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Abstract. This paper describes an approach aimed at structuring of the gener-
ated transaction database in the process of forming a market basket using the 
rough set theory. The analysis of the recent publications and achievements 
showed that the structuring, categorization and classification at the stage of pre-
liminary transaction analysis, before rules discovery, remain underdeveloped. 
The paper describes cases for a target set of the elements of the universe, that 
are classified into categories based on the equivalence relation. Approximations 
are proposed for the formal representation of such a set based on the rough set 
theory. A detailed example of the analysis and classification of transactions 
with various sets of objects is given. 
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1 Introduction  

The modern affinity analysis is one of the common techniques of data mining that 
discovers relationships between co-occurring activities. 

Affinity analysis is mainly used for market basket analysis, the purpose of which is 
to detect associations between different events for the quantitative description of the 
connection between two or more events, which are called association rules. Such rules 
have two basic concepts: a transaction – a certain set of events co-occurring together 
(for example, a customer purchasing goods at a supermarket) and an itemset – a non-
empty set of goods that have been bought in a single transaction. 

Nowadays supermarkets collect information about purchases and store it in a data-
base to be used later for association rules discovery. 

However, the data gathered this way is not structured, since the transactions are 
written to the database one after another and their attributes, such as the frequency of 
transactions, the size of the itemset, its cost indicators etc., are not taken into account. 



2 Formal problem statement 

Thus, the database is loaded with the unstructured data where each storage unit can be 
represented by a finite number of attributes. This leads to a task of categorization and 
classification of unstructured data as well as the reducing of the amount of data by 
removing superfluous transactions. 

The aim of this paper is to develop a methodology for structuring a transaction da-
tabase at the preliminary stage of their analysis using the rough set theory. 

3 Literature review 

A series of recent publications [1, 2, 5-11, etc.] discusses the development of meth-
ods, techniques and algorithms for the analysis of transactions and the binary associa-
tion rules discovery in them. So, in the work [1], a rather in-depth review of the exist-
ing approaches to the search for numerical, generalized, temporal and fuzzy associa-
tions was performed. 

In [2], the problem of constructing bases of numerical associative rules is solved: a 
method for synthesizing bases of associative rules is developed, in which the transac-
tion database is fuzzified, threshold support values are calculated, criteria are used to 
evaluate indirect associations, which reduces the degree of user or expert participa-
tion [3, 4] in the process of searching for associative rules, and also allows you to 
retrieve not only frequently found sets, but rarely arising interesting associative rules. 

The work [5] is devoted to a comparative analysis of the tools for association rules 
discovery (Apriori, DHP, Partition, DIC, etc.). In the work [6], the combined use of 
associative analysis and the decision tree method for solving economic problems is 
considered. 

It should be noted that the existing publications generally propose the tools for the 
direct search for binary association rules in transactions. At the same time, the task of 
structuring and classification at the stage of preliminary transaction analysis, before 
rules discovery, remains underdeveloped. The theory of rough sets of Z. Pawlak [12] 
can be used to perform this task. This theory was further developed in [13-21]. It op-
erates with the arrays of disordered (rough) data and, through their categorization, 
gives them a structured form. 

In [13-17], authors outline some selected past and present research directions of 
rough sets. In particular, has emphasize the importance of searching strategies for 
relevant approximation spaces as the basic tools in achieving computational building 
blocks (granules or patterns) required for approximation of complex vague concepts. 
In [18], proposes a hybrid multi-granulation rough sets based on variable precision 
tolerance relations. Basic properties of hybrid multi-granularity rough set of variable 
precision are discussed, which provides a new approach to deal with the incomplete 
information system. A new generalization of coarse fuzzy sets in the generalized ap-
proximation space is proposed in [19-21]. The equivalence relations are viewed as a 
special type of a binary relations of a universe. Then, the rough fuzzy sets in general-
ized approximation space is defined. 



 

4 Basic framework of the rough set theory 

This theory defines a knowledge base as K=(U, R), where U – is a finite set of objects 
(the universe), R – is an equivalence relation on U. For any R there is an associated 
equivalence relation IND(R). The relation IND(R) is called R-indiscernibility relation. 
Each partition includes elements that have the same values of classification features 
(attributes). Within each partition, elements are considered indiscernible. 

Let X∈U be a target set while the objects of U are categorized based on the attrib-

ute R, then the following situations are to be considered: 

1. A set X is called crisp (exact) with respect to R if and only if the boundary region 
of X is empty. The boundary region consists of those objects that can neither be 
ruled in nor ruled out as members of the target set X. 

2. A set X is called rough (inexact) with respect to R if and only if the boundary re-
gion of X is nonempty. 

In order to characterize the set X with respect to R, additional notation and basic 
concepts of rough set theory are presented below: 

1. R-lower approximation of a rough set X is a subset of all objects which can be with 
certainty classified as members of X with respect to IND(R): 

 XIND(R)}:Y{YXR    (1) 

2. R-upper approximation of a rough set X is a set of all objects which can be only 
classified as possible members of X with respect to IND(R): 

 ØXIND(R)}:Y{YXR    (2) 

The R-lower approximation of X is called R-positive region of X: 

 XR(X)RPOS   (3) 

The R-negative region of X is a subset of the objects of the universe that can be 
definitely ruled out as members of a target set X: 

 XRU(X)RX:NEG   (4) 

The boundary region of a set X is a subset of all the objects that belong to the R-
upper approximation of X: 

 XRXRXRBN )(  (5) 



5 Example 

Let us consider a knowledge base K=(U, R), where U={x1,x2,…,x10} – is the universe, 
R – is an equivalence relation [13]. The selected equivalence classes are: 

 }}.},{x},{x},{x},{x},{x,x,x},{x,x{{xU/IND(R) 98654107321  

The two target sets are: },x,x,x{xX 54211  , },x,x,x{xX 43212  .  

The approximations, negative and boundary regions of the sets were obtained as 
follows: 

},x,x,x{xXR 54211  , 

ØXR 1 ; 

},,,,,{ 10987631 xxxxxx)(XNEG R  , 

ØXBN R )( 1 . 

 
},x,x{xXR 4212  , 

},,,,,{ 10743212 xxxxxxXR  ; 

},,,{ 98652 xxxx)(XNEGR  , 

},,{)( 10732 xxxXBN R  . 

In order to evaluate the accuracy of the rough set representation of the set X, the 
following estimates were introduced: 

1. ØX
XRcard

XRcard
XR  ,)( . 

The accuracy of the rough set representation of X displays the degree of complete-
ness of existing knowledge and is in the range ]1,0[)( XR . If the boundary region 

of X is empty, i.e. XRXR  , then 1)( XR  and X is crisp (precise) with respect to 

R. And otherwise, if XRcardXRcard  , then 1)( XR  and X is rough (vague) 

with respect to R. 

2. The value of roughness of X )(1)( XX RR   was introduced as an alternative 

for the accuracy )(XR . The value characterizes the degree of incompleteness of 

existing knowledge. 

In general, the procedure of transaction classification using the rough set theory 
can be carried out in the following way: 

─ if the new transaction belongs to the lower approximation of a certain class, then it 
belongs to this class; 



 

─ if a new transaction belongs to the negative region of a particular class of transac-
tions, then it can be with certainty identified as one that does not belong to this 
class; 

─ if a new transaction belongs to the boundary region of a particular class, then it is 
undecided whether it belongs to this class. 

6 Practical application of the proposed idea 

Let us consider a detailed example of the analysis and classification of transactions 
(n=15) with various itemsets (Xi). The universe of transactions, their itemsets, and 
attributes are presented in table 1. 

Table 1. The universe of transactions, itemsets and attributes 

Attributes Transac-
tions 

(Tri) 

Itemsets 
a1 a2 a3 a4 a5 a6 a7 a8 a9 

Tr1 X1 1 1 1 1 1 1 1 2 2 
Tr2 X2 1 0 0 0 1 0 1 0 0 
Tr3 X3 0 1 1 0 0 1 1 0 1 
Tr4 X4 1 0 0 0 1 0 1 0 0 
Tr5 X5 0 0 1 1 1 0 1 1 1 
Tr6 X6 1 1 1 0 0 0 0 1 1 
Tr7 X7 0 1 0 1 0 1 0 0 1 
Tr8 X8 1 0 0 0 1 0 1 0 0 
Tr9 X9 0 0 1 1 1 0 1 1 1 
Tr10 X10 0 1 1 0 0 1 1 0 1 
Tr11 X11 1 1 1 0 0 0 0 1 1 
Tr12 X12 0 1 0 1 0 1 0 1 0 
Tr13 X13 0 0 0 0 1 1 0 0 0 
Tr14 X14 1 0 0 0 0 0 1 0 0 
Tr15 X15 0 0 0 0 1 1 0 0 0 

The following main product groups of the market basket were selected as attrib-

utes 9,1, iai : a1 – meat products; a2 – dairy products; a3 – vegetables; a4 – fruits; 

a5 – baked goods; a6 – confectionery products; a7 – drinks. The listed attributes are 
evaluated on a verbal-numeric scale: “the attribute is present in the transaction” – “1”, 
“the attribute is not present in the transaction” – “0”. Additionally, a8 is included in 
the list of attributes – the size of the itemset with gradations: “small” – “0”; “aver-
age” – “1”; “large” – “2”, as well as a9 – the cost of the itemset with gradations: 
“low” – “0”; “medium” – “1” and “high” – “2”. 

Using the equivalence relation, let us divide the universe U of the table 1 into parti-
tions: 



};{)(/ 11 XRINDU   

};,,{)(/ 8422 XXXRINDU   

};,{)(/ 1033 XXRINDU   

};,{)(/ 954 XXRINDU   

};,{)(/ 1165 XXRINDU   

};{)(/ 76 XRINDU   

};{)(/ 127 XRINDU   

};,{)(/ 15138 XXRINDU   

}{)(/ 149 XRINDU  . 

The base of transactions for the universe is defined by: 

)EEEEEEEE(U,EBTr 987654321 ,,,,,,,, , 

where };{ 11 XE   };,,{ 8422 XXXE   };,{ 1033 XXE   };,{ 954 XXE   

};,{ 1165 XXE   };{ 76 XE   };{ 127 XE   };,{ 15138 XXE   }{ 149 XE   – are the 

families of equivalence classes of U; the elements that belong to each of such classes 
are indiscernible. 

The new transactions with the following itemsets were formed: 

UXXXXXXXXX  )1(
14121097531

(1) },,,,,,,,{X ; 

UXXXXXXXXX  )2(
15131176532

(2) },,,,,,,,{X ; 

UXXXXXXXXX  )3(
1412765421

(3) },,,,,,,,{X ; 

UXXXXXXXXX  )4(
1412987542

(4) },,,,,,,,{X ; 

UXXXXXXXXX  )5(
151412117653

(5) },,,,,,,,{X . 

Let us estimate the representation accuracy of the sets )()()()()( ,X,X,X,XX 54321 . 

The set )(X 1  can be defined with certainty as a union of transaction classes, that is: 

 976431
)1( EEEEEEX   

 }{}{}{},{},{}{ 14127951031 XXXXXXXX   

},,,,,,,{ 14121097531 XXXXXXXX . 

The set )(X 2  includes elements from the classes 865 , E,EE  and one element from 

each of the classes 432 , E,EE . Therefore, this set is rough. 

The set )(X 3  includes elements from the classes 9761 ,, EE,EE , two elements 

},{ 42 XX  from the class 2E , an element 5X  from the class 4E , and an element 6X  

from the class 5E . Therefore, this set is also rough. 



 

The set )(X 4  includes elements from the classes },,{ 8422 XXXE  , 

},{ 954 XXE  , }{ 76 XE  , }{ 127 XE  , }{ 149 XE  , therefore, it can be unambigu-

ously represented by a union of the listed transaction classes, that is: 

 97642
)4( EEEEEX   

 }{}{}{},{},,{ 1412795842 XXXXXXXX   

},,,,,,,{ 1412987542 XXXXXXXX . 

The set )(X 5  includes elements from the classes },{ 1165 XXE  , }{ 76 XE  , 

}{ 127 XE  , }{ 149 XE   and one element from each of the classes },{ 1033 XXE  , 

},{ 954 XXE  , },{ 15138 XXE  , i.e. this set is also rough. 

Using (1)-(5), let's calculate the approximations of the sets 
)()()()()( ,X,X,X,XX 54321  in the following way: 

;,,,,,,, 14121097531
11 }XXXXXXX{XXRXR )()(   

;,,,,,,,)( 14121097531
)1()1( }XXXXXXX{XXRXPOSR   

};,,,,,,{)( 1513118642
)1()1( XXXXXXXXRUXNEGR   

;)( )1()1()1( ØXRXRXBNR   

;1
8

8
)(

)1(

)1(
)1( 

XRcard

XRcard
XR  

.0)(1)( )1()1(  XX RR   

 

;,,,, 15131176
2 }XXXX{XXR )(   

;,,,,,,,,,, 13111098765432
2 }XXXXXXXXXX{XXR )(   

;,,,,)( 15131176
)2()2( }XXXX{XXRXPOSR   

};,,{)( 14121
)2()2( XXXXRUXNEGR   

};,,,,,,{)( 10985432
)2()2()2( XXXXXXXXRXRXBNR   

;42.0
12

5
)(

)2(

)2(
)2( 

XRcard

XRcard
XR  

.58.0)(1)( )2()2(  XX RR   

 

;,,, 141271
3 }XXX{XXR )(   

;,,,,,,,,,, 14121198765421
3 }XXXXXXXXXX{XXR )(   

;,,,)( 141271
)3()3( }XXX{XXRXPOSR   

};,,,{)( 1513103
)3()3( XXXXXRUXNEGR   



};,,,,,,{)( 11986542
)3()3()3( XXXXXXXXRXRXBNR   

;36.0
11

4
)(

)3(

)3(
)3( 

XRcard

XRcard
XR  

.64.0)(1)( )3()3(  XX RR   

 

;,,,,,,, 1412987542
44 }XXXXXXX{XXRXR )()(   

;,,,,,,,)( 1412987542
)4()4( }XXXXXXX{XXRXPOSR   

};,,,,,,{)( 15131110631
)4()4( XXXXXXXXRUXNEGR   

;)( )4()4()4( ØXRXRXBNR   

;1
8

8
)(

)4(

)4(
)4( 

XRcard

XRcard
XR  

.0)(1)( )4()4(  XX RR   

 

;,,,, 14121176
5 }XXXX{XXR )(   

;,,,,,,,,, 15141312111097653
5 }XXXXXXXXXX{XXR )(   

;,,,,)( 14121176
)5()5( }XXXX{XXRXPOS R   

};,,,{)( 8421
)5()5( XXXXXRUXNEGR   

};,,,,,{)( 151310953
)5()5()5( XXXXXXXRXRXBNR   

;45.0
11

5
)(

)5(

)5(
)5( 

XRcard

XRcard
XR  

.55.0)(1)( )5()5(  XX RR   

The obtained results indicate that the target sets )(X 1  and )(X 4  completely be-
longs to the union of the classes 986421 ,,,, EEEE,EE  and 97642 ,,, EEE,EE ; 

1)( )1( XR , 1)( )4( XR . The sets )(X 2 , )(X 3  and )(X 5  cannot be classified 

with certainty because 5802 .)(Xρ )(
R  , 6403 .)(Xρ )(

R   and 5505 .)(Xρ )(
R  . 

In such a situation, the mathematical apparatus of the rough set theory offers three 
strict rules for the classification of target sets that characterize transactions and their 
itemsets: 

ji EX  , if )(EPOSX jRi  ; 

ji EX  , if )(ENEGX jRi  ; 

ji EX   or ji EX  , if )(EBNX jRi  . 

It implies that for a reliable classification of transactions, only first and fourth deci-
sion rules can be used. 



 

7 Conclusion 

The presented approach is aimed at structuring of the generated transaction database 
in the process of forming a market basket using the rough set theory. The basis of this 
theory is the procedure for equivalence relations formation that is used to distinguish 
categories (classes) of transactions that are considered indiscernible within each cate-
gory. When the transactions cannot be completely described by the obtained classes, 
specific approximations and estimates of their accuracy are introduced, which assess 
the degree of belonging or completeness of non-membership of such transactions in 
these classes. 

Ultimately, a classified transaction database will increase the selectivity of the 
search for binary association rules. 
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