
Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

Autonomous Distributed Systems and their Simulation

Valeriy Kolesnikov [0000-0002-1991-3614]

Sumy State University, Sumy, Ukraine

v.kolesnikov@cs.sumdu.edu.ua

Abstract. The development and actual testing of autonomous distributed sys-
tems is difficult, long, and expensive. Simulators can save time, the develop-
ment and testing efforts, as well as bring the overall costs down. This paper de-
scribes an approach to designing and testing autonomous distributed systems.
The design of such systems is based on organization model. For testing such
systems, we developed DiSy-Sim simulator. Specifically, DiSy-Sim simulator
simplifies testing of communication between system components by providing
statistics on messages being used in communication. We demonstrate the use of
the simulator for a swarm system of autonomous drones used for disaster relief
aid delivery. DiSy-Sim simulator is applicable for a variety of distributed sys-
tems.

Keywords: autonomous distributed systems, swarms, simulation, organization
model, DiSy-Sim, software engineering

1 Introduction

Autonomous distributed systems have found their application in many areas. For ex-
ample, such systems can enable autonomous drones to perform a task together as a
team. A swarm of such drones can work towards a common goal. Each drone in a
swarm is autonomous, but drones can communicate among themselves in a distrib-
uted manner.

A study of autonomous systems has become important especially in recent years as
such systems can be used, for instance, for humanitarian aid and disaster relief, search
and rescue and search and track of a target. To this end, swarm based autonomous
systems should be self-directing, with reliable communication among its parts, resil-
ient to various interferences and self-adjusting in the face of failures of some of its
parts.

It is a difficult task to develop autonomous distributed systems that are robust,
flexible and fault tolerant. This paper describes how such systems can be designed
utilizing an organization model approach and tested with the help of DiSy-Sim simu-
lator. These efforts are a part of a bigger ecosystem for design, development, verifica-
tion, validation, and deployment of autonomous distributed systems that the author is
working toward.

The approach used in this study is the continuation of our efforts to model autono-
mous distributed systems utilizing the organization model. This approach provides a
framework for defining goals that the organization exists to achieve, entities to
achieve these goals and relationships among the entities, and finds its motivation in
the Multiagent Systems Engineering methodology (MaSE) [1,2] to derive goals from
the system description, and then design roles, capabilities and agents to achieve the
organization goals.

For testing an autonomous distributed system with DiSy-Sim simulator we utilize
the example of a swarm of autonomous drones for disaster relief aid delivery.

The remainder of this paper is organized as following: in section 2, we describe re-
lated work to designing and simulating autonomous distributed systems; next, we
present an organization model approach to design autonomous distributed systems;
we follow with an example of a swarm of autonomous drones for disaster relief aid
delivery and present on organization instance for this example; next, we present DiSy-
Sim simulator and discuss its application to the example of a swarm of autonomous
drones for disaster relief aid delivery; finally, we end with conclusion and directions
for our future work.

2 Related Work

We chose designing and implementing autonomous distributed systems using organi-
zation-based approach because research shows that: 1) organizational design is easier
to understand as it is close to human organizations [3], 2) organization-based systems
tend to be efficient and can efficiently adapt to changing conditions [3,4], 3) organiza-
tions are flexible [3,4], and 4) best designs utilizing organization-based approach are
application and situation dependent [5]. Organizations can be centralized or decentral-
ized. In a distributed scenario, decentralized organizations tend to exhibit higher per-
formance and reliability [1].

For testing purposes, there are many simulators available that range from general
in purpose to specific contexts. A performance comparison of recent network simula-
tors is given in [6]. In our previous research [7-9] we studied and used NS2, NS3 [10]
and J-Sim [11] simulators extensively.

NS3 a discrete-event network simulator for internet systems. It is built using C++
and Python and provides scripting capability. The following are the key strong fea-
tures of NS3: topology definition, model development, node and link configuration,
execution environment with logging capability, performance analysis and graphical
visualization. Four main drawbacks for us in using NS2 or NS3 are: 1) these are net-
work simulators (they don’t capture application layer communications), 2) they can-
not simulate the movement of application entities over time, 3) they are written in
C++ and Python (the language of choice for our ecosystem for design, development,
verification, validation and deployment of autonomous distributed systems is Java)
and 4) we want our simulator to be integrated in our ecosystem briefly described be-
low.

J-Sim simulator solves two of the issues. First, it is written in Java. Also, it can be
used in almost any system, in which object states change discretely and therefore
capture application layer communications. The basic building blocks of J-Sim simula-
tions are processes and queues. Whereas processes are active, queues and other ele-
ments of the simulation are passive. The simulation is executed step by step. During
each step, only one process is given an opportunity to run. J-Sim provides a rich set of
features, such as simulation of Dijkstra semaphores, simulation of message passing
(blocking and non-blocking send and receive operations, symmetric, asymmetric, and
indirect communication), independent random number generators that can be initial-
ized by user-defined seed and therefore guarantee repeatability of experiments and
console mode and batch and interactive GUI modes [11]. Still, J-Sim cannot simulate
movements of application entities over time. Integration with InDiGO framework
remains the main hurdle. Therefore, we opted to create our own simulator and add
additional features valuable for InDiGO framework and for our ecosystem in general.

Of interest for us is a framework or a whole ecosystem for the ease of developing,
testing, and deploying autonomous distributed systems. Several attempts have been
done at creating and formalizing systems or frameworks to capture the concept of
teamwork within an organization [12-16]. Although valuable for design of autono-
mous distributed systems, they fail to provide a wide accepted use.

In our previous work we proposed InDiGO, an infrastructure for the development
of distributed systems [7]. InDiGO allows design of generic but customizable algo-
rithms and provides tools to customize such algorithms for distributed applications
[7,17]. We demonstrated advantages of using such a framework for distributed sys-
tems development [7-9] and plan to merge this research into InDiGO framework.

3 Organization Model

To ease the design of autonomous systems, we propose an organization model (O).
This model describes the structure of the organization and combines all entities of the
autonomous system and the relationships among them. Fig. 1 shows organization
model using standard UML notations.

Organization model O contains a set of goals (G) that the system is trying to
achieve, a set of roles (R) that achieve the stated goals, a set of agents (AG) that are
capable of playing specific roles, a set of capabilities (C) that agents possess and that
are required by the roles to achieve the goals, a set of assignments (A) that the organi-
zation performs to assign agents to play specific roles to achieve specific goals and a
set of policies (P) that constrain the assignments.

Fig. 1. Organization model

The organization model also describes relationships that exist among entities of the

autonomous system. Among them are the following relationships: achieves relation-
ship that exists between roles and goals, capable relationship that exists between
agents and roles, possesses relationship that exists between agents and capabilities,
required relationship that exists between capabilities and roles, constrains relationship
that exists between policies and assignments and assigned relationship that exists
between agents, roles and goals.

Formally, organization model O is a tuple.

 O = < G, R, AG, C, A, P, achieves, capable,

 possesses, required, constrains, assigned > (1)

where

 achieves: R x G Boolean (2)

 capable: AG x R Boolean (3)

 possesses: AG x C Boolean (4)

 required: C x R Boolean (5)

 constrains: P x A Boolean (6)

 assigned: AG x R x G Boolean (7)

Every autonomous system is built to achieve certain goals. In our model each goal
has a definition. All goals are placed in a set G. Goals can be critical or noncritical.
Function critical determines whether a goal is critical. At this point we do not con-
sider various relationships among goals, for example, such as subgoals, parent and
child goals, conjunctive and disjunctive goals and precedence between goals and
leave this to our future work.

 critical: G Boolean (8)

The model is said to be complete if all the goals can be achieved. The model is said
to be incomplete if at least one goal cannot be achieved. It is certainly desirable for a
model to be complete and in some cases it is absolutely necessary. There are non-
critical situations though, in which a model can be incomplete but sufficient for a
system. We will research such scenarios in our future work.

A goal is directly achieved by a role or a set of roles that each agent is capable of
playing. Therefore, each goal is indirectly achieved by an agent or a group of agents
through the roles, which those agents are capable of playing. An agent can be capable
of playing several roles depending on the inherent capabilities that the agent pos-
sesses. Each role requires one or several capabilities that agent/s possess.

Completeness of the model is validated through assignments. Assignments are
used to capture information about which agents play which roles to achieve which
goals. Assignments are constrained by the organization policies that dictate which
assignments are allowed and which are not.

Along with general constraints that each system must satisfy, an organization
might impose additional constraints through policies. An example of such a policy
constraint could be one that states that certain roles must be achieved by several
agents to provide redundancy. This redundancy might be important for agent’s capa-
bilities that degrade under certain conditions, such as capabilities that depend on a
battery life for autonomous drones.

4 Organization Instance

In this section we present examples of what various entities of an organization model
could be in a case of a system of autonomous drones and then apply organization
model approach to designing a swarm system of autonomous drones that are used for
disaster relief aid delivery.

Examples of agents could be autonomous drones, parts of autonomous drones or
whole groups or swarms of autonomous drones.

Examples of capabilities are data acquisition capabilities, data access capabilities,
data manipulation capabilities, data transmission capabilities, computational capabili-
ties, sensor capabilities, GPS capabilities, etc. During the system life span capabilities
can degrade or improve. For example, sensors usually degrade over time and some-

times their accuracy becomes an issue. Another example of a degrading capability,
albeit for possibly a short period of time, would be a limited vision capability during a
cloudy or rainy weather. On the other hand, learning algorithms can improve a certain
capability. In these cases, the system reorganization could be advisable or necessary.

Each organization has a set of policies that constrain the assignment of agents to
roles to goals. These policies could be general in nature or very specific to the
autonomous system. An example of a general policy could be a policy that states that
each role must be played by at least one agent. An example of a system specific pol-
icy could be a policy that states that no fewer than three agents ought to be involved
in working on a specific goal.

4.1 A Swarm System of Autonomous Drones Used for Disaster Relief Aid
Delivery

In this section we apply the organization model approach to designing a swarm sys-
tem of autonomous drones that are used for disaster relief aid delivery. This example
is intentionally kept to a minimum for simplicity and clarity of presentation.

Defining Goals. The purpose of this system is to deliver disaster relief aid to the dis-
aster area. Therefore, we define the following two goals for this system:

• G1 – deliver disaster relief aid.
• G2 – navigate to site.

Defining Roles. Goals are achieved by roles that various agents play. For simplicity
we define only two roles that will be directly mapped to achieve the two goals stated
above. In general, an organization can have many roles that achieve various goals.

• R1 – carrier.
• R2 – navigator.

Defining Capabilities. Each role requires a set of capabilities that an agent must pos-
sess in order to be capable to play the role. For this system we define four capabilities
and list them below:

• C1 – carrying capability.
• C2 – navigation capability.
• C3 – data processing capability.
• C4 – communication capability.

Defining Agents. We also define seven agents with various capabilities and list them
below:

• A1 - A4 – carrier agents.
• A5 – navigator agent.
• A6 – A7 – data processing agents.

Organization Instance. After we define goals, roles, capabilities and agents, the
organization algorithms make assignments taking into consideration policy con-
straints to create an organization instance that would achieve all the stated goals. We
call such an organization instance a system. The organization also produces informa-
tion to the user whether the system is complete. If a complete system cannot be
formed, the organization tries to create a viable system. In all cases, initial system has
to be valid.

An organization instance for our example is shown in Fig. 2. It is both complete
and valid. It is complete because all goals are achieved. It is also valid because all
organization policies are satisfied.

Fig. 2. Organization instance

5 Simulator

We developed a simulator DiSy-Sim (Distributed Systems Simulator) to test message
passing algorithms in middleware and application layers of autonomous distributed
systems, as well as to examine the work of a system in real time. The statistics allows
distributed systems developers and testers to measure the efficiency of their message
passing algorithms and compare various optimization techniques. The ability to see
the work of a system in real time allows developers and testers to bring their devel-
opment cost down and improve the overall quality. The end users of actual physical
systems can use the simulator to make decisions on the quantity and the characteris-
tics of the system entities to achieve the goals for the system.

5.1 Simulator goals

We set the following goals for the creation of DiSy-Sim simulator:

1. Ability to model message passing in a distributed system of autonomous entities.
2. Ability to provide statistics in terms of number of messages used by the algorithms

and application itself; statistics should be easily available:
(a) for the whole system,
(b) for a particular algorithm,
(c) for a set of algorithms,
(d) for application layer,
(e) for a single entity,
(f) for a group of entities,
(g) for an entity type.

3. Simulation of the system in real time.
4. Graphical representation of messages over time.
5. Logging.

5.2 Simulator components

DiSy-Sim simulator was written in Java and tested on a Windows platform. Its main
control window contains 3 panels as can be seen in Fig. 3: system settings/system
view panel, simulation view panel and graphical stats panel. The panels can be resized
within the main window. Each panel can also be shown in a separate window. Simu-
lation view and graphical stats panels can be duplicated to show different parts of the
system/statistics. A separate window for a single system entity can be opened by se-
lecting the entity from either the simulation view panel or system view panel. Multi-
ple windows for multiple entities can be opened concurrently.

5.3 Simulating organizational instance in DiSy-Sim

Below in Fig. 3 is a screenshot from the simulation in DiSy-Sim of the organizational
instance described above.

Seven agents A1-A7 are moving to their destination. Communication protocols are
based on the agents’ roles and the message statistics is shown in the graphical statis-
tics panel. The whole system consists of seven agents as can been seen from the sys-
tem view panel. The agents’ arrows show the direction, in which the drones are mov-
ing. The system successfully logged messages used by all the entities in the process of
system execution.

A1

A4 A3

A2

A6

A5
A7

A1

A2

A3

A4

A5

A6

A7

System settings

System view

DiSy-Sim

Fig. 3. DiSy-Sim simulator main window

To check the correctness of message calculation, we tested the system on a simple
communication protocol that consisted of one navigator drone sending a broadcast
message to all other drones during every time increment and other drones responding
with an acknowledgement message sent back to the navigator drone upon receiving
the navigation message. We tested the system using 100-time increments. The system
correctly calculated the number of messages as can be seen in Fig. 4.

We also simulated this scenario with a different number of drones in a swarm. The
system correctly calculated the number of messages in each test runs as can be seen
from Fig. 5.

5.4 Applicable contexts

The DiSy-Sim simulator was designed for autonomous distributed systems, specifi-
cally for swarms of drones modeled using organizational approach. However, the
simulator was designed for a general case of autonomous component based distrib-
uted systems and is applicable for such distributed systems as: sensor networks, dis-
tributed applications running on fixed computers/devices and distributed applications
running on moving devices (ex., mobile phones), to name a few. We will demonstrate
it with case studies in our future work.

Fig. 4. Number of messages in sample execution

Fig. 5. Number of messages – varying number of drones

6 Conclusions and Future Work

In this paper, we presented an approach to designing and testing autonomous distrib-
uted systems. The design of such systems is based on organization model. This ap-

proach simplifies modeling of such systems and allows for better understanding of the
system overall.

For testing autonomous distributed systems, we developed DiSy-Sim simulator.
DiSy-Sim simulator simplifies testing of communication between system components
by providing statistics on messages being used in communication.

The approach to designing and testing autonomous distributed systems presented in
this paper is applicable for a variety of distributed systems. We demonstrated it for a
swarm system of autonomous drones used for disaster relief aid delivery. Even though
the example of an organizational instance for a swarm system of autonomous drones
used for disaster relief aid delivery is simplified, it still shows the benefits of using
such an approach.

In future work, we plan to enhance the organization model with additional features
to account for failures in the system and the reorganization to take place.

We will add additional features to DiSy-Sim simulator, such as: single entity view
with stats, replay capability, various terrains/obstacles for moving entities and failure
simulation (loss of messages, failure of entity/equipment, battery power, etc.). We
will apply DiSy-Sim simulator to other contexts, for instance, for sensor networks,
distributed applications running on fixed computers/devices and distributed applica-
tions running on moving devices (ex., mobile phones).

We also plan to merge organization-based approach to modelling autonomous dis-
tributed systems into InDiGO framework and provide tools to extract optimization
information from the model for middleware distributed algorithms of a distributed
systems. We also have plans to research a possibility of expressing communication
protocols through the organization-based modelling so that optimizations for commu-
nication in a distributed system could be realized based on the information from a
design stage of a distributed system.

References

1. DeLoach, S.A., Wood, M.F., Sparkman, C.H.: Multiagent Systems Engineering. The In-
ternational Journal of Software Engineering and Knowledge Engineering 11(3): 231–258
(2001)

2. DeLoach, S.A., Wood, M.F.: Developing Multiagent Systems with agentTool. In: Agent
Theories Architectures and Languages, 7th International Workshop. LNCS, vol. 1986,
Springer Verlag, Berlin (2001)

3. Carley, K.M.: Computational and Mathematical Organization Theory: Perspective and Di-
rections. Computational and Mathematical Organization Theory 1(1): 39–56 (1995)

4. Carley, K.M.: Organizational Adaptation. Annals of Operations Research 75: 25–47
(1998)

5. Lawrence, P.R., Lorsch, J.W.: Organization and Environment: Managing Differentiation
and Integration. Journal of Artificial Intelligence Research 7: 83–124 (1997)

6. Weingartner, E., Lehn, H., Wehrle, K.: A Performance Comparison of Recent Network
Simulators, In: 2009 IEEE International Conference on Communications, pp. 1–5. Dresden
(2009)

7. Kolesnikov, V., Singh, G.: InDiGO: An infrastructure for optimization of distributed algo-
rithms. In: 7th International Symposium on Parallel and Distributed Computing, pp. 401–
408 (2008)

8. Kolesnikov, V., Singh, G.: Utilizing model checking for automated optimization informa-
tion discovery in InDiGO. In: 8th International Symposium on Parallel and Distributed
Computing, pp. 91–98 (2009)

9. Kolesnikov, V.: Realizing optimization opportunities for distributed applications in the
middleware layer by utilizing InDiGO framework. In: 9th International Symposium on
Parallel and Distributed Computing, pp. 85–92 (2010)

10. Kumar, A.R., Rao, S.V., Goswami, D.: NS3 Simulator for a Study of Data Center Net-
works, In: 12th IEEE International Symposium on Parallel and Distributed Computing, pp.
224–231 (2013)

11. Sobeih, A., Hou, J., Kung, L., Li, N., Zhang, H.: J-Sim: a simulation and emulation envi-
ronment for wireless sensor networks. Wireless Communications 13: 104–119 (2006)

12. Cohen, P.R., Levesque, H.J.: Intention is Choice with Commitment. Artificial Intelligence
42(3) (1990)

13. Jennings, N.R.: Commitments and Conventions: The Foundation of Coordination in Multi-
agent Systems. The Knowledge Engineering Review 8(3): 223–250 (1993)

14. Jennings, N.R.: Controlling Cooperative Problem Solving in Industrial Multi-Agent Sys-
tems Using Joint Intentions. Artificial Intelligence 75(2): 195–240 (1995)

15. Grosz, B., Kraus, S.: Collaborative Plans for Complex Group Action. Artificial Intelli-
gence 86(2): 269–357 (1996)

16. Kinny, D., Ljungberg, M., Rao, A.S., Sonenberg, E., Tidhar, G., Werner, E.: Planned
Team Activity. Artificial Social Systems 830: 226–256. LNAI, Springer-Verlag (1992)

17. Singh, G., Kolesnikov, V., Das, S.: Methodologies for optimization of distributed algo-
rithms and middleware. In: The 22nd IEEE International Parallel and Distributed Process-
ing Symposium (2008)

