
Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

Linguistic Analysis Method of Ukrainian Commercial
Textual Content for Data Mining

Oleg Bisikalo1[0000-0002-7607-1943], and Victoria Vysotska2[0000-0001-6417-3689]

1Vinnytsia National Technical University, Vinnytsia, Ukraine
obisikalo@gmail.com

2Lviv Polytechnic National University, Lviv, Ukraine
Victoria.A.Vysotska@lpnu.ua

Abstract. This article deals with the scientific and practical task of automati-
cally detecting significant keywords and rubricating Ukrainian content in Inter-
net systems based on the method of linguistic analysis of text information. The
article presents theoretical and experimental substantiation of the method of
linguistic analysis of Ukrainian content using Porter's stemming. The method is
aiming to automatically detect significant keywords of Ukrainian content on the
basis of the proposed formalization of components of analysis - grammatical
(grapheme), morphological, syntactic, semantic, referential, and structural.

Keywords: Text, Ukrainian, Algorithm, Content Monitoring, Keywords, Con-
tent analysis, Porter's Stemmer, Linguistic Analysis, Syntactic Analysis.

1 Introduction

In practical terms, the analysis of the symbolic level of the organization of naturalistic
text is limited to the separation of syntactic punctuation from the word itself, the allo-
cation of abbreviations, abbreviations, etc. Analysis of existing texts shows that at the
level of sign organization of the text one is using the descriptive capabilities of the
semiotic system to encode knowledge about fragments of real reality. For instance,
the use of quotation marks (for example, the movie theater “Star”) indicates that the
token in quotation marks cannot be considered in the meaning given in the dictionary.
The proper names given in the text may coincide with the spelling of common words,
but have different meanings (for example, the group Black September, Black Friday,
student Sophia Vovk (wolf), assistant Andriy Krolik (rabbit), teacher Nadiya Kohut
(cock), singer Katya Chile, singer Vinnytska Alona, Actor David Duchovny as Fox
William Mulder, Liberty Avenue, May 1 Street, Actress Sarah Gabriel, Actress
Nastya Zadorozhna, etc.). In addition, a number of tokens in the text are not subject to
the grammatical rules of the language, but act as semantic units of sign level (for ex-
ample, the number 30, the percentage value of 15%, the reduction of millions, thou-
sand or kg, etc.). These features of naturalistic text make it necessary to develop a
significant level of text organization as the initial stage of building a model for under-

standing text. A linguistic method of processing textual information to automatically
detect meaningful keywords consists of six steps.

1. Grammatical (graphemic) analysis of textual content that is, parsing text with re-
gard to the features of graphs of different languages.

2. Morphological analysis of textual content.
3. Syntax analysis of textual content.
4. Semantic analysis of textual content.
5. Reference analysis for the formation of interphase unities.
6. Structural analysis of textual content.

The input of the graphemic (two-graphemic) analysis or parsing step is the current
text file and the a priori reference models (lines and characters). Separation of such
units of text as a name, designation, title, etc. allows us to identify at this stage some
functional elements of the structure of concepts. Therefore, it is advisable to begin
with an analysis of character-level text to solve the urgent problem of forming effec-
tive domain-specific knowledge recognition procedures. The electronic component of
this is electronic dictionaries of abbreviations, geographical names, names. This ap-
proach is caused by the diversity of sign (grapheme) representation of lexical units in
the text, which defines their different semantic functions in one context or another.
For the automated processing of naturalistic information, it is also essential to define
the structure of the text - to separate service information, highlight paragraphs, head-
ings, and more. The text is considered as a sort of organized sequence of lines and
graphemes.

2 Relate the Highlighted Issue to Important Scientific and
Practical Work

The article deals with the scientific and practical task of automatically detecting sig-
nificant keywords and rubricating Ukrainian-language content in Internet systems
based on the method of linguistic analysis of textual information. The work was per-
formed within the framework of joint scientific researches of the Department of In-
formation Systems and Networks of the Lviv Polytechnic National University on the
topic «Research, development and implementation of intelligent distributed informa-
tion technologies and systems based on database resources, data warehouses, data
spaces and knowledge in order to accelerate the formation processes of modern in-
formation society», as well as the department of automation and information-
measuring technique of Vinnytsia National Technical University within spine Re-
search Center of Applied and Computational Linguistics. The results of the research
were carried out within the framework of the state budget research works on the top-
ics "Development of methods, algorithms and software for modeling, designing and
optimization of intellectual information systems based on Web technologies «WEB»
and "Intelligent information technology of image analysis of text and synthesis of
integrated knowledge base language content". Scientific research was also carried out

within the framework of the initiative topics of the ISM Department of Lviv Poly-
technic National University on the development of intelligent distributed systems
based on an ontological approach to integrate information resources.

3 Analysis of Recent Research and Publications

Text content (article, commentary, book, etc.) contains a considerable amount of data
in natural language, some of which is abstract [1-7]. The text is presented as a unified
sequence of character units, the main properties of which are information, structural
and communicative connectivity / integrity, which reflects the content / structure of
the text [8-22]. The method of text processing is linguistic content analysis (e.g.,
comments, forums, articles, etc.) [23-30]. The process of text processing divides the
content into tokens using finite state machines (Fig. 1).

Fig. 1. Structural diagram of linguistic analysis of textual content

4 Analysis of Scientific Results

As a functional-semantic-structural unity, the text conforms to the rules of construc-
tion, reveals the regularities of content and formal connection of constituent units.
Cohesiveness is manifested through external structural indicators and formal depend-
ence of the text components, and integrity through thematic, conceptual and modal
dependence. Integrity leads to a meaningful and communicative organization of text,
and coherence to a form, a structural organization. Therefore, it is proposed to analyze
the multilevel content structure in the analysis: linear sequence of characters; linear

sequence of morphological structures; linear sequence of sentences; a network of
interconnected unities (Alg. 1).

Algorithm 1. Linguistic analysis of textual content.
Stage 1. Grammatical (graphemic) analysis of textual content 1С .

Step 1. Divide textual commercial content 1С 2С into sentences and paragraphs.

Step 2. Divide the content character chain 2С into words.

Step 3. Allocate numbers, numbers, dates, unchanged turns, and content cuts 2С .

Step 4. Publish non-text content 2С characters.

Step 5. Formation and analysis of linear content enhancement technology for con-
tent 2С .

Stage 2. Morphological analysis of textual content 2С .

Step 1. Obtained the basic (word form with cut offs).
Step 2. A grammatical category is formed for different words (collection of gram-

matical meanings: rarity, deviation, deviation).
Step 3. Formation of linear ability of morphological structure.
Stage 3. Syntax analysis 324 ,,:α СTUС K of textual content 2С .

Stage 4. Semantic analysis of textual content 3С .

Step 1. The word matches the semantic classes in the dictionary.
Step 2. Selection of morphosemantic alternatives required for this review.
Step 3. Cut the words into a single structure.
Step 4. Generate an orderly number of superposition entries with basic lexical

functions and semantic classes. The accuracy of results is the most commonly used /
corrective dictionary.

Stage 5. Reference analysis for interphase unities.
Step 1. Contextual analysis of text commercial content 3С . With it, the resolution

of local references (the one that is, his) is realized and the expression of the expres-
sion is the kernel of unity.

Step 2. Thematic analysis. Separation of statements on a theme and a rheum allo-
cates thematic structures which are used, for example, at formation of a digest.

Step 3. Determine the regular repetition, synonymization and re-nomination of
keywords; the identity of the reference, that is, the ratio of words to the subject of the
image; presence of implication based on situational connections.

Stage 6. Structural analysis of textual content 3С . The prerequisites for use are a

high degree of coincidence of terms of unity, a discursive unit, a sentence in a seman-
tic language, utterance, and an elementary discursive unit.

Step 1. Identify the basic set of rhetorical connections between content unities.
Step 2. Building a nonlinear unity network. The openness of a link set involves its

extension and adaptation to analyze the structure of the text 3С .

Let us consider in detail each of the stages of the proposed algorithm.
Step 1. Grammatical (graphemic) analysis of textual content. The grapheme is

called the minimum content unit of written text. The objective of this level of recogni-
tion is to build a formalized representation of the grapheme structure of the text and to

develop a formal apparatus for separating and classifying text units on multiple lines
and graphs. Generalized recognition algorithm works with certain restrictions on the
input text: formatted width; does not contain hyphenation; Does not contain objects as
a table, figure, formula or graphic symbol; submitted in known languages, such as
English, Ukrainian, and German, rather than Ancient Egyptian, Mongolian, or Elven.
The ultimate goal of recognizing the graphemic level of text representation is to build
a grapheme structure of text, which includes separating on a plurality of lines and
graphemes of input such semantically independent units of text as fragments (dis-
courses), sentences, syntagms, tokens, and defining the types (classes) of enumerated
units of text and units the relationship between them in a specific input text. The
process of recognition at the grapheme level of the text representation involves two
stages, as shown in Fig. 2.

Input text information (line,
character)

Reference models

Row classifier

Character classifier

Reference models

Dictionary of names

Dictionary of geographical
names

Glossary of abbreviations

The procedure of grapheme
analysis

The procedure of pragmatic
analysis

Procedure for data
formation for

morphological analysis

Marked text

Fragments

Tokens:
- language,

- non-linguistic,
- conventionally linguistic

Grapheme structure

Fragments

Sentence

Syntagms

Tokens

Relation

Input data Software modules Output data

Fig. 2. Structural-logistical scheme of recognition of knowledge from the subject area at the
graphemic stage of textual information analysis

The purpose of the first stage is to separate substantively separate fragments in the
text, tokens in each fragment of the text and determine the language of the input text
and / or fragments of the text. The input of the first stage is the current text file and a
priori reference models of rows and graphs. The string classifier includes the follow-
ing significant classes: empty string (EmpStr), full string (full string, FulStr), incom-
plete right (IncRgt), incomplete left (IncLgt), symmetric incomplete (SmtInc). The
rules for recognizing lines in the text are given in Table. 1. Many reference models of
graphems are conveniently presented in the normal Backus-Naur (BPF) form, the
abbreviations of which are given in the table. 2. Consider grammar G = < V, T, S, P >,
where the alphabet is V = < Gr, T >; terminal symbols are T : = < A, B, C, D, E, F, G,
H, I, J, K, L, M, N, O, Q, P, R, S, T, U, W, V, X, Y, Z, Ä, Ö, Ü, Ą, Ć, Ę, Ł, Ń, Ó, Ś,
Ź, Ż, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, w, v, x, y, z, ä, ö, ü, ß, ą, ć, ę, ł,
ń, ó, ś, ź, ż, А, Б, В, Г, Д, Е, Ж, З, И, Й, К, Л, М, Н, О, П, Р, С, Т, У, Ф, Х, Ц, Ч, Ш,

Щ, Ь, Ю, Я, Є, І, Ї, Ґ, Ы, Э, Ъ, а, б, в, г, д, е, ж, з, и, й, к, л, м, о, н, п, р, с, т, у, ф,
х, ц, ч, ш, щ, ь, ю, я, є, і, ї, ґ, ы, э, ъ, ‘> and a list of tuples for those defined in Table
2 elements of the set of reference models of graphems:

Table 1. Rules for recognizing lines in text in the grapheme stage

Line name First
position

Last position All positions

Empty string (EmpStr) – – Gap

Full string (FulStr) Symbol Symbol –

Incomplete right (IncRgt) Symbol Gap –

Incomplete left (IncLgt) Gap Symbol –

Symmetric incomplete (SmtInc) Gap Gap –

Table 2. Denomination of the elements of the set of reference models of graphems

N Name Abbr. N Name Abbr.
1 Grammar G 35 Ukrainian small letter Usm

2 Аlphabet V 36 Russian capital letter Rcp

3 Term Т 37 Russian small letter Rsm

4 Initial character S 38 Consonant letter Cnl

5 Production rules P 39 Vowel letter Vwl

6 Symbol Sb 40 Latin capital consonant letter Lcc

7 Space Sp 41 Latin small consonant letter Lsc

8 Digit Dgt 42 Latin capital vowel letter Lcv

9 Special symbol Ssb 43 Latin small vowel letter Lsv

10 Syntactic sign Ssg 44 Cyrillic capital consonant letter Ccc

11 Letter Ltr 45 Cyrillic small consonant letter Csc

12 Latin letter Lat 46 Cyrillic capital vowel letter Ccv

13 Cyrillic letter Cyr 47 Cyrillic small vowel letter Csv

14 English alphabet Eng 48 English capital consonant letter Ecc

15 German alphabet Ger 49 English small consonant letter Esc

16 Polish alphabet Pol 50 English capital vowel letter Ecv

17 Ukrainian alphabet Ukr 51 English small vowel letter Esv

18 Russian alphabet Rus 52 German capital consonant letter Gcc

19 Official symbol Osb 53 German small consonant letter Gsc

20 Brackets Bsb 54 German capital vowel letter Gcv

21 Mathematical symbol Msb 55 German small vowel letter Gsv

22 Capital letter Cpl 56 Polish capital consonant letter Pcc

23 Small letter Sml 57 Polish small consonant letter Psc

24 Latin capital letter Lcp 58 Polish capital vowel letter Pcv

N Name Abbr. N Name Abbr.
25 Latin small letter Lsm 59 Polish small vowel letter Psv

26 Cyrillic capital letter Ccp 60 Ukrainian capital consonant letter Ucc

27 Cyrillic small letter Csm 61 Ukrainian small consonant letter Usc

28 English capital letter Ecp 62 Ukrainian capital vowel letter Ucv

29 English small letter Esm 63 Ukrainian small vowel letter Usv

30 German capital letter Gcp 64 Russian capital consonant letter Rcc

31 German small letter Gsm 65 Russian small consonant letter Rsc

32 Polish letter Pcp 66 Russian capital vowel letter Rcv

33 Polish small letter Psm 67 Russian small vowel letter Rsv

34 Ukrainian capital letter Ucp

1. Gr : = < Sb Sp > is recognized text content as a set of characters and spaces;
2. Sp : = <_> is space as terminal symbol;
3. Sb : = < Ltr Dgt Ssb Ssg > is plural letters, numbers, special characters, and

syntax characters;
4. Ltr : = <LatCyrEngGerPolUkrRusCplSmlCnlVwl‘> is a set of

Latin, Cyrillic, English, German, Polish, Ukrainian, Russian letters, including up-
percase and lowercase letters of the respective languages, consonants and vowels,
as well as apostrophe as a terminal symbol;

5. Dgt : = < 0 1 2 3 4 5 6 7 8 9 > is a set of numbers;
6. Ssb : = < Osb Bsb Msb > is service characters set, brackets and math symbols;
7. Ssg : = <«»“”,.:;-?!> is terminal symbols of syntactic characters;
8. Cpl : = < Lcp Ccp Ecp Gcp Pcp Ucp Rcp > is a set of capital letters

of the respective languages;
9. Sml : = < Lsm Csm Esm Gsm Psm Usm Rsm > is a set of lowercase

letters of the respective languages;
10. Lat : = < Lcp Lsm > is a set of Latin letters both capital and small;
11. Cyr : = < Ccp Csm > is a set of Cyrillic letters both capital and small;
12. Eng : = < Ecp Esm > is a set of English letters both capital and small;
13. Ger : = < Gcp Gsm > is a set of German letters both capital and small;
14. Pol : = < Pcp Psm > is a set of Polish letters both capital and small;
15. Ukr : = < Ucp Usm > is a set of Ukrainian letters both capital and small;
16. Rus : = < Rcp Rsm > is a set of Russian letters both capital and small;
17. Osb : = <№%/@#$&*\> is a set of terminal service characters;
18. Bsb : =< [] { } () > is a set of terminal characters of brackets;
19. Msb : = < + < > = > is a set of terminal mathematical symbols;
20. Cnl : = < Ecc Esc Gcc Gsc Pcc Psc Ucc Usc Rcc Rsc > is a

set of uppercase and lowercase letters of the respective languages;

21. Vwl : = < Ecv Esv Gcv Gsv Pcv Psv Ucv Usv Rcv Rsv > is a
set of uppercase and lowercase letters of the respective languages;

22. Lcp : = < Lcc Lcv Q V X > is Latin capital letters;
23. Lsm : = < Lsc Lsv q v x > is Latin lowercase letters;
24. Ccp :. = < Ccc Csv Ь Й > is Cyrillic capital letters;
25. Csm : = < Csc Csv ь й > is Cyrillic lowercase letters;
26. Ecp : = < Lcc Lcv Q V X > is English capital letters;
27. Esm : = < Lsc Lsv q v x > is English lowercase letters;
28. Gcp : = < Lcc Lcv Ä Ö Ü Q V X > is German capital letters;
29. Gsm : = < Lsc Lsv ä ö ü ß q v x > - German lowercase letters;
30. Pcp : = < LccLcvĄĆĘŁŃÓŚŹŻ > is Polish capital letters;
31. Psm : = < LscLsvąćęłńóśźż > is Polish lowercase letters;
32. Ucp : = < Ccc Ccv Є І Ї Ґ > is Ukrainian capital letters;
33. Usm : = < Csc Csv є і ї ґ> is Ukrainian lowercase letters;
34. Rcp : = < Ccc Ccv Ы Э Ъ > is Russian capital letters;
35. Rsm : = < Csc Csv ы э ъ> is Russian lowercase letters;
36. Lcc : = < B C D F G H J K L M N P R S T

W Z> is terminal Latin capital consonant letters;
37. Lcv : = < A E I O U Y> is terminal Latin capital loud letters;
38. Lsc : = < b c d f g h j k l m n p r s t w x

z > is terminal Latin lowercase consonant letters;
39. Lsv: = < a e i o u v y > is terminal Latin lowercase loud letters;
40. Ccc : = < Б В Г Д Ж З К Л М Н П Р С Т Ф

Х Ц Ч Ш Щ > is terminal Cyrillic capital consonant letters;
41. Csv : = < А Е И О У Ю Я > is terminal Cyrillic capital loud letters;
42. Csc := < б в г д ж з к л м н п р с т ф х ц

 ч ш щ > is terminal Cyrillic lowercase consonant letters;
43. Csv : = < а е и о у ю я > is terminal Cyrillic lowercase loud letters.

The following production rules are offered to recognize the language of the text:
P := < SS Gr, S, GrGr Sb, GrGr Sp, Gr, Sp_, SbLtr, Sb Dgt, SbSsb,
SbSsg, LtrLat, LtrCyr, LtrEng, LtrGer, LtrPol, LtrUkr, LtrRus, LtrCpl,
LtrSml, LtrCnl, LtrVwl, Ltr‘, SsbOsb, SsbBsb, SsbMsb, CplLcp, CplCcp,
CplEcp, CplGcp, CplPcp, CplUcp, CplRcp, SmlLsm, SmlCsm, SmlEsm, Sml
Gsm, SmlPsm, SmlUsm, SmlRsm, LatLcp, LatLsm, CyrCcp, CyrCsm, Eng
Ecp, EngEsm, GerGcp, GerGsm, PolPcp, PolPsm, UkrUcp, UkrUsm, Rus
Rcp, RusRsm, LcpLcc, LcpLcv, LcpQ, LcpV, LcpX, LsmLsc, LsmLsv, Lsm
q, Lsmv, Lsmx, CcpCcc, CcpCsv, CcpЬ, CcpЙ, CsmCsc, CsmCsv, Csm
ь, Csmй, EcpLcc, EcpLcv, EcpQ, EcpV, EcpX, EsmLsc, EsmLsv, Esm
q, Esmv, Esmx, GcpLcc, GcpLcv, GcpÄ, GcpÖ, GcpÜ, GcpQ, GcpV,
GcpX, GsmLsc, GsmLsv, Gsmä, Gsmö, Gsmü, Gsmß, Gsmq, Gsmv, Gsm
x, PcpLcc, PcpLcv, PcpĄ, PcpĆ, PcpĘ, PcpŁ, PcpŃ, PcpÓ, PcpŚ,

PcpŹ, PcpŻ, PsmLsc, PsmLsv, Psmą, Psmć, Psmę, Psmł, Psmń, Psmó,
Psmś, Psmź, Psmż, UcpCcc, UcpCcv, UcpЄ, UcpІ, UcpЇ, UcpҐ, Usm
Csc, Usm Csv, Usmє, Usmі, Usmї, Usmґ, RcpCcc, RcpCcv, RcpЫ, RcpЭ,
RcpЪ, RsmCsc, RsmCsv, Rsmы, Rsmэ, Rsmъ, LccB, LccC, LccD, Lcc
F, LccG, LccH, LccJ, LccK, LccL, LccM, LccN, LccP, LccR, LccS, Lcc
T, LccW, LccZ, LcvA, LcvE, LcvI, LcvO, LcvU, LcvY, Lscb, Lscc,
Lscd, Lscf, Lscg, Lsch, Lscj, Lsck, Lscl, Lscm, Lscn, Lscp, Lscq, Lsc
r, Lscs, Lsct, Lscw, Lscx, Lscz, Lsva, Lsve, Lsvi, Lsvo, Lsvu, Lsvv,
Lsvy, CccБ, CccВ, CccГ, CccД, CccЖ, CccЗ, CccК, CccЛ, CccМ,
CccН, CccП, CccР, CccС, CccТ, CccФ, CccХ, CccЦ, CccЧ, CccШ,
CccЩ, CsvА, CsvЕ, CsvИ, CsvО, CsvУ, CsvЮ, CsvЯ, Cscб, Cscв,
Cscг, Cscд, Cscж, Cscз, Cscк, Cscл, Cscм, Cscн, Cscп, Cscр, Cscс,
Cscт, Cscф, Cscх, Cscц, Cscч, Cscш, Cscщ, Csvа, Csvе, Csvи, Csv
о, Csvу, Csvю, Csvя >.
These production rules are used to identify meaningful units of analysis GC UU ,

text commercial content X (phrase, sentence, theme, idea, author, character, social
situation, part of the text, clustered in the content of the category of analysis) (STEP 1
parsing based on the language of the text fragments) by a modified Potter algorithm
(STAGE 2 stemming). We have the following requirements for choosing a linguistic
unit of analysis: great for interpreting value; small in order not to interpret many
meanings; easily identified; the number of units is large to isolate the sample.

Stage 2. Morphological analysis of textual content is to find the basics of words,
for example [8] cuts out suffixes, prefixes, etc., leaving only the basis of the word
(stemming). There are known algorithms for finding the basics, for example [8] cuts
out suffixes, prefixes, etc., leaving only the base of the word. They also cut out the
key words with a simple word-selection function, then each of the words is recog-
nized by the base and written into a table, for example: keywords. However, we have
the disadvantage - we need to take into account all the rules of formation of words in
the Ukrainian language (flexions depending on gender and pronunciation, parts of the
language, suffixes, prefixes, alternation of words in the basis of pronunciation, singu-
lar and plural, etc.). For example, for such words from the set M = {пошуковими,
користувачам, високорейтингового, рейтингу}, such algorithms do not work (blue
indicates the reason why it does not work - was not included in the rules). Increasing
the rules geometrically increases the workload on the processing processes, for exam-
ple, the task of checking and defining keys for 100 articles a day requires you to
check every word through the finisher, suffixes, etc. - the complexity of the algorithm
increases to the critical limit. For English-language texts, the complexity is less - there
are only two cases and one ending for nouns. Already for German the complexity is
increasing - 4 letters, compound words are spelled together with 2, 3 and more words
and more. In [8] the algorithm works for L = {Автомат – Автомат, Автомата –
Автомат, Автоматом – Автомат, Ресурсів – ресурс}. But it is better not to find
the root by cutting it off unnecessarily, but by having thematic dictionaries of the
basics of key words to find in the text these basics of words, their distribution (more
at the beginning, or at the end, or in the middle of the text), and frequency of use rela-
tive to the total volume. And through the basis of doing statistics, it is to calculate the

number of identical bases. There is a well-known algorithm for English-language
texts - Porter's stemmer [9], but for Ukrainian texts it does not work perfectly.

Porter’s Stemmer is a Stemming algorithm published by Martin Porter in 1980.
The original version of Stemmer was designed for English and was written in BCPL.
Subsequently, Martin created the Snowball project and, using the basic idea of the
algorithm, wrote Stemmer for common Indo-European languages, including Russian
[10-17]. The algorithm does not use the bases of words, but only, following a series of
rules, cuts off endings and suffixes, based on the features of the language, and there-
fore works quickly, but not always error-free. The algorithm was very popular and
duplicated, often changed by different developers, and not always successfully.
Around 2000, Porter decided to “freeze” the project and continue to distribute a single
implementation of the algorithm (in several popular programming languages) from
his site [10-17]. For example, this algorithm takes into account in Ukrainian-language
texts only the presence of an ending, and the suffixes - not then, the words search,
search identifies, and search - no. The form of the flexion determines the type of
word, for example,

var $ADJECTIVE =
'/(ими|ій|ий|а|е|ова|ове|ів|є|їй|єє|еє|я|ім|ем|им|ім|их|іх|ою|йми|іми|у|
ю|ого|ому|ої)$/'; //http://uk.wikipedia.org/wiki/Прикметник +
http://wapedia.mobi/uk/Прикметник
 var $PARTICIPLE = '/(ий|ого|ому|им|ім|а|ій|у|ою|ій|і|их|йми|их)$/';
//http://uk.wikipedia.org/wiki/Дієприкметник
 var $VERB =
'/(сь|ся|ив|ать|ять|у|ю|ав|али|учи|ячи|вши|ши|е|ме|ати|яти|є)$/';
//http://uk.wikipedia.org/wiki/Дієслово
 var $NOUN =
'/(а|ев|ов|е|ями|ами|еи|и|ей|ой|ий|й|иям|ям|ием|ем|ам|ом|о|у|ах|иях|ях|ы
|ь|ию|ью|ю|ия|ья|я|і|ові|ї|ею|єю|ою|є|еві|ем|єм|ів|їв|\'ю)$/';
//http://uk.wikipedia.org/wiki/Іменник

Features of the algorithm. The algorithm works with individual words, so the con-
text in which the word is used is unknown. Linguistics categories such as word struc-
ture (root, suffix, etc.) and parts of language (noun, adjective, etc.) are also not avail-
able. We currently have the following techniques for analyzing words:

 The term is cut off from the word, for example, ending the увати turns the word
критикувати into a критик.

 The word has an constant ending. Words with this ending remain unchanged. Ex-
ample – ск and constant words блиск, тиск, обеліск and more.

 The word changes the ending. This rule applies to words in which certain letters
fall out during cancellation (ядро and ядер – ending ер changes by p) or change
(чоловік and чоловіче - к changes by ч).

 The word corresponds to a regular expression. This is an attempt to combine sev-
eral rules into one difficult one. Perhaps this technique will not live up to the final
version of the algorithm. But now, the code contains expressions similar to: (ов)*,
ува(в|вши|вшись|ла|ло|ли|ння|нні|нням|нню|ти|вся|всь|лись|лися|тись|тися)

 The word does not change when it is being staged, but it is an exception to the
rules. This is an undesirable case for the algorithm. It forces the vocabulary of ex-
ception words to hold. Examples of the віче, наче.

 The word changes during stemming, but is also an exception. This is the worst case
for the algorithm because it forces two words to be stored in the dictionary at once:
the original and the stemmed. For example, the word відер should be changed to
відр, although other words ending as ер are not so categorized (авіадиспетчер,
вітер, гравер etc.).

 Short words remain unchanged. Service parts of a language (prepositions, conjunc-
tions, parts) are usually very short words that are ignored by the algorithm (words
up to 2 letters inclusive).

All of these techniques are applied by groups that form the rules of stemming. But
this significantly complicates the algorithm for finding keychains. Therefore, it is first
suggested to consider common endings - not traditional endings, as part of a word, but
the sequence of letters that end a word (Table 3-4). In the Table 3-4 endings of words
1 to 4 letters long are given. Five or more letters are not taken into account, since
there are not enough such words (for the maximum of 5 йтесь (6837), for 6 - ванням
(4656), etc.). This has created a kind of map for the project of stemming. The purpose
of the project is to build a static termination tree and to capture the algorithm of all
branches of the tree. Generally, a more detailed tree can be built [18-22], but for com-
mercial content we choose a weighted level of detail - from 500 words with common
ending. Consider in more detail the idea of a Porter’s stemmer, namely finding the
basis of a word for a given source word [23-30]. The algorithm does not use the bases
of words, but works consistently using a number of rules for truncating endings and
suffixes (Fig. 3).

Table 3. Statistic table of common word-endings

Word-endings (number)
я (164062) ння (9001) мось (20536) али (10666) ному (19112) ові (17191)

ся (148160) в (32681) лось (10231) ними (19089) о (90454) сті (8731)

лися (10338) ня (9765) тись (10366) м (119779) мо (33568) ості (7636)

ося (30769) а (68134) лись (10337) т (2980) го (31445) ю (80877)

ься (25211) ь (151355) тесь (19105) ім (31343) ло (17238) ою (39616)

ися (21940) сь (111459) лась (10229) им (31166) ймо (11229) ню (10075)

еся (19105) ть (33055) ість (7606) ам (20154) ємо (11136) ною (20280)

шся (11775) ось (30788) и (123402) ом (17018) ого (31389) кою (7497)

ася (10235) ись (22656) ми (62080) ям (15717) ало (10465) нню (9054)

вся (10076) есь (19114) ти (20025) нім (19333) ного (19090) стю (7648)

юся (8044) ась (10239) ли (17711) ним (19093) і (90275) у (94504)

лася (10230) всь (10016) ими (31121) ням (9434) ні (31679) му (35023)

мося (20532) сть (7688) ами (20106) нням (8975) ві (22543) ну (23125)

Word-endings (number)
лося (10233) юсь (8047) ями (9844) ку (11624) ті (12596) ній (19549)

ться (25036) ють (11222) ати (10819) ому (31585) нні (9909) ний (19042)

их (31127) ах (20023) ях (9855) них (19092) ї (34702) ої (31421)

тися (10379) ів (15898) ав (10547) ш (19163) єш (11138) є (11466)

Table 4. Statistic word-endings tree whose total weight is less than 1%

Word-endings (number)
р (2709) ч (959) г (636) п (341) щ (110)

н (2531) с (914) з (581) б (281) ц (34)

д (1038) л (754) ж (353) ф (214) ґ (4)

Fig. 3. Structural diagram of Porter's stemmer algorithm

First, let's introduce some definitions:

 Vowels letters are а, е, і, ї, о, у, и, е, ю, я.
 RV is part of the word after the first vowel. It is empty if there are no vowels in the

word.
 R1 is part of the word after the first combination is vowel-consonant.
 R2 is part of R1 after the first combination is vowel-consonant.

For example, in the word інформаційний: RV = нформаційний, R1 = формаційний,
R2 = маційний. Now let's define several classes of word endings, leaving their origi-
nal names in the original description of the algorithm.
Class 1. PERFECTIVE GERUND

 Group 1: в, вши, вшися. The ending should be preceded by the letter а or я.
 Group 2: ив, ивши, ившися.

Class 2. ADJECTIVE
а, е, і, и, ими, іми, ій, ий, їм, ім, им, ього, ого, ьому, ому, їх, их, ую, юю, ая, яя, ою, єю.
Class 3. PARTICIPLE

 Group 1: вш, юва, ува, уч, юч, л. The ending should be preceded by letter а or я.
 Group 2: нн, н, ячи, ачи, ова, ову, єм.

Class 4. REFLEXIVE are ся, сь.
Class 5. VERB

 Group 1: ла, є, єте, йте, ли, люю, й, в, єм, ємо, ний, ло, ть, но, ють, ні, ть,
єш. The ending should be preceded by the letter а or я.

 Group 2: ила, ела, ена, йте, ите, єте, юй, уй, їй, ай, ало, ив, или, имо, ений,
ило, їло, ено, ють, ать, ені, ять, іть, ить, иш, ую, ю.

Class 6. NOUN are а, ев, ов, і, тя, е, ами, іями, ями, єї, єю, ями, ям, ії, и, ою, ій, ой, ий,

й, им, им, ім, ам, ом, о, у, ах, ях, ую, ю, ія, я.
Class 7. SUPERLATIVE (найдовший, миліший, більший) are ш, іш.
Class 8. DERIVATIONAL (милість, щедрість, малість, крайність) is ість.
Class 9. ADJECTIVAL defined as ADJECTIVE or PARTICIPLE + ADJECTIVE.
For example: падюча = пада + юч + а.

Rules. When looking for an ending, the longest one is chosen. For example, in the
word інформація ія needs to be chosen, not я. All inspections are conducted on a part
RV. So, when checking for PERFECTIVE GERUND the previous letters а and я
should also be inside the RV. Letters before RV don’t take part in inspections at all.

Step 1. To find and ending of PERFECTIVE GERUND. If it exists, then delete it
and complete step. In other words, delete the ending of REFLEXIVE (if exists). Then
in the following order check and if there is an ending delete: ADJECTIVAL, VERB,
NOUN. Once one of them is found, then the step is completed.

Step 2. If the word ends with і – delete і.
Step 3. If in the Step 2 there will be an end DERIVATIONAL, then delete it.
Step 4. One of three options is possible:

1. If the word ends with н, delete the last letter.
2. If the word ends with SUPERLATIVE, delete it and delete the last letter again if

the word ends with н.
3. If the word ends with ь, delete it.

Stage 3. Syntax analysis of textual content. Syntax is known to be a set of rules that
make it possible to construct formulas and recognize the correct formulas in the se-
quence of characters. It is important for the symbolic computation system that all but
one of the expression logic operations are binary. This will be based on a parser. We
will consider the process of revising the input sequence of characters in order to parse
the grammatical structure according to the given formal grammar. A parser is a pro-
gram or part of a program that performs parsing [10]. Generally (not just in the com-
puter industry), the term syntactic parsing means the breakdown of text into parts of a
language with the identification of their forms, purpose and syntactic relationship
with other parts. This is largely determined by the stage of learning the differences
and positioning parts of a particular language that can be quite difficult to formalize in
inflected languages [22]. It is not at all easy to parse the sentences of such languages.
For example, there are significant ambiguities in the structure of human language, that
is, words and expressions that can themselves convey meaning in a vast number of
variants, but only one of the meanings is relevant in a particular case. The success of
choosing the right value in the vast majority of cases depends on many factors of
contextual content, and it is almost impossible to predict all combinations of meaning.
It is difficult to prepare formal rules for describing informal behavior, although, of
course, there are strict rules, many of which form the basis of the grammar that forms
the basis of the parser. During parsing, the text is framed into a data structure, usually
a tree that matches the syntax structure of the input sequence and is well suited for
further processing. As a rule, parser work in two stages: the first identifies meaningful
tokens (lexical analysis is performed), the second creates a parse tree. For example
(Fig. 4), for arithmetic expression 1+ 2*3:

Fig. 4. An example of parsing an expression into a tree

A token is a sequence of one or more characters that stand out as an atomic object.
The process of forming tokens is called tokenization or lexical analysis. Tokens are
distinguished on the basis of the basic rules of the lexical analyzer (or lexer), which
often differ depending on the scope [22]. Tokens are often classified by the position
(location) of characters in the character sequence or context in the data stream. This is
not just about highlighting a group of characters that are delimited by punctuation on
either side (spaces or punctuation). Tokens are defined by the token rules and include
grammatical elements of the language used in the data stream. In natural languages,
these are usually categories of nouns, verbs, adjectives, or punctuation. The categories
are used in the further processing of tokens with a parser or other functions in the
program. The tasks of lexical analysis are as follows [20]:

 Convert a character set to a token sequence.

 Highlight each token as a logical part of the text (keyword, variable name, punc-
tuation mark, etc.).

 Matching token and token - specific token text (“for”, “variable”, “;”, etc.).
 Selection of additional token attributes (e.g. variable value).
 Formation of an output token sequence that will be used by the parser as input.

The lexical analyzer usually does nothing with the combination of tokens it has allo-
cated. For example, a typical lexical analyzer recognizes parentheses as characters,
but does not check for each open parenthesis "(" closed parenthesis ")". This task
remains for the parser or parser.

Step 4. Semantic analysis of textual content. Latent-semantic analysis is a
method of processing information in natural language that allows you to analyze the
relationship between a collection of documents (messages, articles, i.e. textual con-
tent) and terms (keywords) that occur in them. Compares some factors (topics) to all
documents and terms. Initially, words correlate with semantic vocabulary classes.
Then, the morphosemantic alternatives needed for this sentence are selected. What
follows is the linking of words into a single structure and the formation of an ordered
set of superposition entries of basic lexical functions and semantic classes. The accu-
racy of the result is determined by the completeness / correctness of the dictionary.

Step 5. Reference analysis for the formation of interphase unities. A contextual
analysis of textual content is carried out. With it, the resolution of local references
(the one that is, his) is realized and the expression of the expression is the kernel of
unity. The following is a thematic analysis. Separation of statements on a theme and a
rheum allocates thematic structures which are used, for example, at formation of a
digest. Define regular repeatability, synonymization and re-nomination of keywords;
the identity of the reference, that is, the relation of the words to the object of reflec-
tion; presence of implication based on situational connections.

Step 6. Structural analysis of textual content. The prerequisites for use are a
high degree of coincidence of terms of unity, a discursive unit, a sentence in a seman-
tic language, utterance, and an elementary discursive unit. A basic set of rhetorical
relationships between content unities is identified and a nonlinear unity network is
constructed [1-7]. The openness of a link set involves its extension and adaptation to
analyze the structure of the text. There are several ways to use semantic analysis to
define keywords as a phrase, that is, to define terms 1KUNoun is nouns, noun

phrases, or noun adjective among a plurality of text content words. For example, by
the rules:

1. If the keyword is an adjective (flexion of the word ий - masculine noun). Then all
the words used to the right of this adjective in any case are found in the text (the
search follows the basis of this adjective) and a frequency dictionary is built for
them. Those phrases that use more than a certain limit (but can be used less than
the adjective itself) and are new keywords. The limit is determined by moderator.

2. If the keyword is a noun (flexion of the word is not ий), then all words to the right
and left of it are analyzed.

3. First, all words to the left of him are checked for flexion ий. A frequency diction-
ary is also being built. It is determined by the set of words that occur most often
with a certain moderator defined limit - these are the new keywords.

4. Then all the words on the right are analyzed - they should all be without flexion ий.
Similarly, a frequency vocabulary is used to define many keywords.

Experimental studies. 100 scientific publications of the Bulletin of the Lviv Poly-
technic National University of the series "Information Systems and Networks"
(http://science.lp.edu.ua/sisn) from 783 and 805 (http://science.lp.edu.ua/SISN/SISN-
2014, http://science.lp.edu.ua/sisn/vol-cur-805-2014-2) were selected as the linguistic
base for the experimental study of the proposed method. The analysis of statistics of
functioning of the system of detection of a set of keywords from 100 scientific articles
was carried out in two stages, in particular:

1. Analyze all articles by checking common block words and thematic vocabulary.
2. Analyze all articles by checking refined blocked words and refined thematic vo-

cabulary (with more startup, a set of unknown words (missing both in the thematic
dictionary and in many blocked ones) is formed.

In addition, at each stage, the review was performed in two steps for each article:
analysis of the entire article (http://victana.lviv.ua/index.php/kliuchovi-slova) and
analysis of the article without beginning (title, authors, editors, annotations in two
languages, authors keywords in two languages, authors' place of work), and no litera-
ture list to determine errors in the accuracy of multiple keyword formation (Fig.5).

а)
0

2

4

6

8

10

12
Author's keywords Number of words
Stage 1, Step 1 Stage 1, Step 2
Stage 2, Step 1 Stage 2, Step 2

b)

0

20

40

60

80

1 2 3 4 5 6 7 8 9

Less than average Above average

Fig. 5. The results of the review of 100 articles

In Fig. 5a) the diagram of analysis of statistics of formation by set of sets of all poten-
tial keywords in comparison with the set defined by authors of articles is presented.
The first column is the average number of keywords identified by the author (4.77),
and the second is the average number of words that make up those author keywords
(9.82). The third column is the arithmetic mean of the potential keywords defined
systematically in Step 1, Step 1 (5.46); the fourth is in step 1, step 2 (6.51); the fifth -
in step 1, step 1 (7.43); sixth - in step 2, step 2 (8.35). Label these columns accord-
ingly 61 AA . The value 3A is different from the value 1A by 0.69 (in quantity but not

in content); accordingly 4A is different from 1A by 1.74; 5A from 1A by 2.66; 6A

from 1A by 3.58. The value 2A is different from the value 3A by 4.36; accordingly

2A from 4A by 3.31; 2A from 5A by 2.39; 2A from 6A by 1.47. Therefore, on av-

erage, the author of an article defines fewer keywords than is actually present in this
work. Adjusting the system parameters increases the number of defined keywords by
almost 2 times (with a similar comparison the value 1A with he value 3A more at

1.144654; 4A – at 1.36478; 5A – at 1.557652; 6A – at 1.750524). The total increment

of the value obtained by the system depending on the moderation of the dictionaries is
accordingly 3A – 14.46541; 4A – 36.47799; 5A – 55.7652; 6A – 75.05241. If consis-

tently compare 2A with 63 AA (in how many times the value 2A is greater), then we

get accordingly the range 1.7985; 1.5084; 1.3217; 1.176.
In Figure 5, b) shows a chart that contains statistics on more detailed textures in the

analyzed articles, where 1 is an analysis of the page of the article page (husband's
manual and average reference), 2 is paragraphs in the article, 3 is lines of text, 4 is
words. 5 is characters, 6 is characters and spaces, 7 is words on the page, 8 - charac-
ters on the page, 9 - characters and prints on the page.

In Figure 6 shows the distribution diagram of the set of sets of all potential key-
words for each article compared to the set defined by the authors of the articles.

0

5

10

15

20

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Author's keywords System Defined - Stage 1 System Defined - Stage 2

Fig. 6. The results of the inspection of 100 articles

Keyword accuracy is enhanced during the dictionary moderation process. The dif-
ference between the number of keywords identified by the author and the system de-
fined in step 1, step 1 is 44.39919% (the percentage difference). The accuracy is im-
proved in step 1, step 2 is 33.70672%, it is significantly improved in step 2, step 1 is
24.33809%, and in step 2, step 2 is already 14.96945%.

In the Table 5 the results of an analysis of the statistics of the set of sets of all po-
tential keywords for each article compared to the set defined by the authors of the
articles are presented, where A is for the author's keywords, B is for the system-
defined keywords in stage 1 (step 1), C is for the key words system-defined keywords
in stage 1 (step 2), D is for system-defined keywords in stage 2 (step 1), E is for sys-
tem-defined keywords in stage 2 (step 2). In the Table 6-7 the statistics of the analysis
of the text of the articles in the formation of sets of keywords for the construction of
appropriate histograms for groups A-E are presented.

Table 5. Descriptive statistics for keyword formation for the texts studied

А B C D E

Average 4.8080808 5.5151515 6.5656566 7.5050505 8.4343434
Standard error 0.1808594 0.3103929 0.3903499 0.3012972 0.3246112
Median 4 5 6 7 8
Moda 4 5 5 7 8
Standard deviation 1.7995281 3.0883707 3.8839324 2.9978691 3.2298405
Sample dispersion 3.2383014 9.5380334 15.084931 8.9872191 10.43187
Kurtosis 0.6528151 1.7052728 0.7486433 -0.456455 -0.504378
Asymmetry 0.9479385 1.1253053 1.0657159 0.5375984 0.5170473
Interval 8 16 17 12 13
Minimum 2 1 1 2 3
Maximum 10 17 18 14 16
Sum 476 546 650 743 835
Account 99 99 99 99 99
The biggest(1) 10 17 18 14 16
The smallest(1) 2 1 1 2 3
Reliability level (95.0%) 0.3589095 0.6159647 0.7746366 0.5979144 0.6441803

Table 6. Statistics for histograms for group A and group B

А Frequency Integral % А Frequency Integral %
1 0 0.00% 4 27 27.27%
2 4 4.04% 5 21 48.48%
3 20 24.24% 3 20 68.69%
4 27 51.52% 6 11 79.80%
5 21 72.73% 8 8 87.88%
6 11 83.84% 7 5 92.93%
7 5 88.89% 2 4 96.97%
8 8 96.97% 10 3 100.00%
9 0 96.97% 1 0 100.00%

10 3 100.00% 9 0 100.00%
11 0 100.00% 11 0 100.00%
12 0 100.00% 12 0 100.00%
13 0 100.00% 13 0 100.00%
14 0 100.00% 14 0 100.00%
15 0 100.00% 15 0 100.00%
16 0 100.00% 16 0 100.00%
17 0 100.00% 17 0 100.00%
18 0 100.00% 18 0 100.00%

Mor 0 100.00% Mor 0 100.00%

B Frequency Integral % B Frequency Integral %
1 2 2.02% 5 20 20.20%
2 10 12.12% 7 16 36.36%
3 12 24.24% 3 12 48.48%
4 4 28.28% 2 10 58.59%
5 20 48.48% 6 9 67.68%
6 9 57.58% 4 4 71.72%
7 16 73.74% 8 4 75.76%
8 4 77.78% 10 4 79.80%
9 2 79.80% 11 3 82.83%

10 4 83.84% 12 3 85.86%
11 3 86.87% 14 3 88.89%
12 3 89.90% 1 2 90.91%
13 2 91.92% 9 2 92.93%
14 3 94.95% 13 2 94.95%
15 1 95.96% 16 2 96.97%
16 2 97.98% 18 2 98.99%
17 0 97.98% 15 1 100.00%
18 2 100.00% 17 0 100.00%

Mor 0 100.00% Mor 0 100.00%
The author of a scientific article usually chooses at his discretion the number of key-
words in the range of 2 to 8 words (most often 3-5 keywords). The system also de-
fines a different number of words, depending on the writing style of the particular
author (there are articles in which the system does not find any keywords by Zipf
law). For group B, most often the system determined the number of keywords 5, 7
and 3 (more than 10), although the distribution of found keywords ranged from 1 to
18 words (except 17). For Group B, the system most commonly identified keywords
as 5, 7, and 3, although the distribution of keywords found ranged from 1 to 18 words
(except 17), but the number of keywords found increased and the highest reliability
was achieved. For Group C, the system most often determined the number of key-
words 7, 6, 5, 10 and 8, although the distribution of found keywords ranged from 2 to

14 words (significantly narrowed the range). For Group D, the number of keywords 8,
5, 7, and 10 was most often determined by the system, although the distribution of the
keywords found ranged from 3 to 16 words (improved accuracy).

Table 7. Statistics for histograms for group C, group D and group E

С Frequency Integral % С Frequency Integral %
1 2 2,02% 5 20 20,20%
2 10 12,12% 7 16 36,36%
3 12 24,24% 3 12 48,48%
4 4 28,28% 2 10 58,59%
5 20 48,48% 6 9 67,68%
6 9 57,58% 4 4 71,72%
7 16 73,74% 8 4 75,76%
8 4 77,78% 10 4 79,80%
9 2 79,80% 11 3 82,83%

10 4 83,84% 12 3 85,86%
11 3 86,87% 14 3 88,89%
12 3 89,90% 1 2 90,91%
13 2 91,92% 9 2 92,93%
14 3 94,95% 13 2 94,95%
15 1 95,96% 16 2 96,97%
16 2 97,98% 18 2 98,99%
17 0 97,98% 15 1 100,00%
18 2 100,00% 17 0 100,00%

More 0 100,00% More 0 100,00%

D Frequency Integral % D Frequency Integral %
1 0 0.00% 7 15 15.15%
2 1 1.01% 6 14 29.29%
3 5 6.06% 5 13 42.42%
4 9 15.15% 10 12 54.55%
5 13 28.28% 8 11 65.66%
6 14 42.42% 4 9 74.75%
7 15 57.58% 12 6 80.81%
8 11 68.69% 3 5 85.86%
9 4 72.73% 14 5 90.91%

10 12 84.85% 9 4 94.95%
11 1 85.86% 13 3 97.98%
12 6 91.92% 2 1 98.99%
13 3 94.95% 11 1 100.00%
14 5 100.00% 1 0 100.00%
15 0 100.00% 15 0 100.00%
16 0 100.00% 16 0 100.00%
17 0 100.00% 17 0 100.00%
18 0 100.00% 18 0 100.00%

Mor 0 100.00% Mor 0 100.00%

E Frequency Integral % E Frequency Integral %
1 0 0.00% 8 14 14.14%
2 0 0.00% 5 12 26.26%
3 1 1.01% 7 11 37.37%
4 9 10.10% 10 11 48.48%
5 12 22.22% 4 9 57.58%
6 9 31.31% 6 9 66.67%
7 11 42.42% 9 9 75.76%
8 14 56.57% 11 5 80.81%
9 9 65.66% 14 5 85.86%

10 11 76.77% 12 4 89.90%
11 5 81.82% 13 4 93.94%
12 4 85.86% 15 3 96.97%
13 4 89.90% 16 2 98.99%
14 5 94.95% 3 1 100.00%
15 3 97.98% 1 0 100.00%
16 2 100.00% 2 0 100.00%
17 0 100.00% 17 0 100.00%
18 0 100.00% 18 0 100.00%

Mor 0 100.00% More 0 100.00%

5 Conclusions

The article presents theoretical and experimental substantiation of the method of lin-
guistic analysis of Ukrainian-language commercial content using Porter's stemming.
The method is aimed at automatic detection of significant keywords of Ukrainian-
language content on the basis of the proposed formalization of components of analy-
sis is grammatical (graphemes), morphological, syntactic, semantic, referential and
structural. To implement grammatical analysis, the rules of line recognition in the text
are proposed, the set of standard graph models for 5 languages according to the nor-

mal Backus-Naur form is determined, and the corresponding grammar G = <V, T, S,
P> for identifying meaningful units of textual commercial content analysis. The mor-
phological analysis was implemented by adapting Stemming M. Porter's algorithm to
the Ukrainian language, in particular, a static end-tree was constructed and a weighted
level of detail was selected - from 500 words with common endings, rules for trunca-
tion of endings and suffixes were substantiated. The basic requirements and proce-
dures of syntactic, semantic, referential and structural analysis of Ukrainian-language
commercial content are defined. An experimental study of the method of linguistic
analysis was conducted on the materials of 100 scientific publications from two issues
(783 and 805) of the Bulletin of the Lviv Polytechnic National University of the series
"Information Systems and Networks" (http://science.lp.edu.ua/sisn). Based on the
proposed method, the keyword search system demonstrated the ability to improve
itself by forming and refining a number of common blocked words and a thematic
dictionary with the participation of moderators. It is found that, for the technical sci-
entific texts of the experimental base, the authors of articles usually define fewer
keywords on average than are actually present in this work. Numerous statistics show
that debugging your system's keywords nearly doubles the number of defined key-
words, without compromising accuracy or reliability. Further experimental research
will require testing the proposed method to identify keywords from other categories
of texts is scientific humanities, artistic, nonfiction, etc.

References

1. Bobicev, V., Kanishcheva, O., Cherednichenko, O.: Sentiment Analysis in the Ukrainian
and Russian News. In: First Ukraine Conference on Electrical and Computer Engineering,
1050-1055 (2017)

2. Sharonova, N., Doroshenko, A., Cherednichenko, O.: Issues of fact-based information
analysis. In: CEUR Workshop Proceedings, 2136, 11-19 (2018)

3. Cherednichenko, O., Babkova, N., Kanishcheva, O.: Complex Term Identification for
Ukrainian Medical Texts. In: CEUR Workshop Proceedings, 146-154 (2018)

4. Khomytska, I., Teslyuk, V., Holovatyy, A., Morushko, O.: Development of methods, mod-
els, and means for the author attribution of a text. In: Eastern-European Journal of Enter-
prise Technologies, 3(2-93), 41-46 (2018)

5. Khomytska, I., Teslyuk, V.: Authorship and Style Attribution by Statistical Methods of
Style Differentiation on the Phonological Level. In: Advances in Intelligent Systems and
Computing III. AISC 871, Springer, 105-118 (2019)

6. Babichev, S.: An Evaluation of the Information Technology of Gene Expression Profiles
Processing Stability for Different Levels of Noise Components. In: Data, 3(4), 48 (2018)

7. Babichev, S., Durnyak, B., Pikh, I., Senkivskyy, V.: An Evaluation of the Objective Clus-
tering Inductive Technology Effectiveness Implemented Using Density-Based and Ag-
glomerative Hierarchical Clustering Algorithms. In: Advances in Intelligent Systems and
Computing, 1020, 532-553 (2020)

8. Lytvyn, V., Vysotska ,V., Peleshchak, I., Basyuk, T., Kovalchuk, V., Kubinska, S., Chy-
run, L., Rusyn, B., Pohreliuk, L., Salo, T.: Identifying Textual Content Based on Thematic
Analysis of Similar Texts in Big Data. In: International Scientific and Technical Confer-
ence on Computer Science and Information Nechnologies (CSIT), 84-91 (2019)

9. Moseіchuk, V.: Porter stemming algorithm for Ukrainian languages.
http://www.marazm.org.ua/document/stemer_ua/

10. Vysotska, V., Lytvyn, V., Kovalchuk, V., Kubinska, S., Dilai, M., Rusyn, B., Pohreliuk,
L., Chyrun, L., Chyrun, S., Brodyak, O.: Method of Similar Textual Content Selection
Based on Thematic Information Retrieval. In: International Scientific and Technical Con-
ference on Computer Science and Information Nechnologies (CSIT), 1-6 (2019)

11. Russian stemming algorithm. http://snowball.tartarus.org
12. Porter stemmer. https://github.com/allaud/porter-stemmer
13. The Porter Stemming Algorithm. http://tartarus.org/~martin/PorterStemmer/
14. Porter Stemming Algorithm. http://snowball.tartarus.org/algorithms/porter/stemmer.html
15. English stemming algorithm. http://snowball.tartarus.org/algorithms/english/stemmer.html
16. Porter, M. F.: An algorithm for suffix stripping.

http://telemat.det.unifi.it/book/2001/wchange/download/stem_porter.html
17. Willett, P.: The Porter stemming algorithm: then and now.

http://eprints.whiterose.ac.uk/1434/
18. Senyk, M. The Porter Stemming Algorithm for Ukrainian. http://www.senyk.poltava.ua
19. Vysotska, V., Fernandes, V.B., Lytvyn, V., Emmerich, M., Hrendus, M.: Method for De-

termining Linguometric Coefficient Dynamics of Ukrainian Text Content Authorship. In:
Advances in Intelligent Systems and Computing, 871, 132-151 (2019)

20. Lytvyn, V., Vysotska, V., Pukach, P., Nytrebych, Z., Demkiv, I., Senyk, A., Malanchuk,
O., Sachenko, S., Kovalchuk, R., Huzyk, N.: Analysis of the developed quantitative
method for automatic attribution of scientific and technical text content written in Ukrain-
ian. In: Eastern-European Journal of Enterprise Technologies, 6(2-96), 19-31 (2018)

21. Vysotska, V., Lytvyn, V., Hrendus, M., Kubinska, S., Brodyak, O.: Method of textual in-
formation authorship analysis based on stylometry. In: 13th International Scientific and
Technical Conference on Computer Sciences and Information Technologies, 9-16 (2018)

22. Kulchytskyi, I.: Statistical Analysis of the Short Stories by Roman Ivanychuk. In: CEUR
Workshop Proceedings, Vol-2362, 312-321 (2019)

23. Shandruk, U.: Quantitative Characteristics of Key Words in Texts of Scientific Genre (on
the Material of the Ukrainian Scientific Journal). In: CEUR Workshop Proceedings, Vol-
2362, 163-172 (2019)

24. Lovins, J.B.: Development of a stemming algorithm. In: Mechanical Translation and
Computational Linguistics 11:22–31 (1968)

25. Jongejan, B., Dalianis, H.: Automatic training of lemmatization rules that handle morpho-
logical changes in pre-, in- and suffixes alike.
http://www.aclweb.org/anthology/P/P09/P09-1017.pdf

26. Vysotska, V., Kanishcheva, O., Hlavcheva, Y.: Authorship Identification of the Scientific
Text in Ukrainian with Using the Lingvometry Methods. In: Computer Sciences and In-
formation Technologies, CSIT, 34-38 (2018)

27. Vysotska, V., Burov, Y., Lytvyn, V., Demchuk, A.: Defining Author's Style for Plagiarism
Detection in Academic Environment. In: Proceedings of the 2018 IEEE 2nd International
Conference on Data Stream Mining and Processing, DSMP, 128-133 (2018)

28. Lytvyn, V., Vysotska, V., Burov, Y., Bobyk, I., Ohirko, O.: The linguometric approach for
co-authoring author's style definition. In: Intelligent Data Acquisition and Advanced Com-
puting Systems, IDAACS-SWS, 29-34 (2018)

29. Hardcoded stemmer for Ukrainian. https://github.com/vgrichina/ukrainian-stemmer
30. Perestoronin, P.: The Porter Stemming Algorithm for Russian.

http://blog.eigene.in/post/49598738049/snowball

