
Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

Experimental research of optimizing the Apache Spark
tuning: RDD vs Data Frames

Sergii Minukhin1[0000-0002-9314-3750], Maksym Novikov1[0000-0002-8978-044X], Natalia
Brynza1[0000-0002-0229-2874], Dmytro Sitnikov2[0000-0003-1240-7900]

1Simon Kuznets Kharkiv National University of Economics, 9a Nauka Ave., Kharkiv 61166

Ukraine
minukhin.sv@gmail.com, maksym.novikov@hneu.net,

natalia.brynza@hneu.net

2Harkiv National University of Radio Electronics, 14 Nauka Ave., Kharkiv 61166, Ukraine

dmytro.sytnikov@nure.ua

Abstract. In this paper results and analysis of experimental research for
determining the effectiveness of changing the parameters (as compared to
standard values) of tuning Apache Spark for minimizing application execution
time have been presented. The structure of a test dataset has been developed
using RDD and Data Frames, based on which it is possible to create during a
minimal time text files with a size greater than 4 GB having properties
(characteristics) set up for testing. A peculiarity of test data is the fact that they
often reflect basic properties of real world problems. The investigation includes
2 stages: at the first stage a comparative analysis of RDD and Data Frames is
carried out for the standard settings of Apache Spark; at the second stage
experiments for different sizes of an input test dataset for assessing the
influence of parallelism levels, a block size in HDFS and the parameter
spark.sql.shuffle.partitions in Spark Data Frames have been conducted. The
obtained results substantiate the influence of the spark.sql.shuffle.partitions
value on the test task execution performance. For this parameter ranges and
change trends have been found. Also, levels of parallelism that maximally in-
fluence the execution time have been determined. It has been proven that for
certain sizes of input test files the size of an HDFS block can be set up by
default. Results of computational experiments have been demonstrated in tables
and graphs. They confirm the effectiveness of the suggested changes to the
Apache Spark settings as compared with the standard ones for different sizes of
tested files.

Keywords. Apache Spark, Resilient Distributed Dataset, Data Frames, HDFS,
shuffling, level of parallelism, data processing, data set, application, execution
time.

1 Introduction and related works

Spark is a general-purpose, fault-tolerant, and fast cluster computing platform for
processing big data. Apache Spark is a popular platform for data analytics that has
been used by many organizations (Yahoo!, eBay, Baidu, Netflix [1]) owing to its in-
memory computing framework. The Apache Spark framework is open source. It
offers a number of tuning capabilities and can be customized. Its configuration has a
100 parameters that can be easily set up and changed by the user and tailored
according to the cluster and application he uses [2]. The main types and description of
Apache Spark parameters are presented in Table 1 [2, 3].

Table 1. The main types and description of Apache Spark parameters

Parameter type Description
Application Properties Related to basic properties of an application, for ex-

ample, the application name, the CPU and the mem-
ory resources that are supposed to be allocated to the
coordinating process (driver), the memory allocated
for all executor processes that perform computations

Runtime Environment Settings for environment (class paths, java options
and logging)

The level of parallelism It relates to the number of tasks in which each Resili-
ent Distributed Dataset (RDD) is divided into parts. It
should be set in a way that the resources of a cluster
are completely utilized

Shuffle Behavior Such parameters represent the shuffling mechanism
of Spark, and they include methods of shuffling, buff-
er settings, sizes, memory selected for shuffling

Execution Behavior Fractions of memory, number of execution cores
and the level of parallelism

Scheduling Related to the scheduling mode and define, in particu-
lar, the maximum number of CPU cores that will be
used

Networking Related to timeout options, ports, optimal values for
network retries, heartbeat pauses

Compression and Serializa-
tion

These parameters define if compression is applied or
not, which compression codec should be used, pa-
rameters of the codec, the serializer to be used and its
buffer options

Spark UI These parameters are mainly associated with UI
event-logging

The existing methodological approaches to optimizing settings (resetting standard

values) of the Spark parameters allow increasing computational performance for
solving problems related to various fields are considered in [1-3]. However, owing to

substantial differences in applications and their different performance (with respect to
input data characteristics), developing a generalized algorithm that works effectively
for any application is difficult [1]. Thus it is important to improve the execution
performance of Spark for different application types, which can be done with the help
of: optimizing the physical execution plan of a Spark job; efficiently scheduling parts
of a Spark job on cluster nodes; and selecting the right configuration for the cluster,
such as the number of machines (processors) and the resources available on each
machine (RAM, I/O devices, network channel, HDD or SSD) [4]. Apache Spark
applications are executed in many steps, where each step includes multiple tasks
running parallelly on multiple worker nodes. Resilient Distributed Dataset (RDD) [4,
5] provides interfaces for data transformations and parallelization. These RDDs are
distributed among cluster nodes. There are two types of operations on RDDs in Spark:
transformations, which convert an RDD to another RDD, and actions, which operate
on an RDD for producing a final result. This allows creating a job DAG (Directed
Acyclic Graph) of transformations before calling an action, and therefore,
optimization can be carried out on this DAG prior to execution [2, 6, 8]. For each
action triggered inside of a Spark application, the DAG scheduler develops an
execution plan to complete it. The conception of this execution plan supposes
assembling as many transformations with narrow dependencies as possible into stages
[2, 5, 6]. So, The Spark DAG schedules each stage for execution [2, 8]. The RDD
interface also provides the possibility of caching data in memory in a way allowing
them to be read at next iterations of the job without I/O latency [7, 8].

Spark SQL [8, 9] is a module that is built on top of the Spark core engine in order
to process structured or semi-structured data. Spark SQL introduces a novel extensi-
ble optimizer called Catalyst [9]. Catalyst makes it easy to add data sources,
optimization rules, and data types. There is a possibility of repartitioning data in
RDDs. It is possible to do with the help of a specific transformation, such as
groupByKey and sortByKey, which leads to a new RDD, where data are differently
partitioned across machines. Such a redistribution of data is called data shuffling. Аn
API Data-Frame has been created to perform relational operations on data such as
select, filter, and join [2, 9]. Data Frame in Spark is a distributed data collection
organized in the form of named columns. Conceptually, this is equivalent to a table in
a relational database or data frame in R/Python, but with more powerful opti-
mization. Data frames can be created from different sources – files with structured
data, Hive tables, external databases or existing RDD [2, 9]. Data Frames in Spark
automatically optimize the execution of queries with the help of the query optimizer
Catalyst. At the beginning of calculations in Data Frame Catalyst compiles operations
that have been used for building Data Frame in a physical execution plan and then
generates byte-code JVM for the plans that are more optimized than a handwritten
code [8, 9]. Unlike RDDs, Data Frames normally tracks their schema and support
different relational operations, which leads to a more optimized execution. Data
Frames can be constructed from tables in the available Big Data infrastructure or from
existing RDDs [9]. Data Frames can be managed with direct SQL queries and also
with the help of the DataFrame DSL (domain-specific language), where various
relational operators and transformers can be used, such as Where and GroupBy. Any
Data Frame can also be considered as RDD of Row objects, which allow users to call

RDD of Row objects, which allow users to call procedural Spark APIs such as map
[9, 10].

Big Data Benchmarking Requirements include the capability of processing data of
different types, e.g., unstructured, semi-structured, structured data, and different
sources [9, 11, 13]. Big data workloads selected in the benchmark suite should corre-
spond to the diversity of application scenarios. Some researchers have used 3 bench-
mark applications: sort-by-key, shuffling and k-means (e.g., part of the HiBench
benchmark [11-13]). The above applications have been chosen because they can be
viewed as representatives of a variety of applications under the condition that they
cover both cpu- and shuffling-intensive cases (Sort-by-key is both computation- and
shuffling-intensive) [2, 12, 13]. A great number of transformations require data shuf-
fling across the cluster, which includes Join, ReduceByKey, GroupByKey, Cogroup.
In this paper such an approach serves as a basis for the development of a test data
generator.

Profiling Spark applications. Many researches divide all methods for tuning
Apache Spark into several classes. A brief description of these is as follows:

 using pairs of parameters on benchmarking applications and the application of a
graph algorithm to build complex candidate configurations [2, 6];

 using arbitrary combinations of the parameters [2, 3, 8];
 tuning parameters with the help of Machine Learning methods [6-8].

The work [2] considers Spark’s shuffling optimization using two approaches. The
first one is optimization via columnar compression, which unfortunately does not lead
to any significant improvement of performance. The second one applies file
consolidation during shuffling. The shuffle phase is all-to-all communication
instrument and it can potentially introduce network, disk, memory and CPU
scheduling overheads. A lot of transformations require data shuffling across the
cluster, including Join, ReduceByKey, GroupByKey, Cogroup. For optimizing shuffle
performance the following approaches are used: 1) Emulating Spark behavior by
merging intermediate files; 2) Creating large shuffle files [14-16].

The main operations associated with shuffling are represented in Table 2 [15].

Table 2. Shuffle operations

Configu-
ration

Description Tuning advice

Spark.sh
ufle.file.
buffer

This parameter is used to set
the buffer buffer size of the
bufferedOutputStream of the
shuffle write task.

If the available memory resources
are sufficient, it can increase the size
of this parameter (such as 64k), so as
to reduce the number of times the
disc file overflows during the shuffle
write process, which can reduce the
number of disc IO times and improve
performance

Spark.re
ducer.ma
xSizeIn-
Flight

This parameter is used to set
the buffer size of the shuffle
read task, and this buffer de-
cides how much data can be
drawn at a time.

If the available memory resources
are sufficient, we can increase the
size of the parameters (such as 96
MB), thereby reducing the number of
times the data is pulled, which can
reduce the number of network trans-
missions and improve performance

Spark.sh
uf-
fle.io.ma
xRetries

Shuffle read task from the
shuffle write task where the
node is pulling their own data, if
the network due

For those jobs that contain a very
time-consuming shuffle operation, it
is recommended to increase the max-
imum number of retries (for example,
60 times) to avoid data failure due to
factors such as the full gc of the JVM
or network instability.

Spark.sh
uf-
fle.io.ret
ryWait

This parameter represent the
retry interval for each retry of
the data).

It is recommended to increase the
interval length (e.g. 60s) to increase
the stability of the shuffle operation

Spark.sh
uf-
fle.mem
oryFrac-
tion

This parameter represent the
memory size of the Executor
memory, which is assigned to
the shuffle read task for the
aggregation operation.

This parameter is explained in re-
source parameter tuning. If the mem-
ory is sufficient, and rarely use the
persistence operation, it is recom-
mended to increase this ratio, to shuf-
fle read the aggregation operation of
more memory, in order to avoid the
lack of memory caused by the fre-
quent process of reading writing disk.

Spark.sh
uf-
fle.sort.b
ypass-
Mer-
geThres
hold

When ShuffleManager is
SortShuffleManager, if the
number of shuffle read tasks is
less than this threshold (default
is 200), shuffle write process
will not be sorted, but directly in
accordance with the way to
optimize the HashShuffleMan-
ager to write data.

When you use SortShuffleMan-
ager, if we do not need to sort opera-
tion, it is recommended that this pa-
rameter will be larger, greater than
the number of shuffle read task.

The contributions of this paper are as follows:

 a technique for generating test files of different sizes with properties defining re-
quirements to test data processing has been developed;

 a comparative performance analysis of using Resilient Distributed Dataset and
Data Frame in the case of standard Spark settings has been carried out; the
influence of input files of different sizes has been investigated;

 the analysis of the Data Frame technology performance under simultaneously
changing settings (tuning) related to parallelism levels and shuffle partitions (Data
Frames) for input files of different sizes has been conducted.

2 Problem statement

The problem considered in this paper is the optimization of distributed
computations, namely, experimental determining potentially most important tuning
parameters for Apache Spark for minimizing the application execution time in the
Apache Spark cluster based on using new Data Frame technologies for working with
data as com-pared with the technology Resilient Distributed Dataset; obtaining
quantitative esti-mates for the application of the API Data Frame technology for
different settings (tuning) of the Spark parameters and experimental determining their
values providing minimum execution time.

3 Experiments Environment setup and Data Set generation

When conducting experiments, the following software and hardware for the work
of the Apache Spark cluster have been used:

4 work stations (1 master, 3 workers) with the following characteristics: CPU: Intel
Core i5-7500 CPU @ 3.40 GHz; number of cores: 4 (without HyperThreading);

L1 cache: 256 KB; L2 cache: 1 MB; L3 cache: 6 MB; RAM: 8 GB DDR4 @ 2400
MHz; HDD: 500 GB (1 TB); interface: SATA; computer network – Ethernet; network
adapter: Realtek RTL8411@1 GBit/s; ОS: Ubuntu Linux 16.0 LTS. For distributed
computations on the cluster the following versions of Apache Spark and Apache
Hadoop and Spark deployment modes have been used: Master – Spark 3.0.0 (Preview
2), Name Node – Hadoop (HDFS) – 3.2.1, YARN (Fair), client mode; workers –
Spark 3.0.0 (Preview 2), Data Node – Hadoop (HDFS) 3.2.1, YARN (Fair), client
mode. For testing a dataset containing information on movies from the site
https://datasets.imdbws.com has been used (a description of the dataset is presented
on the resource https://www.imdb.com/interfaces). The dataset consists of several
files linked with a key and contains columns with different data types, such as string,
numerical, Boolean and date. The following dataset files have been used for testing:
name.basics; title.basics; title.akas; title.episode; title.principals; title.ratings.

The size of the created basic test file is about 4 GB. In order that we can obtain re-
sults that can be compared and analyzed, datasets of higher volumes have been
generated (Big Data) based on the main dataset. The following method has been used
for generating these datasets: the original files have been copied and linked with each
other (merged) and the key fields have been changed so that records are considered
unique after the application of the aggregation, sorting and joining by key operations.
Thus, test data in the range from 8 GB to 16 GB have been obtained. The operations

that have been used for a load imitation have been identical for RDD and Data
Frames, namely, filter, join, groupBy, sortBy, and the aggregation functions count and
sum. For each file in the dataset the operations of filtering have been ap-plied, then
the operations of sorting and aggregations, and after that, the linking by key with
another file has been carried out. Thus, the operations that require both computer
intensity (processors) and those where input-output speed is a key factor have been
applied. The testing has been carried out in two modes: a) using RDD and b) using
Data Frames.

For the file name.basics the following filters have been applied: deathDate != null
and primaryProfession != miscellaneous. Their implementation though the Data-
Frames API is as follows:

names_df.filter(f.col('deathYear').isNotNull())
.filter(f.array_contains(f.split(f.col('primaryProfession
'), ','), 'miscellaneous'))

and for RDD API:

names_rdd.filter(lambda r: r['deathYear'] is not
None).filter(lambda r: False if r['primaryProfession'] is
None else 'miscellaneous' not in r['primaryProfession']).

For the file title.akas the following filters have been applied: isOriginalTitle = ‘1’ and
region = ‘US’. Their implementation through the DataFrames API is the following:

akas_df.filter(f.col('isOriginalTitle') ==
'1').filter(f.col('region') == 'US')

and for the RDD API:

akas_rdd.filter(lambda r: r['isOriginalTitle'] ==
'1').filter(lambda r: r['region'] == 'US').

For the file title.episode the following filter has been applied: episodeNumber > 10.
Its implementation through the DataFrames API is as follows:

episodes_df.filter(f.col('episodeNumber').cast('int') >
10))

and for the RDD API:

episodes_rdd.filter(lambda r: False if r['episodeNumber']
is None else int(r['episodeNumber']) > 10).

For the file title.principals the following filters have been used: category != ‘self’ and
category != ‘cinematographer’ and ordering <= 3. Their implementation thourgh the
DataFrames API is as follows:

principals_df.filter((f.col('category') != 'self') &
(f.col('category') !=
'cinematographer')).filter(f.col('ordering').cast('int')
<= 3)
and for the RDD API:

principals_rdd.filter(lambda r: r['category'] != 'self'
and r['category'] != 'cinematographer').filter(lambda r:
int(r['ordering']) <= 3).

For the file title.ratings the filters averageRating > 5.0 and numVotes > 10 000 have
been applied. Their implementation through the DataFrames API is the following:

ratings_df.filter(f.col('averageRating') >
5.0).filter(f.col('numVotes').cast('int') > 10_000)

and for the RDD API:

ratings_rdd.filter(lambda r: float(r['averageRating']) >
5.0).filter(lambda r: int(r['numVotes']) > 10_000).

For the file title.basics the filters ‘Comedy’ in genres and titleType != ‘short’ have
been used. Their implementation though the DataFrames API is as follows:

tiles_df.filter(f.array_contains(f.split(f.col('genres'),
','), 'Comedy') & (f.col('titleType') != 'short'))

and for the RDD API:

titles_rdd.filter(lambda r: False if r['genres'] is None
else 'Comedy' in r['genres'].split(',')).filter(lambda r:
r['titleType'] != 'short').

After the filtration, the sorting and arrogation operations have been applied. For the
file title.principals the operation of sorting by vlues of the column ‘tconst’ has been
used, which is implemented through the Data Frames API:
principals_df.orderBy('tconst'); in the case of the RDD API:
principals_rdd.sortBy(lambda r: r['tconst']). For the file title.basics the operation of
grouping by genres has been applied, which is implemented through the Data Frames
API: titles_df.withColumn('genres',
f.split(f.col('genres').getItem(0))).groupBy('genres').ag
g(f.count(f.lit(1))) и для RDD API: titles_rdd.groupBy(lambda r: None
if r['genres'] is None else
r['genres'].split(',')[0]).map(lambda r: (r[0],
len(r[1]))).

The last operation is a superposition of several files by key, which is implemented
through the DataFrames API:

titles_df.join(akas_df, f.col('tconst') ==
f.col('titleId')).join(ratings_df,
on=['tconst']).join(episodes_df, on=['tconst'])

and the RDD API:

titles_rdd.join(akas_rdd).join(ratings_rdd).join(episodes
_rdd).

All the above operations can be divided into two categories:
CPU intensive (mainly associated with filtering or computing values in the

framework of one row);
I/O (operations associated with data exchange between cluster nodes, for example,

aggregation or sorting).
The considered operations used for generating test data with different properties

are represented in Table 3.

Table 3. Operations for generated data

Operation CPU intensive I/O intensive
name.basics filters deathDate != null

and primaryProfession !=
miscellaneous

superposition with another
dataframe by key ‘nconst’

title.akas filters isOriginalTitle = ‘1’
and region = ‘US’

superposition with another
dataframe by key ‘tconst’

title.episode filters episodeNumber > 10 superposition with another
dataframe by key ‘tconst’

title.principals filters category != ‘self’
and category != ‘cinema-
tographer’ и ordering <= 3

sorting by values of the col-
umn ‘tconst’

title.ratings filters averageRating > 5.0
and numVotes > 10 000

superposition with another
dataframe by key ‘tconst’

title.basics filters ‘Comedy’ in genres
and titleType != ‘short’

operations of grouping by
genre in the column ‘genres’
superposition with other data
frames by the key ‘titleId’

4 RDD vs Data Frame

For conducting experiments and comparative analysis the following setting for
Apache Spark parameter tuning have been used (Table 4).

Table 4. Apache Spark settings

Parameters Description Default Rules
of

thumb

Values

spark.driver.cores Number of cores to
use for the driver
process

1 1-4 1

spark.driver.memory

Amount of memory
to use for the driver
process

1 GB 1-8 GB 1 GB

spark.executor.cores The number of cores
to use on each execu-
tor

All the
available
cores on
the worker

1-4 3

spark.executor.memory Amount of memory
to use per executor
process

1 GB 1-8 GB 6 GB

spark.io.compression.co
dec

The codec used to
compress internal
data

lz4 lz4/lzf lz4

spark.reducer.maxSizeIn
Flight

Maximum size of
map outputs to fetch
simultaneously from
each reduce task

48 MB 24-48
MB

48 MB

spark.shuffle.compress Whether to compress
map output files

true true/fal
se

true

spark.default.parallelism Default number of
partitions in RDDs
returned by transfor-
mations

Number of
cores on
the local
machine

9-72 9-72

spark.sql.shuffle.partitio
ns

Number of partitions
to use when shuffling
data for joins or ag-
gregations

200 50-200 50-200

spark.sql.shuffle.buffer Size of the in-
memory buffer for
each shuffle file out-
put stream, in KB
unless otherwise
specified. These
buffers reduce the
number of disk seeks
and system calls
made in creating

32 16-64 64

intermediate shuffle
files

input data size Total size of input
data files

 4-16
GB

4-16 GB

hdfs.blocksize Size of blocks in
which files are stored
in hdfs

128 MB 64-
256
MB

64-
256 MB

The conducted experimental research has shown the absence of influence of

changing standard values for some tuning Spark parameters, which are shown in
Table 4, namely, spark.shuffle.compress, spark.reducer.maxSizeInFlight, s-
park.driver.memory and spark.io.compression.codec on the execution time. The value
of the parameter spark.sql.shuffle.buffer (64 MB) has been obtained based on multip-
le experimental results for RDD and Data Frames. Therefore the presented
methodology has been built on the investigation of the parameters input data size,
spark.default.parallelism, spark.sql.shuffle.partitions, and hdfs.blocksize on the task
execution time. The experimental research included two stages: at the first stage a comparison of
test results for input files of 4GB – 16GB has been carried out for different Spark
settings in the cases RDD and Data Frame; at the second stage the influence of paral-
lelism levels and the parameter spark.sql.shuffle.partitions on the execution time for
files with different sizes for different values of the HDFS data block has been investi-
gated.

As a performance metric, the application execution time (Execution Time) has been
used. It can be calculated according to formula [17]:

 Time Start- TimeFinish = TimeExecution ,

where Finish Time is the application completion time; Start Time is the application
start time.

Stage 1.
The experiments have been carried out for different sizes of the HDFS data block

(by default 128 MB). The results obtained for the test task execution time in the cases
of RDD and Data Frames are shown in Table 5.

Table 5. Task execution time for RDD and Data Frames for different values of input files sizes
and levels of parallelism

Type Input file size, GB Level of paral-
lelism

Execution time

4 9 8 min. 35 sec.
4 36 7 min. 35 sec.
4 72 6 min. 59 sec.
8 9 38 min. 45 sec.
8 36 17 min. 28 sec.
8 72 14 min. 51 sec.

RDD

16 9 49 min. 23 sec.

16 36 40 min. 45 sec.
16 72 31 min.28 sec.
4 9 1 min. 37 sec.
4 36 1 min. 53 sec.
4 72 1 min. 33 sec.
8 9 2 min.54 sec.
8 36 2 min. 58 sec.
8 72 3 min. 29 sec.
16 9 5 min. 3 sec.
16 36 5 min.19 sec.

Data Frame

16 72 5 min. 13 sec.

The analysis of results shown in Table 5 allows us to come to a conclusion that the
performance of computations with the help of Data Frame is significantly higher than
with the using of RDD (in the range of 600%-700%), and it changes with changing
the level of parallelism as follows: it decreases for RDD in the range of 15%-230%
and it increases for Data Frames. The latter result shows the necessity of investigating
the influence of other factors (parameters) used in Data Frames on the performance of
computations.

Stage 2.
At this stage the combined influence of changing the parameter settings Level of

Parallelism and spark.sql.shuffle.partitions on the application execution time has been
investigated. A peculiarity of the suggested approach is this. The parameter
spark.sql.shuffle.partitions decreases (it is equal to 200 by default) in the range from
50 to 200. The results of the conducted computing experiments are shown in Table 6.

Table 6. Task execution time for Data Frames for different values of input files sizes, levels of
parallelism, and spark.sql.shuffle.partitions

Level of
Parallelism

spark.sql.shuffle.partitions Execution Time

Input File size=8 GB, Block size=128 MB
9 200 2 min.54 sec.
 150 2 min.45 sec.
 100 2 min.52 sec.
 50 2 min.40 sec.
36 200 2 min.58 sec.
 150 2 min.48 sec.
 100 2 min.52 sec.
 50 2 min.43 sec.
72 200 3 min.29 sec.
 150 2 min.48 sec.
 100 2 min.43 sec.
 50 2 min.45 sec.
Input File size=8 GB, Block size=64 MB

9 200 3 min. 7 sec.
 150 2 min. 49 sec.
 100 2 min. 35 sec.
 50 2 min. 48 sec.
36 200 2 min. 29 sec.
 150 2 min. 28 sec.
 100 2 min. 24 sec.
 50 2 min. 21 sec.
72 200 2 min. 21 sec.
 150 2 min. 21 sec.
 100 2 min. 18 sec.
 50 2 min. 19 sec.
Input File size=4 GB, Block size=128 MB
9 200 1 min. 37 sec.
 150 1 min. 38 sec.
 100 1 min. 34 sec.
 50 1 min. 35 sec.
36 200 1 min. 53 sec.
 150 1 min. 31 sec.
 100 1 min. 32 sec.
 50 1 min. 28 sec.
72 200 1 min. 33 sec.
 150 1 min. 32 sec.
 100 1 min. 30 sec.
 50 1 min. 30 sec.
Input File size=4 GB, Block size=64 MB
9 200 1 min. 58 sec.
 150 1 min. 44 sec.
 100 1 min. 41 sec.
 50 1 min. 36 sec.
36 200 1 min. 34 sec.
 150 1 min. 34 sec.
 100 1 min. 31 sec.
 50 1 min. 31 sec.
72 200 1 min. 36 sec.
 150 1 min. 34 sec.
 100 1 min. 36 sec.
 50 1 min. 33sec.
Input File size=16 GB, Block size=128 MB
9 200 5 min. 3 sec.
 150 5 min. 2 sec.
 100 5 min. 7 sec.
 50 4 min. 59 sec.

36 200 5 min. 19 sec.
 150 5 min. 13 sec.
 100 5 min. 9 sec.
 50 5 min. 11 sec.
72 200 5 min. 13 sec.
 150 5 min. 11 sec.
 100 5 min. 11 sec.
 50 5 min. 11 sec.

The obtained results show that for relatively small test files (4 GB and 8 GB) val-
ues of the parameter spark.sql.shuffle.partitions have the maximum influence on the
execution time; at that the optimal parallelism level is from 36 to 72 and the minimum
execution time is stable when spark.sql.shuffle.partitions equals 50. We should note
that for the same files the optimal HDFS data block size is 64 MB or 128 MB, i.e. it
practically does not have any influence on the target variable. For a 16 GB file the
same settings do not bring substantial results. Besides, the most important result of the
conducted research and computational experiments is the fact that in all experiments
the default value of spark.sql.shuffle.partitions leads to worse results.

The graphs for the dependence of the test task execution time on parallelism level
and the parameter spark.sql.suffle.partitions are shown in Fig. 1, 2 (the following
notation is used: IFS – Input File Size, BS – Block Size – block size in HDFS).

Fig. 1. Graphs for the dependence of the test task execution time on different values of BS
for IFS=8 GB.

Fig. 2. Graphs for the dependence of the test task execution time on different values of BS
for IFS=4 GB.

On graphs 1, 2, results of conducted execution time calculations are visualized.
These results should be interpreted as follows. The minimum execution time values
are shown in blue and its gradient, the maximum ones are shown in red and its gradi-
ent. The results confirm the fact (see Table 6) that in general, for small size files
minimum execution time values are determined when the parallelism levels are 36 or
72, and the parameter sql.spark.shuffle.partions equals 50.

5 Conclusions

A new technology for working with data in Apache Spark – API Data Frames –
has been investigated. A comparative analysis of performance for RDDs and Data
Frames in Apache Spark has been conducted on test data with properties defined by
different data volumes. Software for generating test data with pre-defined
characteristics has been developed and studied, taking into consideration CPU and I/0
intensity. A comparative analysis of the technologies RDD and Data Frames has been
carried out, which has shown a significant advantage of Data Frames and the
influence of the parallelism level as the most important factor of increasing
performance of computations for RDD for the standard Spark settings. By conducting
a series of experiments, it has been obtained that the most important parameter for the
Data Frame technology that influences the execution time is
spark.sql.shuffle.partitions. Its changes in the range from 50 (experimentally
considered to be the minimum value) to 200 (default value) have shown that for input
files of small sizes the default value gives the worst results, and increasing the
performance of computations is determined by decreasing the values of this
parameter.The investigation of the parallelism level influence has allowed
determining optimal (in the context of settings for minimizing execution time) values
for this parameter - 36 and 72. For big size files decreasing the value
spark.sql.shuffle.partitions and increasing the parallelism level wihin the selected
ranges does not practically lead to a decrease in execution time. This fact probably
means that when an input file size increases, it is necessary to increase the

spark.sql.shuffle.partitions value. At the same time, it is quite difficult to assess the
influence of the parallelism level and directions of its change.

The conducted research has demonstrated the topicality of solving Big Data prob-
lems in the framework in-memory Apache Spark [18-20], for which the optimization
of settings differs from that for small files. Using well-known benchmarkings for
assessing distributed computations performance [11, 13, 18, 19] does not always
allow determining an optimal set and values of the Spark tuning parameters for RDDs
and Data Frames in the package and stream modes. Therefore, there are unsolved
problems related to investigating conditions for minimizing execution time for big
size files and saving properties of files generated synthetically, according to the
considered technique – forming big size files by cloning small files.

In the future we are planning to test the above technologies for data with volumes
higher than 50 GB, maybe 100 GB, under the condition of the scalability of the
Apache Spark cluster. An important research direction is also associated with investi-
gating the performance of the considered technologies when they are used for
methods and tests in maching learning [19-21].

References

1. Wang, K., Khan, M. M. H., Nguyen, N., Gokhale, S.: A Model Driven Approach towards
Improving the Performance of Apache Spark Applications. In: 2019 IEEE Interna-tional
Symposium on Performance Analysis of Systems and Software (ISPASS), 24-26 March
2019, pp. 233-242 (2019) doi: 10.1109/ISPASS.2019.00036.

2. Gounaris, A., Torres, J.: A Methodology for Spark Parameter Tuning. Big Data Research,
vol. 11, pp. 22-32 (2018) https://doi.org/10.1016/j.bdr.2017.05.001.

3. Petridis, P., Gounaris, A., Torres, J.: Spark Parameter Tuning via Trial-and-Error. In: Ad-
vances in Big Data: Proceedings of the 2nd INNS Conference on Big Data. INNS 2016.
Advances in Intelligent Systems and Computing, vol. 529, pp.226-237 (2016)
https://doi.org/10.1007/978-3-319-47898-2_24.

4. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster comput-
ing with working sets. In: Proceedings of the 2nd USENIX Conference on Hot Topics in
Cloud Computing (HotCloud), pp. 1-7 (2010)
https://www.icsi.berkeley.edu/icsi/node/5074.

5. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, Franklin, M. J., Shen-
ker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory
cluster computing. In: Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation. USENIX Association, pp. 15-28 (2012)
doi/10.5555/2228298.2228301.

6. Wang, G., Xu, J., He, B.: A Novel Method for Tuning Configuration Parameters of Spark
Based on Machine Learning. In: 2016 IEEE 18th International Conference on High Per-
formance Computing and Communications; IEEE 14th International Conference on Smart
City; IEEE 2nd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), Sydney, NSW, pp. 586-593 (2016) doi: 10.1109/HPCC-
SmartCity-DSS.2016.0088.

7. Choi, I. S., Yang, W., Kee, Y.: Early experience with optimizing I/O performance using
high-performance SSDs for in-memory cluster computing. In: IEEE International Confer-

ence on Big Data (Big Data), pp. 1073-1083 (2015) doi: 10.1109/BigData.2015.7363861.

8. Mustafa, S., Elghandour, I., Ismail, M. A.: A Machine Learning Approach for Predicting
Execution Time of Spark Jobs. Alexandria Engineering Journal, vol. 57, issue 4, pp. 3767–
3778 (2018) https://doi.org/10.1016/j.aej.2018.03.006.

9. Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., Meng, X., Kaftan, T.,
Franklin, Michael J., Ghodsi, A., Zaharia, M.:Spark SQL: Relational Data Processing in
Spark. In: SIGMOD '15: Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Man-agement of Data, pp. 1383–1394 (2015)
https://doi.org/10.1145/2723372.2742797.

10. Zaharia, M., Xin, R., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J.,
Venkataraman, S., Franklin, M., Ghodsi. A., Gonzalez, J., Shenker, S., Stoica, I.: Apache
Spark: a unified engine for big data processing. Communications of the ACM, vol. 59,
no. 11, pp. 56-65 (2016) https://doi.org/10.1145/2934664.

11. Han, R., John, L. K., Zhan, J.: Benchmarking Big Data Systems: A Review. IEEE Trans-
actions on Services Computing, vol. 11, issue 3, pp. 580-597 (2018)
doi: 10.1109/TSC.2017.2730882.

12. Clemente-Castello, F., Nicolae, B., Mayo, R., Fernandez, J.: Performance Model of
MapReduce Iterative Applications for Hybrid Cloud Bursting. IEEE Transactions on Par-
allel & Distributed Systems, vol. 29, issue 8, pp. 1794-1807 (2018)
doi: 10.1109/TPDS.2018.2802932.

13. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench benchmark suite: Charac-
terization of the MapReduce-based data analysis. In: 2010 IEEE 26th International Confer-
ence on Data Engineering Workshops (ICDEW 2010), Long Beach, CA, pp. 41-51 (2010)
doi: 10.1109/ICDEW.2010.5452747.

14. Davidson, A., Or, A.: Optimizing shuffle performance in spark. University of California,
Berkeley Department of Electriacal Engenering and Computer Science (2013)
https://www.semanticscholar.org/paper/Optimizing-Shuffle-Performance-in-Spark-
Davidson/d746505bad055c357fa50d394d15eb380a3f1ad3.

15. Nirali, R., Shyam, D.: Shuffle Performance in Apache Spark. International Journal of En-
gineering Research & Technology (IJERT), vol. 4, issue 02, pp.177-180 (2015).

16. Vandana, Velamuri, M., Narendra, K. P.: Shuffle phase optimization in spark.In: 2017 In-
ternational Conference on Advances in Computing, Communications and Informatics
(ICACCI), Udupi, pp. 1028-1034 (2017) doi: 10.1109/ICACCI.2017.8125977.

17. Web UI, available at: https://spark.apache.org/docs/3.0.0-preview/web-ui.html#jobs-tabN,
last accessed 2020/04/20.

18. Li, M., Tan, J., Wang, Y. et al.: SPARKBENCH: a spark benchmarking suite characteriz-
ing large-scale in-memory data analytics. Cluster Computing, vol. 20, no. 3, pp. 2575–
2589 (2017) https://doi.org/10.1007/s10586-016-0723-1.

19. Rodrigues, J., Vasconcelos, G.: Big Data Machine Learning Benchmark on Spark. IEEE
Dataport (2019) http://dx.doi.org/10.21227/t8bg-yc46.

20. Shi, S., Wang, Q., Xu, P., Chu, X.: Benchmarking State-of-the-Art Deep Learning Soft-
ware Tools. In: 7th International Conference on Cloud Computing and Big Data (CCBD),
Macau, pp. 99-104 (2016).

21. Liu, Y., Zhang, H., Zeng, L., Wu, W., Zhang, C.: MLbench: benchmarking machine learn-
ing services against human experts. Proceedings of the VLDB Endowment, vol. 11, no. 10,
pp. 1220–1232 (2018) doi:https://doi.org/10.14778/3231751.3231770.

