
Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

A model of semantic web service in a distributed
computer system

Nataliia Kulykovska1[0000-0003-4691-5102], Stepan Skrupsky2[0000-0002-9437-9095],
Tetiana Diachuk3[0000-0002-2478-0588]

1 "Zaporizhzhia Polytechnic" National University, Zhukovsky str., 64,Zaporizhzhia, 69063,
Ukraine

natalya.gontar@gmail.com
2 "Zaporizhzhia Polytechnic" National University, Zhukovsky str., 64,Zaporizhzhia, 69063,

Ukraine
sskrupsky@gmail.com

3 "Zaporizhzhia Polytechnic" National University, Zhukovsky str., 64,Zaporizhzhia, 69063,
Ukraine

diacht@gmail.com

Abstract. One of the main tasks of any distributed computer system is the
analysis of the properties of the obtained data, and their further use for logical
reasoning. This is a difficult task due to the frequently encountered dynamics
and heterogeneity of information. The aim of the work is to present a knowl-
edge-based web service model. The web service integrates with the technolo-
gies of the semantic web in order to study the data, their processing and infer-
ence. The goal is achieved as follows: the meta-metamodel of the web service
ontology and the metamodel of the semantic web service are structured using
UML class diagrams and formalized using ALC description logic. The scien-
tific novelty of the results is the presentation of a service description through an
ontology. Through the introduction of ontologies, a transition is being made in
data mining. In contrast to the application of standards: SOAP, WSDL, HTTP,
the use of ontologies is argued that they contain structured information about
the functional and non-functional characteristics of the service, and give flexi-
bility to the description. When working with ontologies, there is a powerful
logical apparatus for searching, combining and comparing ontologies. By intro-
ducing ontologies, knowledge of the web service is represented. The develop-
ment of an ontology / web service pair gives an advantage over the SAWSDL,
OWL-S standards, because the web service developer has the ability to create a
more accurate semantic description of the service. We presented the language
features and constructs of ontology of web service descriptions. Step by step,
we created semantic description to describe web services. After learning how to
use OWL to formally express web service semantics, we moved on to the issue
of actually adding semantics to service descriptions. For the first time, formal
models of service ontology and semantic web service are proposed.

Keywords: semantic web service, service oriented architecture, distributed sys-
tems, model, ontology, description logic

1 Introduction

Distributed computer systems (DS) based on a service-oriented architecture (SOA)
are independent of development technologies and platforms, while applications run-
ning on one platform can call services running on other platforms in a standard way
[1]. The main burden of performing computational operations with such an architec-
ture rests with web services (WS) that solve all the problems of modeling the de-
signed systems; client applications have only the simplest functions for preparing data
and displaying simulation results.

Since WS can operate at a higher level of abstraction, analyzing and process-
ing data types in a dynamic way, the individual software components are given the
opportunity to interact more openly [2]. When using the universally described inter-
faces, it becomes possible to reuse software components, which reduces the complex-
ity of the development of DS and correctly accumulate the data.

SOA is a heterogeneous environment, and it is developing towards creating a more
structured set of solutions where WS should be represented in some unified way and
equally detectable, able to communicate with other objects, and also be directly inte-
grated with the Internet infrastructure and other services, independently from the
functionality of the service [3].

Using semantic web technologies in the development of WS in the DS allows you
to:

 go to the intellectualization of the description of XML-based interfaces and inter-
actions, combining any type of application with another application, and providing
freedom of change and development over time as long as the corresponding inter-
face is supported;

 use a higher level of software abstraction and data description logic;
 take into account the weakness of the software, due to which the interaction be-

tween the applications of the service is not broken every time the design or imple-
mentation of a service changes;

 provide existing or legacy software service interface without changing the original
applications;

 make decisions based on available data.

Key idea of semantic web services is to annotate web services with concepts which
are defined in formal logic-based ontologies such that, from an artificial intelligence
perspective, intelligent agents and service-based applications can actually reason on
such formal service semantics. In contrast to web service descriptions, this may facili-
tate not only the semantic interoperation between services but their automated logic-
based composition planning and a more precise service search [4].

The aim of the work is to present a knowledge-based web service model. The WS
integrates with the technologies of the semantic web in order to study the data, their
processing and inference. The scientific novelty of the results is the presentation of a
service description through an ontology. Through the introduction of ontologies, a
transition is being made in data mining.

2 Literature review

SOA is an approach for designing and developing DS [5]. By this approach, design,
development, and implementation of DS are possible due to the web technology [6].
However, interoperability of services in SOA is not limited to web services [7, 8], the
WS are the most suitable technology for successful SOA [9]. In DS based on SOA,
information source and business functions can be converted into modular services
units for control and management [10].

Web services are modular, self-describing, selfcontained applications that are ac-
cessible over the Internet [11]. WS is a software component invokable over the web
via an XML [12] message that follows the SOAP [13] standard. The component pro-
vides one or more operations for performing useful actions on behalf of the invoking
client. These operations and the formats of the input and output messages are de-
scribed using WSDL [14].

Description of services in a language e neutral manner is vital for the widespread
use of WS. For general usability, a service must be described and advertised. WSDL
takes care of the description by providing a language to describe a service in enough
detail to invoke any of its operations. Service providers describe their WS and adver-
tise them in a universal registry called UDDI [15, 16]. This enables service requestors
to search the registry and find services, which match their requirements. UDDI allows
for the creation of registries that are accessible over the Web. A registry contains
content from the WSDL descriptions as well as additional information such as data
about the provider. Clients may use one or more registries to discover relevant ser-
vices.

Prominent languages and formats for semantic service description are OWL-S
(Web Ontology Language for Web Services) [17, 18, 19], WSML (Web Service
Modeling Language) [20], the W3C standard SAWSDL (Semantic Annotations for
WSDL and XML Schema) [21], USDL (Unified Service Description Language)
[22, 23], Linked USDL [24], as well as the microformats hRESTS [25], SA-REST
[26], and MicroWSMO. These description models mainly differ in their formal logic-
based foundation and the possible extent of service annotation [27, 28, 29].

3 SOA

The SOA information model is registered with UDDI. Further, the client of the ser-
vice can find it, call it, perform a certain task. The standards for exchanging informa-
tion between services are SOAP, WSDL, UDDI, and a normal HTTP request. The
SOAP and WSDL protocols provide a unified markup language for transmitted mes-
sages. It represents the functionality of a device connected to its managed resource. A
user interface that provides a clear and standardized interface offers all the necessary
functionalities for interacting with objects and related processes.

In order for SOA to enjoy greater success than it predecessors, it should consider
the following attributes:

 scalable: The past solutions were not designed with the scale of the web in mind.
SOA should work in a variety of settings, such as within an organization, between
business partners and across the world [30];

 loosely-coupled: SOA is an evolution from tightly coupled systems to loosely cou-
pled ones. Senders and receivers of a SOA should be independent of each other;
the source can send the message independently of the target. Tight coupling is not
suitable for SOA since it leads to monolithic and brittle distributed applications.
Even trivial changes in one component lead to catastrophic breaks in function.
Small changes in one application require matching changes in partner applications
 31];

 interoperability: One party should be able to communicate with another party re-
gardless of the machine they are running on;

 discovery: One party should be able to communicate with a second party selected
from a set of competent candidates. Services need to be dynamically discoverable.
This is accomplished through services such as a directory of service descriptions;

 abstraction: A SOA abstracts the underlying technology. Developers can concen-
trate on building services for business users rather than connecting systems and ap-
plications [32];

 standards: Interaction protocols must be standardized to ensure the widest interop-
erability among unrelated institutions. Contracts should also be standardized. Ex-
plicit contracts define what may be changed in an application without breaking the
interaction. Furthermore, standards are the basis of interoperable contract selection
and execution.

The current description of the interaction between WS is as follows [33]:

1. WS is created using some programming language.
2. WS is described by a WSDL document (normally generated by using a provided

tool or by the built-in support of the development environment).
3. The service provider publishes the WS into the UDDI repository.
4. A web server hosts this WS by listening to HTTP traffic.
5. A client application (probably written in another programming language) searches

the UDDI registry and discovers this service.
6. The client accesses the WSDL document, and a SOAP request message is gener-

ated based on the WSDL document.
7. The web server receives the SOAP request as part of a HTTP POST request, and it

forwards this request to a WS request handler (a system-level application that is
always running).

8. The WS request handler parses the SOAP message, invokes the right WS, and also
creates the SOAP response. It finally sends the response to the web server.

9. The web server formulates a HTTP response, which includes the SOAP response,
message and sends it back to the client.

4 Distributed knowledge-based systems

The semantic web should enable greater access not only to content but also to services
on the web. Users and software agents should be able to discover, invoke, compose,
and monitor web resources offering particular services and having particular proper-
ties, and should be able to do so with a high degree of automation if desired. Powerful
tools should be enabled by service descriptions, across the web service lifecycle [34].

The semantic seb concept introduces formal definitions called ontologies, which
allows you to build models of heterogeneous objects in a domain, share knowledge
and support the automation of the formulation of logical conclusions from this knowl-
edge.

To create a holistic system for deploying distributed knowledge-based systems
(DKBS) semantic web services in a specific field of activity, it is necessary to develop
a formal ontological model of objects (web services) that are part of SOA.

By combining the key elements of SOA with knowledge-based systems, you can
get a formal DKBS model. Figure 1 shows the structural model of DKBS. We single
out the concept of the main artifact of the system through the Element class, its sub-
classes are such DKBS elements as a service, system, event, human actor, semantic
service [35, 36].

Fig. 1. Structural model of DKBS

The diagram shows that the service class consists of three elements: service descrip-
tion, application ontology, service interface. The semantic principle is reflected
through such elements: domain ontology, application ontology, task ontology and
knowledge base [37, 38].

A formal semantic service model should include:

1. Analysis of the structure of knowledge of the subject area of the DKBS, the main
objects and relations:
(a) the use of least-logical and ontological methods for the formation of the termi-

nology of the system domain and knowledge structure;
(b) structure of OWL ontology.

2. Repeated use of existing thesauruses, taxonomies, and ontologies of the DKBS
domain:

(a) semantic search for relevant objects and analysis of means of representing
knowledge and standards in the DKBS;

(b) a brief overview of relevant ontologies and other knowledge structures;
(c) integration of existing taxonomies and domain ontologies.

3. The architecture of methods for the automated improvement of the formal onto-
logical model of the DKBS:

(a) the architecture of methods for the automated extraction of knowledge (terms
and relationships) from natural language texts that relate to the DKBS;

(b) methods of automated linguistic processing of natural language texts;
(c) advanced OWL ontology.

4. Semantic search in the system based on the domain ontology:
(a) semantic search for objects;
(b) methods of semantic search for objects of the DKBS;
(c) methods of semantic search for SOA services;
(d) recommendations regarding the use of WS.

Search data for web services, their interactions, reviews, recommendations from ser-
vice customers can be analyzed and converted into active knowledge, which allows us
to better understand the physical world and create more value-added products and
services.

DKBS is a synthesis of SOA and semantic technologies, which defines a service-
oriented presentation of software and hardware components and a description of their
formal semantics. Table 1 shows the architecture of the meta-modeling of the DKBS.

Table 1. The architecture of meta-modeling

Meta level Simulation level
M3 Meta-metamodel / Meta-metamodel of service ontology
M2 Metamodel / Meta-model of service
M1 Data / Service
M0 Model / DKBS

The following should distinguish the basic concepts:

A web service is a software system identified by a unique web address (URL) with
standardized interfaces.

Semantic web service (SWS) - complete elements of program logic with uniquely
described semantics, accessible via the Internet and suitable for automated search,
composition and execution, taking into account their semantics.

5 Semantic web service

A semantic meta-modeling of a WS is proposed (a meta-metamodel of a web service
ontology, a meta-model of a WS) Thus, a new system object is formed - a SWS. In
contrast to the application of standards: SOAP, WSDL, HTTP, the use of ontologies
is argued that they contain structured information about the functional and non-
functional characteristics of the service, and give flexibility to the description. When
working with ontologies, there is a powerful logical apparatus for searching, combin-
ing and comparing ontologies. By introducing ontologies, knowledge is represented in
the system. Developing an ontology / web service pair provides an advantage over
SAWSDL, OWL-S, because a web service developer can create a more accurate de-
scription.

The meta-metamodel of the service ontology is shown in Figure 2, where Concepts
are shown, i.e. units of information or data. Each concept has its own Logical Defini-
tion and a Textual Definition. In accordance with the concept, there may exist In-
stances, which, through the presentation of specific entities, connect abstract concepts
with objects from the real world. In the same way, each Property of a concept has
different Term - these are interpretation functions.

Fig. 2. Meta-metamodel of service ontology

Therefore, the meta-model of the service is its ontology, which describes all the char-
acteristics of the service and its parameters (Fig. 3). A service primarily consists of
Methods and Operations. The next component of the service is its Interface, which
depends on already defined methods and operations. Binding is a component that
provides the detailed information needed to access EndPoint. EndPoint is a specific
service implementation where EndPoint associates a specific binding with a real ad-
dress so that the service can be called.

Fig. 3. Meta-model of the service

It is also important to understand the obvious difference between OWL and OWLS:
OWL is an ontology language; it provides constructs and features we can use to create
an ontology document. OWL-S, on the other hand, is just one such ontology created
by using OWL.

Ontology is based on description logic (OWL-DL), which provides a platform for
formal and machine-knowledge. To establish its syntax and semantics. Syntax, certain
expressions (concepts, axioms, roles, etc.) are considered correctly constructed in this
logic. How to interpret these expressions, i.e. gives them formal meaning.

Let },...,1{ mAACN  and },...,{ 1 nRRRN  be finite nonempty sets of atomic con-

cepts and atomic roles (also called concept names and role names). There are several
dialects of descriptive logic that differ in expressive capabilities. The main operators
of DL:

 T – concept «THING» ;
 – concept «NOTHING» ;
 – logical connective (conjunction);
 – the quantifier of existence;
 – quantifier value limitation;
 - logical connective (negation).

The syntax of DL, namely the ALC dialect, is a lot of concepts that are defined by

an inductive definition:

─ symbols T and  - concepts (called truth and falsehood);
─ - every atomic concept A is a concept;
─ - if C is a concept, then C is a concept (called a complement to the concept);

─ - if C and D are concepts, then DC and DC are concepts (intersection and
union);

─ - if C is a concept, and R is an atomic role, then CR. and CR. are concepts;
─ - no other expressions are concepts.

In what follows, we will use a shorter notation to formulate the syntax. So, the
syntax for the ALC logic concepts in this entry is as follows:

CRCRDCDCC .|.|||||  T (1)

where A is an atomic concept, R is an atomic role, D are arbitrary concepts.

A complete description of the meta-metamodel of the service ontology in the

formulations of the discription logic with the class diagram (Fig. 2) is given in Ta-
ble 2.

Table 2. Meta-metamodel of service ontology in formulations of syntax description logic

Concept Role

 Term

Relation

lationSemanticRe

Instance

lationInstanceRe

Concept

initionTextualDef

initionLogicalDef

Property

hasObject

ionhasDefinit

yhasPropert

nhasRelatio

ehasInstanc

isPartOf

In this case, the values of the Concept column are atomic concepts, and the

values of the Role column are atomic roles, then the concepts of ALC logic will be
expressions:

 y.Concept hasPropertProperty |Concept hasPartOf.

| TermConcept|RelationConcept




 (2)

The semantics of logic is defined using the concept of interpretation. Interpretation

is a pair),(II  , consisting of a nonempty set  , called the domain of this inter-

pretation and the interpretive function I , which is:

 each atomic concept CNA is an arbitrary subset of IA ;

 each atomic role RNR is an arbitrary subset of IR .

For a service ontology, domain interpretation  will be the set of all ontology
definitions. Atomic concepts are comparable to the set of all existing rules and terms
for describing the ontology. We interpret atomic roles as two-place relations connect-
ing all knowledge with a concept. Then everything listed in Formula 2 acquires the
following semantics: a concept with this interpretation means:

 RelationConcept  - a lot of concepts of interconnection (i.e., relationship);

 TermConcept  - many concepts of terms (term);

 Concept hasPartOf. - many concepts that are part of this concept;

 y.ConcepthasPropertProperty  - many properties that are property of the con-

cept.

A full description of the semantic web service model in the formulations of the
description logic is given in the table 2.

Table 3. Metamodel of SWS in formulations of syntax description logic

Concept Role

Name

Text

Result

Taxonomy

Service

Interface

Operation

Methods

Binding

ionSpecificat

EndPoint

eametersNamServicePar

nssifacatioServiceCla

Code

Value

ormationContactInf

metesOutputPara

etersInputParam

Parameters

Definition

eServiceNam

hasObject

nhasPelatio

isPartOf

hasCode

itionhasPrecond

hasResult

hasOutput

hasInput

ehasInstanc

ershasParamet

hasName

hasMethods

onhasOperati

endPoint

cationhasSpecifi

tionhasDescrip

ehasIntefac

Thus, the formation of ALC logic concepts for the SWS model is as follows:

 eers.ServichasParametValue| eers.ServichasParamet

|Text D|MS


 efinitonethodservice

 (3)

The semantic interpretation of formula 3 is as follows:

 MethodsService - many service methods;

 TextDefiniton - many text descriptions;
 eers.ServichasParamet - many concepts that are service parameters;
 eers.ServichasParametValue  - many values that are service parameters.

Thus, a semantic web service is a pair of ontology and web service, which are de-
scribed above by the presented models. Each formal model of descriptive logic is
easily ported to OWL.

6 Processing knowledge of semantic web service

Formal models of ontology and semantic web service are aimed at supporting the
process of automated deployment of intelligent applications in heterogeneous envi-
ronments and allows:

 hide the technological heterogeneity that is characteristic of many heterogeneous
web services;

 hide the semantic heterogeneity inherent in the used heterogeneous domain ontolo-
gies in order to semantically annotate the data of semantic web services.

The following is the process of finding the web services the user needs. In this case,
the user can specify both the functions or properties of the service itself, as well as the
characteristics associated with the end result of the functioning of the service.

At the same time, the user can apply the terms from any ontologies available to
him that describe the DKBS space and the corresponding subject area (with reference
to the ontologies themselves). But in the description of the semantic web service,
terms from other ontologies related to close domains can be used.

Therefore, the problem of comparing ontologies arises. In the general case, this
problem is extremely complex and laborious, but if there are a number of restrictions
on the comparable ontologies, it can be solved in an acceptable time.

For the intellectualization of data and the processing of knowledge stored in on-
tologies, logical inference blocks (reasoners) are used, which play a key role in
knowledge-oriented intelligent systems.

There are many implementations of logical inference processors (reasonіng engіne)
for OWL ontologies that differ in capabilities, applications, and quality of task execu-
tion. The generalized analysis allows us to divide them into three groups depending
on the implementation method:

1. Table Dl-processors. Traditionally, they were developed first to solve such prob-
lems. They have low performance, but are able to make conclusions on complex
ontologies with many non-trivial constructions. This class includes resonators Pel-
let, RacerPro, FacT ++, as well as Hermіt and SHER [41, 42, 43].

2. Disjunctive Datalog processors. They transform the ontology into a disjunctive
Datalog program and use the deductive database technique and the resolution rule.
Such processors have satisfactory performance when using some optimizations, but
do not support certain OWL-designs, in particular cardinal restrictions and ratings.
This group belongs to KAON2. [44].

3. Rules processors. Use rule processing systems for inference on ontologies. They
have high performance, but can only process simple ontologies, devoid of many

important structures. Representatives of this group: Sesame / OWLIM, Jena, Owl-
jesskb. [45].

There are two approaches to the implementation of inference: based on the rules (us-
ing the algorithms forwardchaіnіng and / or backward-chaіnіng) and based on the
semantic scoreboard (semantіc tableau). Based on the rules, Semantіcs, SDK and
Owlіm are implemented, and on the basis of the semantic scoreboard - Pellet.

Today, the Pellet system implements the most expressive descriptive logic using a
high-performance logic inference (tableau-based algorіthm), which is used to process
ontologies described in the OWL DL language.

7 Conclusion

We presented the language features and constructs of ontology of WS descriptions.
Step by step, we created semantic description to describe SWS. For instance, given
that WSDL is also used to describe WS, understanding the relationship between
WSDL and OWL is important for Semantic Web developers. We first built two mod-
els (structural and formal) to describe the ontology and web service. Examples of
semantic interpretation of each model are given. Presented existing tools for further
work with the obtained ontologies.

The advantages of using ontologies for WS:

1. Automatic discovery of SWS: Finding the desired service can be hard, especially
when the service requester does not know of the existence of the service provided.
However, to make SWS a real success, a way to discover the requested service
should be provided; also, it has to be discovered automatically, with great accuracy
and efficiency.

2. Automatic composition of the necessary services. Clearly, a software agent should
be able to find all the necessary services and invoke them in the correct order to
accomplish the business goal.

References

1. Ruzhi Xu, Peiguang Lin, Cheng Liu: Research on Distributed Knowledge Base System
Architecture for Knowledge Sharing of Virtual Organization. Atlantis Press, pp. 349-357
(2010)

2. Fensel et. Al.: Implementing Semantic Web Services, Springer-Verlag Berlin Heidelberg
(2008)

3. Portier B.: СОА terminology overview, Part 1: Service, architecture, governance, and
business terms (2007)

4. Klush, Matthias; Kapahnke, Patrick; Schulte, Stefan; Lecue, Freddy; Bernstein, Abraham
(2016). Semantic web service search: a brief survey. Künstliche Intelligenz (KI),
30(2):139-147. DOI: https://doi.org/10.1007/s13218-015-0415-7

5. Zeppenfeld Klaus, Patrick Finger: SOA und WebServices, Springer-Verlag Berlin Heidel-
berg (2009)

6. Kulykovska, N. A.; Timenko, A., V; Ilyashenko, M. B.; Kirichek, G. G.: Distributed
Knowledge Base System. PROBLEMELE ENERGETICII REGIONALE vol. 1-1 (40):
79-90 (2019)

7. Allemang D, Hendler J.: Semantic web for the working ontologist modeling in RDF,
RDFS and OWL, Elsevier Inc. (2008)

8. Demirkan. H., Kauffman. R. J., Vayghan. J.A., Fill. H.G., Karagiannis. D., Maglio. P.:
Service-oriented technology and management: Perspectives on research and practice for
the coming decade. Electronic Commerce Research and Applications 7: 356–376 (2008)

9. Erl,T.: Service-Oriented Architecture Concepts , Technology , and Design ,Prentice Hall:
2-14 (2005)

10. Jack C.P. Cheng, Kincho H. Law, Hans Bjornsson, Albert Jones c, Ram Sriram: A service
oriented framework for construction supply chain integration , Automation in Construction
19: 245–260 (2010).

11. Rudi Studer, Stephan Grimm, Andreas Abecker: Semantic Web Services, Springer-Verlag
Berlin Heidelberg (2007)

12. Jeff Friesen: Java XML and JSON, Apress (2016)
13. Helen Hye-Young Paik, Angel Lagares Lemos, Moshe Chai Barukh, Boualem Benatallah,

Aarthi Natarajan: Web Service Implementation and Composition Techniques, Springer In-
ternational Publishing (2017)

14. Liang-Jie Zhang: Web Services, Springer-Verlag Berlin Heidelberg (2004)
15. James McGovern, Oliver Sims,nAshish Jain, Mark Little: Enterprise Service Oriented Ar-

chitectures, Springer Netherlands (2006)
16. Klaus Zeppenfeld, Patrick Finger: SOA und WebServices, Springer-Verlag Berlin Heidel-

berg (2009)
17. Guang Chen, Tonghai Jiang, Meng Wang, Xinyu Tang, Wenfei Ji: Modeling and reason-

ing of IoT architecture in semantic ontology dimension. Computer Communications Vol-
ume 153: 580-594 (2020)

18. Matthias Klusch, Patrick Kapahnke, Stefan Schulte, Freddy Lecue & Abraham Bernstein:
Semantic Web Service Search: A Brief Survey, KI - Künstliche Intelligenz vol. 30: 139–
147 (2016)

19. Martin, D.; Burstein, M.; Hobbs, J.; Lassila, O.; McDermott, D.; McIlraith, S.; Narayanan,
S.; Paolucci, M.; Parsia B.; Payne, T.; Sirin, E.; Srinivasan, N.; Sycara, K.: OWL-S: Se-
mantic Markup for Web Services. (2004) www.w3.org/Submission/OWL-S/

20. Fensel, D.; Lausen, H.; Polleres, A: Enabling Semantic Web Services, Springer (2010)
21. Farrell, J.; Lausen, H.: Semantic Annotations for WSDL and XML Schema. (2007)

www.w3.org/TR/sawsdl/
22. Kona, S.; Bansal, A.; Simon, L.; Mallya, A.; Gupta, G.; Hite, T.D.: USDL: A Service-

Semantics Description Language for Automatic Service Discovery and Composition, Web
Services Research (2009)

23. Lampe, U.; Schulte, S;: Self-Adaptive Semantic Matchmaking Using COV4SWS.KOM
and LOG4SWS.KOM. In: B. Blake et al. (eds.) Semantic Web Services, Chapter 9,
Springer (2012)

24. Pedrinaci, C.; Leidig, T.: Linked USDL Core (2011) www.linked-usdl.org/ns/usdl-core
25. Klusch, M.: The S3 Contest: Performance Evaluation of Semantic Service Matchmakers.

In: Blake, M.B.; Cabral, L.; Koenig-Ries, B.; Kuester, U.; Martin, D. (Eds.): Semantic
Web Services: Advancement through Evaluation; Springer (2012)

26. Gomadam, K.; Ranabahu, A.; Sheth, A.: SA-REST: Semantic Annotation of Web Re-
sources. (2010) www.w3.org/Submission/2010/SUBM-SA-REST20100405/

27. Klusch, M.: Semantic Web Service Coordination. In: [56], Chapter 4. (2008)

28. Baader F. (editor), et al.: The Description Logic Handbook,Cambridge University Press
(2003)

29. Gandon F.: Ontology engineering: A Survey and a Return of experience, INSTITUT DE
RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE (2002)

30. Wooldridge, M.J., Jennings, N.R.: Intelligent Agents: Theory and Practice. Knowledge
Engineering Review 10(2): 115–152 (1995)

31. Gontar N. A., Kudermetov R. K.: Working out ontology of systems engineering of space
system, Radio Electronics, Computer Science, Control 2: 131-137 (2011)

32. Kirichek G., Harkusha V., Timenko A., Kulykovska N. System for detecting network
anomalies using a hybrid of an uncontrolled and controlled neural network. CS&SE@SW
2019: 2nd Student Workshop on Computer Science and Software Engineering : 138 – 148
(2019)

33. Cardoso J, Hepp M., Lytras M. (Eds.): The Semantic Web. Real-World Applications from
Industry(2008)

34. Cardoso Jorge and Amit P. Sheth.: Semantic Web Services, Processes and Applications
(2006)

35. Kulykovska N.A, Timenko A.V.: A Structure of Semantic Service in a Distributed Knowl-
edge Based System. Computer Modeling and Intelligent Systems: Proceedings of the Sec-
ond International Workshop on Computer Modeling and Intelligent Systems (CMIS-2019),
In: CEUR Workshop Proceedings 2353, 533-544 (2019)

36. Kirichek, G., Tymoshenko, V., Rudkovskyi, O., Hrushko, S.: Decentralized System for
Run Services. In: Second International Workshop on Computer Modeling and Intelli-gent
Systems (CMIS-2019). In: CEUR Workshop Proceedings 2353, 860–872 (2019)

37. Allemang D.:P Semantic web for the working ontologist. Modeling in RDF, RDFS and
OWL, Morgan Kaufmann Publishers (2008).

38. Yu, Liyang.: Introduction to Semantic Web and Semantic Web services, Springer (2007)
39. Leuf, Bo.: Technology Analyst, Sweden. The Semantic Web: crafting infrastructure for

agency (2006)
40. Medjahed B. and Bouguettaya A.: Service Composition for the Semantic Web, Springer

Science+Business Media (2011)
41. Cary Pennington: Introduction to Web Services, Computer Science (2007)

DOI:10.4018/978-1-59904-045-5.ch007
42. Kishore, Rajiv, Ramesh, Ram (Eds.): Ontologies. A Handbook of Principles, Concepts and

Applications in Information Systems, Springer US (2007)
43. Wang, H., Horridge, M., Rector, A.L., Drummond, N., Seidenberg, J.: Debugging OWL-

DL Ontologies: A Heuristic Approach. vol. 3729: 745–757 (2005)
44. Ebrahimipour, Vahid, Yacout, Soumaya (Eds.): Ontology Modeling in Physical Asset In-

tegrity Management, Springer International Publishing (2015)
45. Tamma, V., Dragoni, M., Goncalves, R.S., Ławrynowicz, A. (Eds.): Ontology Engineer-

ing. 12th International Experiences and Directions Workshop on OWL, OWLED 2015
(2015)

