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Abstract. The problem of incentive training of multi-agent systems in the game 
formulation for collective decision making under uncertainty is considered. 
Methods of incentive training do not require a mathematical model of the envi-
ronment and enable decision making directly in the training process. Markov 
model of stochastic game is constructed and the criteria for its solution are for-
mulated. An iterative Q-method for solving a stochastic game based on the nu-
merical identification of a characteristic function of a dynamic system in space 
of state-action is described. Players’ current gains are determined by the method 
of randomization of payment Q-matrix elements. Mixed player strategies are 
calculated using the Boltzmann method. Pure strategies are determined on the 
basis of discrete random distributions given by mixed player strategies. The al-
gorithm for stochastic game solving is developed and results of computer im-
plementation of game Q-method are analyzed.  
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1 Introduction 

The functioning of most modern information systems (IS) is based on rigidly pro-
grammed algorithms. Unforeseen environmental influences in such systems may im-
pair the stability of operating modes, which can lead to various types of emergency 
situations. To prevent critical states, distributed IS software must consist of interoper-
able standalone modules, be intelligent, flexible, and capable of independently moni-
toring environmental changes and making timely and appropriate decisions. Other-
wise, such systems should be built on the principles of an agent-oriented methodology 
[1 – 10]. An IS agent is a standalone software module with elements of artificial intel-
ligence, capable of making decisions on its own, interacting with the environment, 
other agents, and people as they accomplish the task. IS agents interact within the 
computer network. A population of computer network agents who solve a common 
problem is called a multi-agent system (MAS). 

The operation of the MAS is usually carried out in the context of a priori uncer-
tainty about the state of the decision-making environment and the actions of other 



agents. In this regard, agent’s behavior strategies must be adaptive at the expense of 
agents' ability to learn [11]. Among the methods of learning under uncertainty, incen-
tive-based methods have gained practical appeal [12, 13] because they do not require 
a mathematical model of the environment and provide decision-making power di-
rectly in the learning process. The mechanisms of reflexive behavior of living organ-
isms with developed nervous system are the basis of the stimulating training. An ef-
fective method of incentive learning is Markov Q-learning [14], which performs nu-
merical identification of the characteristic function of a dynamic system in state-
space. As a characteristic function is usually the function of the total expected reward 
agent.  

Compared to single agent systems, the structure, operation, and research of multi-
agent Q-learning methods are much more complicated [15]. Due to the collective 
interaction of agents, the stationary environment is transformed into a non-stationary 
class. The change in the state of the environment and the value of the benefits of each 
agent depend on the actions of the other agents. Generally, in an MAS, an agent can-
not achieve a maximum gain equal to that of a single agent system. The optimal pay-
offs of agents must be balanced and meet the criteria of benefit, fairness, balance. 
Thus, instead of the criterion of scalar maximization of the benefits of a single-agent 
system, the criteria of vector maximization of MAS winnings are introduced, for ex-
ample, Nash equilibrium, Pareto optimality or other [16].  

Provided the use of methods of Q-learning of MAS, an iterative construction of a 
system of characteristic Q-functions in the state-action space takes place, and the 
increment of the elements of these functions is carried out in the direction of achiev-
ing their collective equilibrium. To build the MAS, it is necessary to carry out pre-
liminary studies on the basis of adequate mathematical models that will allow to study 
the dynamics of the system under uncertainty, to build strategies for the behavior of 
agents that provide optimal technical and economic parameters of the system func-
tioning. Given the peculiarities of the subject area, namely, multi-agency, uncertainty 
of decision-making environment, antagonism or competitiveness of goals, communi-
cativeness, coordination of actions, adaptability of agent behavior strategies, we use 
the mathematical apparatus of stochastic game theory [17 – 29]. Solving a stochastic 
game is to find the strategies of agents that maximize their winnings so as to ensure a 
certain collective balance of interests for all players. The search for optimal strategies 
for players in uncertainty will be performed on the basis of the promotional training 
method.  

The purpose of the work is to construct an iterative method of incentive learning to 
solve the stochastic MAS game in uncertainty. To achieve this goal, it is necessary to 
develop a model of multi-agent stochastic game, to determine the criteria of collective 
equilibrium, the method and algorithm for solving the game problem.  

2 The Mathematical Model of Stochastic Game 

The stochastic game is determined by the tuple: 
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where },...,{ 1 MssS   is set of all states of the environment, )(: SASp   is sys-

tem state change function defined in the space of probability distributions )(S  on 

the plural S ,  )(),...,1( iiii NaaA   is multiple actions or pure strategies i -agent, 

i
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  is set of combined agent actions, RASri :  is reward function i -agent, 

I  is multiple agents, L  is number of agents, M  is number of states, iN  is number 

of strategies i -agent. 
In the general case of multiple actions )(sAA ii   Ii  and combined actions 

)(sAA   may depend on the state of the environment Ss . 

We adopt a Markov model [30, 31] of the dynamics of states of a system in which 
the probability of change of states p  depends only on the current state of the envi-

ronment and the current actions of the agents: 
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where Abt   is combined action at time t .  

At each point in time, the environment is in one of the states Ss  and agents 
choose actions independently ii Aa  . After the implementation of the combined 

option Aaaa L  ),...,( 1  agents get random winnings ir  (otherwise is incentives or 

reinforcements), and the environment changes its state according to the probability 
distribution ),( asp  with values per segment ]1,0[ : 
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The agent implements actions based on a mixed strategy ii AS : , which deter-

mines the likelihood of action ii Aa   in every state of the environment Ss . 

Distribution ii   takes the value on a unit simplex [11] 
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If }1,0{),( ii as , then the agent determines the choices of solutions. Let the total 

payoff of each agent be determined by the function of discounted total payoffs: 
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where ]1,0(  is discount option. 



The goal i -agent is to maximize function (1) by formulating an effective strategy 

i : 
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where ),...,( 1 L  ; E  is symbol of mathematical expectation. 

Stochastic game resolution is about defining agent behavior strategies *
i  

( Ii ), which ensure fulfilment of one of the conditions of collective optimality, for 
example: 

1) Nash equilibrium: ;),...,,,,...,,,(),...,,,( **
1

*
1

*
2

*
1

**
2

*
1 Liii

i
L

i sVsV    

2) Pareto optimality: ),(),( *  sVsV ii  . 

3 Learning of Stochastic Game 

Calculation )(sV i
  can be performed in a recursive form known in the literature as 

the Bellman equation [12 – 14]. Given (1), we obtain after simple transformations: 
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where s  is probable future states of the system. 

The agent's goal is to find a strategy *  that maximizes function (2) for all states 
of the environment:  

)()(* sVsVSs   . 

Since the choice of options is made by chance, it is for the purpose of comparing the 
effectiveness of actions when the system is in a state Ss , current gains are useful to 
obtain from (2). For this purpose is specially built Q  is average payoff feature that 

determines the cost of the action – the total payoff of the agent in the state s  chose 
action a : 

  aassREasQ  00 ,),(  . (4) 

Expression (4) defines a tabular function of the values of the action options a  in the 
states s .  

Similarly to (3) we obtain: 
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Adherence to the Bellman principle of optimality (5) ensures the optimal gain of the 
agent from the current state achieved Ss  at all future times. Applying this principle 
to all states ensures a global optimal solution. 

For optimal function selection strategies *  for each state Ss  we will get:  
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From (6) one can obtain the optimal function of choosing strategies 
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Optimization (7) can be performed by dynamic programming methods [30]. 
By analogy to single agent training, we define the payoff matrix i -players with 

current and future winnings in the direction of movement to the optimal collective 
state in space AS  : 
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where ),...,,( 1* L
i aasQ  is total discounted gain i -player provided the players select 

the action ),...,( 1 Laa  in the state s  according to the optimal strategy of the game 

),...,( **
1

*
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In the conditions of a priori uncertainty of the transition probabilities between the 

states of the system ),...,,( 1 Laasp  and winnings features ),...,,( 1 L
i aasr  an iterative 

method is used to calculate the elements of the payoff matrix Q -learning [31]: 
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where )1,0(t  is training option; )( 1t
i

t sV  is the operator of the cost of the system 

state in the direction of the optimal collective solution. 

The type of the operator )( 1t
i

t sV  is determined by the condition of collective equi-

librium, for example: 
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The above list may be supplemented by other already known and new equilibrium 
states that will determine the target aspect of the functioning of a distributed dynamic 
system. Method (8) can be applied to decipher a single agent game with nature as a 
partial case N-agent stochastic game if iAAIiI  ,1||},{ , when  
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The Maximin Equilibrium (MM) takes place in the game of two agents with zero 
sum of their payoff functions:  
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Nash Equilibrium (NE) is determined by the independent distribution of strategies by 
players who choose their own strategies independently of the choice of other agents. 

In a Nash equilibrium situation in mixed strategies  )(),...,()( 1 sss NE
L

NENE    it is 

not profitable for each agent to deviate from its own optimal strategy )(sNE
i , if other 

agents stick to the equilibrium point [31]: 
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where ),...,( 1 Laaa  ; i
iNE

i  ~, . 

Method (8) ensures that condition (9) is satisfied when the current value of the sys-

tem state value operator is determined at point NE  Nash equilibrium: 
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The set of NE equilibrium points in mixed strategies is a convex compact and can be 
calculated by linear programming methods (for bi-matrix games) or by solving a sys-
tem of polylinear equations that determine the complementary rigidity condition: 




 


L

j
jj

Aa

i
t

L

ij
jj

Aa
ii

i
t asasQasaasQ

ii 1

),(),(),(),,(  , Ii , ii Aa  , Ss , 

0),( ii as , 



ii Aa

ii as 1),( . 

Unlike the Nash equilibrium, the Best Response (BR) method generates an optimal 
agent strategy in response to the actions of all other agents. The corresponding system 
state value operator in method (8) has the form [32]: 
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Correlated Equilibrium (CE) generalizes the Nash equilibrium by allowing players' 
strategies to depend. For this purpose, there is an arbitrator in the collective decision-
making system, which according to the generalized distribution )(A  
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1
 ) recommends that players choose to take actions that form a 

combined option ),...,( 1 Laaa  . Player with a number i  only receives component 

information combined option Aa . This signal is perceived i -player as an optional 
offer to take action ia . Each player secretly and independently chooses at a moment's 

time t  action option ia , possibly different from the proposed variant, and receives a 

current payoff ),( tt
i asr , which is a function of the current state of the system ts  and 

the combined option  Aat  . The environment then moves to a new state 1ts  ac-

cording to the probability distribution ),|( 1 ttt assp   and the process is repeated at 

time 1t .  
Correlated equilibrium is determined by the united distribution of player strategies 

)(A , when each agent does not have the motivation to deviate unilaterally [33]: 
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All Nash equilibrium points are correlated equilibrium points. If Ii  
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correlated equilibrium is also Nash equilibrium. To solve the game by method (8), the 

cost operator )( 1t
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t sV  the state of the system is determined by the point CE  corre-

lated equilibrium: ),()())(( 1 asQasQCE i
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points is non-empty, convex and compact and can be effectively calculated using 
linear programming methods. In the case of maximizing total player winnings, the 

task of linear programming is to find CE  can be formulated as follows: 
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Based on the distribution )(a  Aa  players' own strategies are determined 

Iii  . There are various options for switching from   to i  depending on the 

type of strategies and players' level of awareness. For example, pure strategies deter-

mine the maximum value of the operator ))(( sQCE i : 
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Pareto Equilibrium (PE) optimality occurs in the Common-Interest Markov Game, 

where the payoff matrices are the same for all players IjiasQasQ j
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AaSs  ,  [33]. A game with different payoff matrices can be turned into a 

game of shared interests by a convolution 
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The search for the game's PE solution is done independently by agent strategies, 
similar to the search for a NE solution. A multi-agent game is optimal for Pareto if 
there is no common player strategy that improves the winnings of all players: 
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To calculate optimal collective strategies  )(),...,()( **
1

* sss L   (NE, CE, PE) 

agent with number i  need to know Q -functions of all agents: 
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evaluate the value Q - functions in the learning process. For this i -agent monitors the 

current gains of other agents and modifies their estimates Q -functions according to 

(8). To ensure that method (8) converges to one of the points of collective equilib-



rium, it is necessary to impose a limit on the rate of change of its adjustable parame-
ters. The general limitations are as follows [11, 14, 34]: 
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where )0(    tt  is monotonically decreasing positive sequences of real values.  

4 Stochastic Game Solving Algorithm 

Step 1. Set the start time 0t ; the initial values of the payoff matrices 
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tive value; the value of the gain discount parameter ]1,0( ; the initial state 

of the system 0s . 

Step 2. Perform a random selection of agent actions ),...,( 1 Laaa   based on strate-

gies ),...,( 1 L  . The value of the strategies can be calculated from the 

current estimates of the payoff matrices Ii :  
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Step 3. Get current agent payouts ),...,( 1 L
ttt rrr  . 

Step 4. Determine the new state of the system ),...,( 11 Ltt aass  .  

Step 5. Calculate function )( 1t
i

t sV  according to the specific condition of collective 

equilibrium (NE, CE, PE). 

Step 6. Modify the payoff matrix  LiasQQ tt
i
tt ..1|),(11    according to (8). 

Step 7. If LiQQ i
t

i
t ..11   , then ask 1:  tt  and go to step 2. 

Step 8. Print the calculated values of the payoff matrices  )(),...,()( 1 sQsQsQ L  and 

strategies ))(),...,(()( 1 sss L   Ss . End of algorithm. 

5 The Results of Computer Simulation 

Let's solve the stochastic game of two agents with two pure strategies in a two-state 
environment. The matrices of the average payoffs of such a game are given in Table 
1.  
 



Table 1. Player gains matrix 

States Strategies The first player The second player 

  2 1 2( , [1])s a  2 1 2( , [2])s a  2 1 2( , [1])s a  2 1 2( , [2])s a  

1 1 1( , [1])s a  0.4 0.1 0.9 0.2 1s  

1 1 1( , [2])s a  0.1 0.9 0.2 0.9 

  2 2 2( , [1])s a  2 2 2( , [2])s a  2 2 2( , [1])s a  2 2 2( , [2])s a  

1 2 1( , [1])s a  0.4 0.6 0.5 0.2 2s  

1 2 1( , [2])s a  0.6 0.8 0.6 0.7 

Under uncertainty, the elements of the average payoff matrix ( , )i
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)),(),,((),( asdasvNormalasr iii  , 

distributed by normal law with mathematical expectation ),( asvi  and dispersion  

),( asd i . Normally distributed random variables are obtained by summing twelve 

evenly distributed random numbers ]1,0[ :  
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







 



6),(),(),(
12

1j
j

iii asdasvasr  , (11) 

where AaSsdasd i  ,0),( . If at time t  the system was in a state of disre-

pair Ss , then after implementing pure strategies ),...,( 1 Laaa  , where 

i
L

i
AAa

1
 , agents receive current winnings ),( asri

t , calculated according to (11). 

After receiving current winnings, each agent lists the corresponding item Q -

matrix according to the algorithm modified for uncertainty conditions BR : 

 )),...,,(max(),...,,()1(),...,,( 1111 L
i
t

a

i
ttL

i
ttL

i
t aasQraasQaasQ

i

  . (12) 

Based on Q -matrices the current values of mixed strategies are calculated using the 

Boltzmann method: 
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)|)(( , iNk ..1 ,  (13) 



where ))(,(max))(,(* kaarkasQ ii
i

a
ii

i




 , ii Aa   , j
L

ij
j

i AA




 
1

, 0T  is tempera-

ture coefficient.  
Vector elements of mixed strategies i  define a discrete distribution by which the 

values of random pure strategies are determined i -agent at the next time:  
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 , Ss , Ii , (14) 

where ]1,0[  is random variable with uniform distribution. 

The change of states of the dynamic system is determined by the discrete distribu-
tion passp  ),|(  AaSs  , : 
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Let the states change Ss system is implemented with equal probabilities 

)..1,|(|),|( 1 MkSassp k    AaSs  , , that is  )5.0;5.0(),|(  assp  for 

2|| S . Agents' average payoffs are calculated taking into account the transition 

probabilities of the medium from one state to another: 



Ss

ii sVspV )()( , Li ..1 , 

where  
 


Aa

L

j
j

ii asasvsV
1

),(),()(   is average agent gain in the state Ss . 

The trajectories of changing agent strategies within a unit simplex and the appear-

ance of average payoff functions )(sV i , which correspond to the data of the table 1, 

is shown in Fig. 1 and Fig. 2. 

     

Fig. 1. First agent average payoff functions 



     

Fig. 2. Second agent average payoff functions 

The BR method (12 – 15) ensures that stochastic play is solved at the vertices of a 
unit simplex with the maximum value of the mean gain function. The percentage of 
options for achieving optimal game resolution depends on the absolute difference 
between the two largest consecutive values of the average payoff features. 

The convergence of the method is estimated by the error of fulfillment of the com-
plementary slackness condition [35], weighted by mixed strategies: 




 
Ii

iiL
21 ~ , where ii

ii Vdiag /V )(~   ; )( idiag   is diagonal square 

matrix of order iN , formed from vector elements i ;  i
ii NjjVV ..1][   is vec-

tor median payoff function for fixed net strategies i -player; 



iN

j
i

ii jjVV
1

][][   is 

average payoff function i -player;   is Euclidean vector norm. The complementary 

slackness condition characterizes the gameplay in Nash mixed strategies. The 
weighted condition additionally takes into account the game's solutions in pure strate-
gies. Average payoff function graphs   and norms for deviating mixed strategies 
from their target values   filed in Fig. 3.  

 

Fig. 3. Characteristics of the convergence of the game Q -method 



The gains in Fig. 3 are averaged over the number of players: 


 
L

i
iL

1

1 , where 

0i  is discounted current gains i -player. Deviation schedule drop   mixed 

strategies from their target indicates the convergence of the game Q -method. 

The value of the temperature coefficient T has a significant impact on the conver-
gence of the game method. The rate of convergence is determined by the rapid decline 
of the function graph  , which can be estimated by the value of the acute angle of 
linear approximation of the function graph   with the time axis. With the growth T 
rate of convergence of game Q -method decreases. 

6 Conclusions 

The promotional training method (8) considered in the deterministic version requires 
the knowledge of each agent Q -functions of all other agents. These functions are 

used by agents to identify strategies that provide method dynamics toward the points 
of collective equilibrium. Value Q -functions can be obtained by exchanging informa-

tion between agents. If integrated information about Q -functions are not available to 

the agent, then he must determine their value independently in the learning process, 
observing the current benefits of other agents and performing evaluations Q -

functions according to (8). If such observations are not possible, the agents may per-
form reflective assessments Q -functions of other agents.  

Another method of constructing incentive training algorithms for agents under un-
certainty is to apply the stochastic approximation method to the corresponding collec-
tive equilibrium condition.  

The practical use of game-based promotional training methods requires their prior 
analysis to determine the conditions for convergence to a state of collective equilib-
rium. Such studies are based on the evaluation of sequences of random variables, 
which characterize the current deviations of players' strategies from their optimal 
values. 

The rate of convergence of the game method of Q-learning is determined by the 
parameters t  and T. Parameter t  must satisfy the general conditions of stochastic 

approximation (10). The value of the parameter T depends on the absolute values of 
the elements of Q-matrices. It is experimentally established that for the given matrices 
of average payoffs the convergence of the game Q-method is provided at ]2.0,0(T  

in the parameter value range ]1,0(,    tt . The highest convergence rate of the 

game method of promotional learning is achieved at 210T . 
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