station module is available in the ISRT so that students can work on the communica-
tion and client layer. 

 

Fig. 2. Cyber-physical nature of EV system [27] 



The hardware part is emulated with a simple electronic circuit to charge 1.25V Li-
ion-batteries. Energy input side represented with following elements: 

─ net-powered, 
─ wind-powered, 
─ solar energy. 

The charging system itself is both a consumer on the net and an energy provider in 
a V2G setup. For simulation purposes of the micro grid system users can variate input 
variables such as: 

─ the battery charge level, 
─ turn on and off different sources of energy; 
─ decide to start selling energy to the smart grid. 

This system is displayed at Fig. 3. Where power sources noted as the letter A, the 
load as a letter B, the sale of surplus shown in the form of LED as letter C, battery and 
charge controller as letter D. With digits 1 – 8 different relays are depicted.  

 

Fig. 3. Different power supplies for the charging station in a smart grid 

The developed model of a charging station allows to: 

─ choose a power source (any separately or 2-3 sources at a time), 
─ control the process of battery charging (protection against undercharge or over-

charge), 
─ “sell” residual energy and switch load. 



The power source is indicated by letter A, load – B, surplus sales are indicated by 
LED – C, battery and charge controller – D. 

As can be seen, developed digital twin of the EV charging infrastructure can be 
used by students to design optimal smart grid. 

6 Experiments and results 

Considered optimization method is simulated in the scope of the discussed charg-
ing station microgrid. To check efficiency of the specific GA some test data are used. 
Task of the optimization is slightly simplified because of the lack of SoC needed data 
for the set of EVs.  

Therefore, goal of optimization can be formulated as to minimize cost of charging 
and discharging profiles of the set of EVs during given number of time slots.  

Price of the electricity is also given for each time period. As well as charging and 
discharging efficiency. Each EV is characterized by state-time vector which repre-
sents if specified EV is charging, discharging or idle.  

Input data for GA is matrix that contains EVs power for each time slot in given 
boundaries. 

Number of available selection, scaling, mutation and crossover functions are com-
pared in order to find optimal set for specified optimization problem. There are 200 
iterations for each experiment. 

First set of experiments has the goal to determine optimal scaling function. Fitness 
scaling converts the raw fitness scores that are returned by the fitness function to val-
ues in a range that is suitable for the selection function. Following functions are con-
sidered: 

─ rank function, 
─ proportional function, 
─ top function with quantity 0.4, 
─ top function with quantity 0.6. 

Results can be seen at Fig. 4. 



 

Fig. 4. Comparison of the different scaling functions: 
A) rank, B) proportional, C) top 0.4, D) top 0.6 

As can be seen, best optimization result is achieved using top scaling function with 
quantity of 0.4. Top scaling assigns 40 percent of the fittest individuals to the same 
scaled value and assigns the rest of the individuals to value 0. That means that only 40 
percent of the fittest individuals can be selected as parents. 

Next step is to determine selection GA function. Selection function specify how 
the GA chooses parents for the next generation. Following functions are considered: 

─ stochastic uniform function, 
─ roulette function, 
─ tournament function, 
─ uniform function. 

Results can be seen at Fig. 5. 



 

Fig. 5. Comparison of the different selection functions: 
A) stochastic uniform, B) roulette, C) tournament, D) uniform 

From results, best optimization result is achieved using stochastic uniform selec-
tion function. Stochastic uniform function creates a line in which each parent corre-
sponds to a section of the line of length proportional to its scaled value. The algorithm 
moves along the line in steps of equal size. At each step, the algorithm allocates a 
parent from the section it lands on. The first step is a uniform random number less 
than the step size. 

Following set of experiments is related to selection of the best mutation function 
for specified problem. Mutations specify how the GA makes small random changes in 
the individuals in the population to create mutation children. Mutation provides ge-
netic diversity and enables the GA to search a broader space and does not allow it to 
fall into local minimum. Following functions are considered: 

─ adaptive feasible function, 
─ uniform function. 

Comparison of those can be seen at Fig. 6. 



 

Fig. 6. Comparison of the different mutation functions: 
A) adaptive feasible and B) uniform 

It can be seen that best optimization result is achieved using adaptive feasible mu-
tation function. Adaptive feasible randomly generates directions that are adaptive with 
respect to the last successful or unsuccessful generation. The mutation chooses a di-
rection and step length that satisfies bounds which are defined. 

Last set of experiments has as its goal to determine the best crossover function for 
specified problem. Crossover functions specify how the GA combines two individu-
als, or parents, to form a crossover child for the next generation. Following crossover 
functions are considered: 

─ two-point function, 
─ constraint dependent function, 
─ heuristic function. 

They can be seen at Fig. 7. 

 

Fig. 7. Comparison of the different crossover functions: 
A) two-point, B) constraint dependent, C) heuristic 



It can be seen that best optimization result is achieved using constraint dependent 
function. Constraint dependent chooses scattered function when there are no linear 
constraints, and chooses intermediate function when there are linear constraints. 
These choices ensure that feasible parents give rise to feasible children, where feasi-
bility is with respect to bounds and linear constraints. Scattered function is used ex-
ternally because there are no linear constraint functions. Scattered crossover function 
creates a random binary vector. It then selects the genes where the vector is a 1 from 
the first parent, and the genes where the vector is a 0 from the second parent, and 
combines the genes to form the child. 

After executing specified experiments, best GA functions for specified EV charg-
ing problem can be selected. Thus, best optimization results achieved using top scal-
ing function with quantity 0.4, stochastic uniform selection function, adaptive feasible 
mutation function and scattered crossover function.  

7 Conclusion 

In the paper the authors considered the possibility of utilization of the GAs for de-
veloped in the previous researches EV charging infrastructure. Review of the main 
characteristics of the EVs, charging, smart grid and GAs was carried out by the au-
thors. Current researches related to implementing GAs for managing EV s charging 
are considered and analyzed. After investigation and executing simulation experi-
ments it is possible to make an assumption that utilization of the GAs for EVs charg-
ing problem is promising optimization approach. As the future work, it is planned to 
develop own GA which will handle optimization of the developed EV charging infra-
structure. 

Scientific novelty of the work is that number of GA scheduling techniques were 
considered and analysed. One optimization method on the basis of GA was selected 
as optimal after comparison. Simulation experiments were executed for that method 
using different GA options. Those were compared and selected optimal options for 
specified problem. This method is proposed to use for later researches to provide 
optimization of the developed EV charging infrastructure. 
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