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Abstract. In this paper results and analysis of experimental research for 
determining the effectiveness of changing the parameters (as compared to 
standard values) of tuning Apache Spark for minimizing application execution 
time have been presented. The structure of a test dataset has been developed 
using RDD and Data Frames, based on which it is possible to create during a 
minimal time text files with a size greater than 4 GB having properties 
(characteristics) set up for testing. A peculiarity of test data is the fact that they 
often reflect basic properties of real world problems. The investigation includes 
2 stages: at the first stage a comparative analysis of RDD and Data Frames is 
carried out for the standard settings of Apache Spark; at the second stage 
experiments for different sizes of an input test dataset for assessing the 
influence of parallelism levels, a block size in HDFS and the parameter 
spark.sql.shuffle.partitions in Spark Data Frames have been conducted. The 
obtained results substantiate the influence of the spark.sql.shuffle.partitions 
value on the test task execution performance. For this parameter ranges and 
change trends have been found. Also, levels of parallelism that maximally in-
fluence the execution time have been determined. It has been proven that for 
certain sizes of input test files the size of an HDFS block can be set up by 
default. Results of computational experiments have been demonstrated in tables 
and graphs. They confirm the effectiveness of the suggested changes to the 
Apache Spark settings as compared with the standard ones for different sizes of 
tested files. 

Keywords. Apache Spark, Resilient Distributed Dataset, Data Frames, HDFS, 
shuffling, level of parallelism, data processing, data set, application, execution 
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1 Introduction and related works 

Spark is a general-purpose, fault-tolerant, and fast cluster computing platform for 
processing big data. Apache Spark is a popular platform for data analytics that has 
been used by many organizations (Yahoo!, eBay, Baidu, Netflix [1]) owing to its in-
memory computing framework. The Apache Spark framework is open source. It 
offers a number of tuning capabilities and can be customized. Its configuration has a 
100 parameters that can be easily set up and changed by the user and tailored 
according to the cluster and application he uses [2]. The main types and description of 
Apache  Spark parameters are presented in Table 1 [2, 3]. 

Table 1. The main types and description of Apache  Spark parameters 

Parameter type Description 
Application Properties Related to basic properties of an application, for ex-

ample, the application name, the CPU and the mem-
ory resources that are supposed to be allocated to the 
coordinating process (driver), the memory allocated 
for all executor processes that perform computations 

Runtime Environment Settings for environment (class paths, java options 
and logging) 

The level of parallelism It relates to the number of tasks in which each Resili-
ent Distributed Dataset (RDD) is divided into parts. It 
should be set in a way that the resources of a cluster 
are completely utilized 

Shuffle Behavior Such parameters represent the shuffling mechanism 
of Spark, and they include methods of shuffling, buff-
er settings, sizes, memory selected for shuffling 

Execution Behavior Fractions of memory, number of execution cores  
and the level of parallelism 

Scheduling  Related to the scheduling mode and define, in particu-
lar, the maximum number of CPU cores that will be 
used 

Networking Related to timeout options, ports, optimal values for 
network retries, heartbeat pauses 

Compression and Serializa-
tion 

These parameters define if compression is applied or 
not, which compression codec should be used, pa-
rameters of the codec, the serializer to be used and its 
buffer options 

Spark UI  These parameters are mainly associated with UI 
event-logging 

 
The existing methodological approaches to optimizing settings (resetting standard 

values) of the Spark parameters allow increasing computational performance for 
solving problems related to various fields are considered in [1-3]. However, owing to 



substantial differences in applications and their different performance (with respect to 
input data characteristics), developing a generalized algorithm that works effectively 
for any application is difficult [1]. Thus it is important to improve the execution 
performance of Spark for different application types, which can be done with the help 
of: optimizing the physical execution plan of a Spark job; efficiently scheduling parts 
of a Spark job on cluster nodes; and selecting the right configuration for the cluster, 
such as the number of machines (processors) and the resources available on each 
machine (RAM, I/O devices, network channel, HDD or SSD) [4]. Apache Spark 
applications are executed in many steps, where each step includes multiple tasks 
running parallelly on multiple worker nodes. Resilient Distributed Dataset (RDD) [4, 
5] provides interfaces for data transformations and parallelization. These RDDs are 
distributed among cluster nodes. There are two types of operations on RDDs in Spark: 
transformations, which convert an RDD to another RDD, and actions, which operate 
on an RDD for producing a final result. This allows creating a job DAG (Directed 
Acyclic Graph) of transformations before calling an action, and therefore, 
optimization can be carried out on this DAG prior to execution [2, 6, 8]. For each 
action triggered inside of a Spark application, the DAG scheduler develops an 
execution plan to complete it. The conception of this execution plan supposes 
assembling as many transformations with narrow dependencies as possible into stages 
[2, 5, 6]. So, The Spark DAG schedules each stage for execution [2, 8]. The RDD 
interface also provides the possibility of caching data in memory in a way allowing 
them to be read at next iterations of the job without I/O latency [7, 8].  

Spark SQL [8, 9] is a module that is built on top of the Spark core engine in order 
to process structured or semi-structured data. Spark SQL introduces a novel extensi-
ble optimizer called Catalyst [9]. Catalyst makes it easy to add data sources, 
optimization rules, and data types. There is a possibility of repartitioning data in 
RDDs. It is possible to do with the help of a specific transformation, such as 
groupByKey and sortByKey, which leads to a new RDD, where data are differently 
partitioned across machines. Such a redistribution of data is called data shuffling. Аn 
API Data-Frame has been created to perform relational operations on data such as 
select, filter, and join [2, 9]. Data Frame in Spark is a distributed data collection 
organized in the form of named columns. Conceptually, this is equivalent to a table in 
a relational database or data frame in R/Python, but with more powerful opti-
mization. Data frames can be created from different sources – files with structured 
data, Hive tables, external databases or existing RDD [2, 9]. Data Frames in Spark 
automatically optimize the execution of queries with the help of the query optimizer 
Catalyst. At the beginning of calculations in Data Frame Catalyst compiles operations 
that have been used for building Data Frame in a physical execution plan and then 
generates byte-code JVM for the plans that are more optimized than a handwritten 
code [8, 9]. Unlike RDDs, Data Frames normally tracks their schema and support 
different relational operations, which leads to a more optimized execution. Data 
Frames can be constructed from tables in the available Big Data infrastructure or from 
existing RDDs [9]. Data Frames can be managed with direct SQL queries and also 
with the help of the DataFrame DSL (domain-specific language), where various 
relational operators and transformers can be used, such as Where and GroupBy. Any 
Data Frame can also be considered as RDD of Row objects, which allow users to call 



RDD of Row objects, which allow users to call procedural Spark APIs such as map 
[9, 10]. 

Big Data Benchmarking Requirements include the capability of processing data of 
different types, e.g., unstructured, semi-structured, structured data, and different 
sources [9, 11, 13]. Big data workloads selected in the benchmark suite should corre-
spond to the diversity of application scenarios. Some researchers have used 3 bench-
mark applications: sort-by-key, shuffling and k-means (e.g., part of the HiBench 
benchmark [11-13]). The above applications have been chosen because they can be 
viewed as representatives of a variety of applications under the condition that they 
cover both cpu- and shuffling-intensive cases (Sort-by-key is both computation- and 
shuffling-intensive) [2, 12, 13]. A great number of transformations require data shuf-
fling across the cluster, which includes Join, ReduceByKey, GroupByKey, Cogroup. 
In this paper such an approach serves as a basis for the development of a test data 
generator. 

Profiling Spark applications. Many researches divide all methods for tuning 
Apache Spark into several classes. A brief description of these is as follows: 

 using pairs of parameters on benchmarking applications and the application of a 
graph algorithm to build complex candidate configurations [2, 6]; 

 using arbitrary combinations of the parameters [2, 3, 8]; 
 tuning parameters with the help of Machine Learning methods [6-8].  

The work [2] considers Spark’s shuffling optimization using two approaches. The 
first one is optimization via columnar compression, which unfortunately does not lead 
to any significant improvement of performance. The second one applies file 
consolidation during shuffling.  The shuffle phase is all-to-all communication 
instrument and it can potentially introduce network, disk, memory and CPU 
scheduling overheads. A lot of transformations require data shuffling across the 
cluster, including Join, ReduceByKey, GroupByKey, Cogroup. For optimizing shuffle 
performance the following approaches are used: 1) Emulating Spark behavior by 
merging intermediate files; 2) Creating large shuffle files [14-16]. 

The main operations associated with shuffling are represented in Table 2 [15]. 

Table 2. Shuffle operations 

Configu-
ration 

Description Tuning advice 

Spark.sh
ufle.file.
buffer 

This parameter is used to set 
the buffer buffer size of the 
bufferedOutputStream of the 
shuffle write task.  

If the available memory resources 
are sufficient, it can increase the size 
of this parameter (such as 64k), so as 
to reduce the number of times the 
disc file overflows during the shuffle 
write process, which can reduce the 
number of disc IO times and improve 
performance 



Spark.re
ducer.ma
xSizeIn-
Flight 

This parameter is used to set 
the buffer size of the shuffle 
read task, and this buffer de-
cides how much data can be 
drawn at a time. 

If the available memory resources 
are sufficient, we can increase the 
size of the parameters (such as 96 
MB), thereby reducing the number of 
times the data is pulled, which can 
reduce the number of network trans-
missions and improve performance 

Spark.sh
uf-
fle.io.ma
xRetries 

Shuffle read task from the 
shuffle write task where the 
node is pulling their own data, if 
the network due  

For those jobs that contain a very 
time-consuming shuffle operation, it 
is recommended to increase the max-
imum number of retries (for example, 
60 times) to avoid data failure due to 
factors such as the full gc of the JVM 
or network instability.  

Spark.sh
uf-
fle.io.ret
ryWait 

This parameter represent the 
retry interval for each retry of 
the data). 

It is recommended to increase the 
interval length (e.g. 60s) to increase 
the stability of the shuffle operation 

Spark.sh
uf-
fle.mem
oryFrac-
tion 

This parameter represent the 
memory size of the Executor 
memory, which is assigned to 
the shuffle read task for the 
aggregation operation.  

This parameter is explained in re-
source parameter tuning. If the mem-
ory is sufficient, and rarely use the 
persistence operation, it is recom-
mended to increase this ratio, to shuf-
fle read the aggregation operation of 
more memory, in order to avoid the 
lack of memory caused by the fre-
quent process of reading writing disk.  

Spark.sh
uf-
fle.sort.b
ypass-
Mer-
geThres
hold 

When ShuffleManager is 
SortShuffleManager, if the 
number of shuffle read tasks is 
less than this threshold (default 
is 200), shuffle write process 
will not be sorted, but directly in 
accordance with the way to 
optimize the HashShuffleMan-
ager to write data. 

When you use SortShuffleMan-
ager, if we do not need to sort opera-
tion, it is recommended that this pa-
rameter will be larger, greater than 
the number of shuffle read task.  

 
The contributions of this paper are as follows: 

 a technique for generating test files of different sizes with properties defining re-
quirements to test data processing has been developed; 
 



 a comparative performance analysis of using Resilient Distributed Dataset and 
Data Frame in the case of standard Spark settings has been carried out; the 
influence of input files of different sizes has been investigated; 

 the analysis of the Data Frame technology performance under simultaneously 
changing settings (tuning) related to parallelism levels and shuffle partitions (Data 
Frames) for input files of different sizes has been conducted. 

2 Problem statement 

The problem considered in this paper is the optimization of distributed 
computations, namely, experimental determining potentially most important tuning 
parameters for Apache Spark for minimizing the application execution time in the 
Apache Spark cluster based on using new Data Frame technologies for working with 
data as com-pared with the technology Resilient Distributed Dataset; obtaining 
quantitative esti-mates for the application of the API Data Frame technology for 
different settings (tuning) of the Spark parameters and experimental determining their 
values providing minimum execution time.  

3 Experiments Environment setup and Data Set generation 

When conducting experiments, the following software and hardware for the work 
of the Apache Spark cluster have been used: 

4 work stations (1 master, 3 workers) with the following characteristics: CPU: Intel 
Core i5-7500 CPU @ 3.40 GHz; number of cores: 4 (without HyperThreading);  

L1 cache: 256 KB; L2 cache: 1 MB; L3 cache: 6 MB; RAM: 8 GB DDR4 @ 2400 
MHz; HDD: 500 GB (1 TB); interface: SATA; computer network – Ethernet; network 
adapter: Realtek RTL8411@1 GBit/s; ОS: Ubuntu Linux 16.0 LTS. For distributed 
computations on the cluster the following versions of Apache Spark and Apache 
Hadoop and Spark deployment modes have been used: Master – Spark 3.0.0 (Preview 
2), Name Node – Hadoop (HDFS) – 3.2.1, YARN (Fair), client mode; workers – 
Spark 3.0.0 (Preview 2), Data Node – Hadoop (HDFS) 3.2.1, YARN (Fair), client 
mode.  For testing a dataset containing information on movies from the site 
https://datasets.imdbws.com has been used (a description of the dataset is presented 
on the resource https://www.imdb.com/interfaces). The dataset consists of several 
files linked with a key and contains columns with different data types, such as string, 
numerical, Boolean and date. The following dataset files have been used for testing: 
name.basics; title.basics; title.akas; title.episode; title.principals; title.ratings.  

The size of the created basic test file is about 4 GB. In order that we can obtain re-
sults that can be compared and analyzed, datasets of higher volumes have been 
generated (Big Data) based on the main dataset. The following method has been used 
for generating these datasets: the original files have been copied and linked with each 
other (merged) and the key fields have been changed so that records are considered 
unique after the application of the aggregation, sorting and joining by key operations. 
Thus, test data in the range from 8 GB to 16 GB have been obtained. The operations 



that have been used for a load imitation have been identical for RDD and Data 
Frames, namely, filter, join, groupBy, sortBy, and the aggregation functions count and 
sum. For each file in the dataset the operations of filtering have been ap-plied, then 
the operations of sorting and aggregations, and after that, the linking by key with 
another file has been carried out. Thus, the operations that require both computer 
intensity (processors) and those where input-output speed is a key factor have been 
applied. The testing has been carried out in two modes: a) using RDD and b) using 
Data Frames. 

For the file name.basics the following filters have been applied: deathDate != null 
and primaryProfession != miscellaneous. Their implementation though the Data-
Frames API is as follows:  

names_df.filter(f.col('deathYear').isNotNull()) 
.filter(f.array_contains(f.split(f.col('primaryProfession
'), ','), 'miscellaneous')) 

and for  RDD API:  

names_rdd.filter(lambda r: r['deathYear'] is not 
None).filter(lambda r: False if r['primaryProfession'] is 
None else 'miscellaneous' not in r['primaryProfession']). 

For the file title.akas the following filters have been applied: isOriginalTitle = ‘1’ and 
region = ‘US’. Their implementation through the DataFrames API is the following:  

akas_df.filter(f.col('isOriginalTitle') == 
'1').filter(f.col('region') == 'US') 

and for the RDD API:  

akas_rdd.filter(lambda r: r['isOriginalTitle'] == 
'1').filter(lambda r: r['region'] == 'US'). 

For the file title.episode the following filter has been applied: episodeNumber > 10. 
Its implementation through the DataFrames API is as follows:  

episodes_df.filter(f.col('episodeNumber').cast('int') > 
10)) 

and for the RDD API: 

episodes_rdd.filter(lambda r: False if r['episodeNumber'] 
is None else int(r['episodeNumber']) > 10). 

For the file title.principals the following filters have been used: category != ‘self’ and 
category != ‘cinematographer’ and ordering <= 3. Their implementation thourgh the 
DataFrames API is as follows:  



principals_df.filter((f.col('category') != 'self') & 
(f.col('category') != 
'cinematographer')).filter(f.col('ordering').cast('int') 
<= 3) 
and for the RDD API:  

principals_rdd.filter(lambda r: r['category'] != 'self' 
and r['category'] != 'cinematographer').filter(lambda r: 
int(r['ordering']) <= 3). 

For the file title.ratings the filters averageRating > 5.0 and numVotes > 10 000 have 
been applied. Their implementation through the DataFrames API is the following:   

ratings_df.filter(f.col('averageRating') > 
5.0).filter(f.col('numVotes').cast('int') > 10_000) 

and for the RDD API:  

ratings_rdd.filter(lambda r: float(r['averageRating']) > 
5.0).filter(lambda r: int(r['numVotes']) > 10_000). 

For the file title.basics the filters ‘Comedy’ in genres and titleType != ‘short’ have 
been used. Their implementation though the DataFrames API is as follows:   

tiles_df.filter(f.array_contains(f.split(f.col('genres'), 
','), 'Comedy') & (f.col('titleType') != 'short')) 

and for the RDD API:  

titles_rdd.filter(lambda r: False if r['genres'] is None 
else 'Comedy' in r['genres'].split(',')).filter(lambda r: 
r['titleType'] != 'short'). 

After the filtration, the sorting and arrogation operations have been applied. For the 
file title.principals the operation of sorting by vlues of the column ‘tconst’ has been 
used, which is implemented through the Data Frames API: 
principals_df.orderBy('tconst'); in the case of the RDD API: 
principals_rdd.sortBy(lambda r: r['tconst']). For the file title.basics the operation of 
grouping by genres has been applied, which is implemented through the Data Frames 
API: titles_df.withColumn('genres', 
f.split(f.col('genres').getItem(0))).groupBy('genres').ag
g(f.count(f.lit(1))) и для RDD API: titles_rdd.groupBy(lambda r: None 
if r['genres'] is None else 
r['genres'].split(',')[0]).map(lambda r: (r[0], 
len(r[1]))). 

The last operation is a superposition of several files by key, which is implemented 
through the DataFrames API:  



titles_df.join(akas_df, f.col('tconst') == 
f.col('titleId')).join(ratings_df, 
on=['tconst']).join(episodes_df, on=['tconst']) 

and the RDD API:   

titles_rdd.join(akas_rdd).join(ratings_rdd).join(episodes
_rdd). 

All the above operations can be divided into two categories: 
CPU intensive (mainly associated with filtering or computing values in the 

framework of one row); 
I/O (operations associated with data exchange between cluster nodes, for example, 

aggregation or sorting). 
The considered operations used for generating test data with different properties 

are represented in Table 3. 

Table 3. Operations for generated data 

Operation CPU intensive I/O intensive 
name.basics filters deathDate != null 

and primaryProfession != 
miscellaneous 

superposition with another 
dataframe by key ‘nconst’ 

title.akas filters isOriginalTitle = ‘1’ 
and region = ‘US’ 

superposition with another 
dataframe by key ‘tconst’ 

title.episode filters episodeNumber > 10 superposition with another 
dataframe by key ‘tconst’ 

title.principals filters category != ‘self’ 
and category != ‘cinema-
tographer’ и ordering <= 3 

sorting by values of the col-
umn ‘tconst’ 

title.ratings filters averageRating > 5.0 
and numVotes > 10 000 

superposition with another 
dataframe by key ‘tconst’ 

title.basics filters ‘Comedy’ in genres 
and titleType != ‘short’ 

operations of grouping by 
genre in the column ‘genres’ 
superposition with other data 
frames by the key ‘titleId’ 

4 RDD vs Data Frame 

For conducting experiments and comparative analysis the following setting for 
Apache Spark parameter tuning have been used (Table 4). 
 



Table 4. Apache Spark settings 

Parameters Description Default Rules 
of 

thumb 

Values 

spark.driver.cores Number of cores to 
use for the driver 
process 

1 1-4 1 

spark.driver.memory 
 

Amount of memory 
to use for the driver 
process 

1 GB 1-8 GB 1 GB 

spark.executor.cores The number of cores 
to use on each execu-
tor 

All the 
available 
cores on 
the worker 

1-4 3 

spark.executor.memory Amount of memory 
to use per executor 
process 

1 GB 1-8 GB 6 GB 

spark.io.compression.co
dec 

The codec used to 
compress internal 
data 

lz4 lz4/lzf lz4 

spark.reducer.maxSizeIn
Flight 

Maximum size of 
map outputs to fetch 
simultaneously from 
each reduce task 

48 MB 24-48 
MB 

48 MB 

spark.shuffle.compress Whether to compress 
map output files 

true true/fal
se 

true 

spark.default.parallelism Default number of 
partitions in RDDs 
returned by transfor-
mations 

Number of 
cores on 
the local 
machine 

9-72 9-72 

spark.sql.shuffle.partitio
ns 

Number of partitions 
to use when shuffling 
data for joins or ag-
gregations 

200 50-200 50-200 

spark.sql.shuffle.buffer Size of the in-
memory buffer for 
each shuffle file out-
put stream, in KB 
unless otherwise 
specified. These 
buffers reduce the 
number of disk seeks 
and system calls 
made in creating 

32 16-64 64 



intermediate shuffle 
files 

input data size Total size of input 
data files 

 4-16 
GB 

4-16 GB 

hdfs.blocksize Size of blocks in 
which files are stored 
in hdfs 

128 MB 64- 
256 
MB 

64- 
256 MB 

 
The conducted experimental research has shown the absence of influence of 

changing standard values for some tuning Spark parameters, which are shown in 
Table 4, namely, spark.shuffle.compress, spark.reducer.maxSizeInFlight, s-
park.driver.memory and spark.io.compression.codec on the execution time. The value 
of the parameter spark.sql.shuffle.buffer (64 MB) has been obtained based on multip-
le experimental results for RDD and Data Frames. Therefore the presented 
methodology has been built on the investigation of the parameters input data size, 
spark.default.parallelism, spark.sql.shuffle.partitions, and hdfs.blocksize on the task 
execution time. The experimental research included two stages: at the first stage a comparison of 
test results for input files of 4GB – 16GB has been carried out for different Spark 
settings in the cases RDD and Data Frame; at the second stage the influence of paral-
lelism levels and the parameter spark.sql.shuffle.partitions on the execution time for 
files with different sizes for different values of the HDFS data block has been investi-
gated. 

As a performance metric, the application execution time (Execution Time) has been 
used. It can be calculated according to formula [17]: 

 Time Start- TimeFinish = TimeExecution , 

where Finish Time is the application completion time; Start Time is the application 
start time. 

Stage 1. 
The experiments have been carried out for different sizes of the HDFS data block 

(by default 128 MB). The results obtained for the test task execution time in the cases 
of  RDD and Data Frames are shown in Table 5. 

Table 5. Task execution time for RDD and Data Frames for different values of input files sizes 
and levels of parallelism 

Type Input file size, GB Level of paral-
lelism 

Execution time 

4 9 8 min. 35 sec. 
4 36 7 min. 35 sec. 
4 72 6 min. 59 sec. 
8 9 38 min. 45 sec. 
8 36 17 min. 28 sec. 
8 72 14 min. 51 sec. 

 
 
 
 

RDD 
 

16 9 49 min. 23 sec. 



16 36 40 min. 45 sec. 
16 72 31 min.28 sec. 
4 9 1 min. 37 sec. 
4 36 1 min. 53 sec. 
4 72 1 min. 33 sec. 
8 9 2 min.54 sec. 
8 36 2 min. 58 sec. 
8 72 3 min. 29 sec. 
16 9 5 min. 3 sec. 
16 36 5 min.19 sec. 

 
 
 
 

Data Frame 

16 72 5 min. 13 sec. 
 

The analysis of results shown in Table 5 allows us to come to a conclusion that the 
performance of computations with the help of Data Frame is significantly higher than 
with the using of RDD (in the range of 600%-700%), and it changes with changing 
the level of parallelism as follows: it decreases for RDD in the range of 15%-230% 
and it increases for Data Frames. The latter result shows the necessity of investigating 
the influence of other factors (parameters) used in Data Frames on the performance of 
computations. 

Stage 2.  
At this stage the combined influence of changing the parameter settings Level of 

Parallelism and spark.sql.shuffle.partitions on the application execution time has been 
investigated. A peculiarity of the suggested approach is this. The parameter 
spark.sql.shuffle.partitions decreases (it is equal to 200 by default) in the range from 
50 to 200. The results of the conducted computing experiments are shown in Table 6. 

Table 6. Task execution time for Data Frames for different values of input files sizes, levels of 
parallelism, and spark.sql.shuffle.partitions  

Level of 
Parallelism 

spark.sql.shuffle.partitions Execution Time 

Input File size=8 GB, Block size=128 MB 
9 200 2 min.54 sec. 
 150 2 min.45 sec. 
 100 2 min.52 sec. 
 50 2 min.40 sec. 
36 200 2 min.58 sec. 
 150 2 min.48 sec. 
 100 2 min.52 sec. 
 50 2 min.43 sec. 
72 200 3 min.29 sec. 
 150 2 min.48 sec. 
 100 2 min.43 sec. 
 50 2 min.45 sec. 
Input File size=8 GB, Block size=64 MB 



9 200 3 min. 7 sec. 
 150 2 min. 49 sec. 
 100 2 min. 35 sec. 
 50 2 min. 48 sec. 
36 200 2 min. 29 sec. 
 150 2 min. 28 sec. 
 100 2 min. 24  sec. 
 50 2 min. 21 sec. 
72 200 2 min. 21 sec. 
 150 2 min. 21 sec. 
 100 2 min. 18 sec. 
 50 2 min. 19 sec. 
Input File size=4 GB, Block size=128 MB 
9 200 1 min. 37 sec. 
 150 1 min. 38 sec. 
 100 1 min. 34 sec. 
 50 1 min.  35 sec. 
36 200 1 min.  53 sec. 
 150 1 min. 31 sec. 
 100 1 min. 32 sec. 
 50 1 min. 28 sec. 
72 200 1 min.  33 sec. 
 150 1 min.  32 sec. 
 100 1 min. 30 sec. 
 50 1 min. 30 sec. 
Input File size=4 GB, Block size=64 MB 
9 200 1 min. 58 sec. 
 150 1 min. 44 sec. 
 100 1 min. 41 sec. 
 50 1 min. 36 sec. 
36 200 1 min. 34 sec. 
 150 1 min. 34  sec. 
 100 1 min. 31  sec. 
 50 1 min. 31 sec. 
72 200 1 min. 36 sec. 
 150 1 min. 34 sec. 
 100 1 min. 36 sec. 
 50 1 min. 33sec. 
Input File size=16 GB, Block size=128 MB 
9 200 5 min. 3 sec. 
 150 5 min. 2 sec. 
 100 5 min. 7 sec. 
 50 4 min. 59 sec. 



36 200 5 min. 19 sec. 
 150 5 min. 13 sec. 
 100 5 min. 9 sec. 
 50 5 min. 11 sec. 
72 200 5 min. 13 sec. 
 150 5 min. 11 sec. 
 100 5 min. 11 sec. 
 50 5 min. 11 sec. 

 

The obtained results show that for relatively small test files (4 GB and 8 GB) val-
ues of the parameter spark.sql.shuffle.partitions have the maximum influence on the 
execution time; at that the optimal parallelism level is from 36 to 72 and the minimum 
execution time is stable when spark.sql.shuffle.partitions equals 50. We should note 
that for the same files the optimal HDFS data block size is 64 MB or 128 MB, i.e. it 
practically does not have any influence on the target variable. For a 16 GB file the 
same settings do not bring substantial results. Besides, the most important result of the 
conducted research and computational experiments is the fact that in all experiments 
the default value of spark.sql.shuffle.partitions leads to worse results. 

The graphs for the dependence of the test task execution time on parallelism level 
and the parameter spark.sql.suffle.partitions are shown in Fig. 1, 2 (the following 
notation is used: IFS – Input File Size, BS – Block Size – block size in HDFS). 

 

Fig. 1. Graphs for the dependence of the test task execution time on different values of BS  
for IFS=8 GB. 



 

Fig. 2. Graphs for the dependence of the test task execution time on different values of BS  
for IFS=4 GB. 

On graphs 1, 2, results of conducted execution time calculations are visualized. 
These results should be interpreted as follows. The minimum execution time values 
are shown in blue and its gradient, the maximum ones are shown in red and its gradi-
ent. The results confirm the fact (see Table 6) that in general, for small size files 
minimum execution time values are determined when the parallelism levels are 36 or 
72, and the parameter sql.spark.shuffle.partions equals 50. 

5 Conclusions 

A new technology for working with data in Apache Spark – API Data Frames – 
has been investigated. A comparative analysis of performance for RDDs and Data 
Frames in Apache Spark has been conducted on test data with properties defined by 
different data volumes. Software for generating test data with pre-defined 
characteristics has been developed and studied, taking into consideration CPU and I/0 
intensity. A comparative analysis of the technologies RDD and Data Frames has been 
carried out, which has shown a significant advantage of Data Frames and the 
influence of the parallelism level as the most important factor of increasing 
performance of computations for RDD for the standard Spark settings. By conducting 
a series of experiments, it has been obtained that the most important parameter for the 
Data Frame technology that influences the execution time is 
spark.sql.shuffle.partitions. Its changes in the range from 50 (experimentally 
considered to be the minimum value) to 200 (default value) have shown that for input 
files of small sizes the default value gives the worst results, and increasing the 
performance of computations is determined by decreasing the values of this 
parameter.The investigation of the parallelism level influence has allowed 
determining optimal (in the context of settings for minimizing execution time) values 
for this parameter - 36 and 72. For big size files decreasing the value 
spark.sql.shuffle.partitions and increasing the parallelism level wihin the selected 
ranges does not practically lead to a decrease in execution time. This fact probably 
means that when an input file size increases, it is necessary to increase the 



spark.sql.shuffle.partitions value. At the same time, it is quite difficult to assess the 
influence of the parallelism level and directions of its change. 

The conducted research has demonstrated the topicality of solving Big Data prob-
lems in the framework in-memory Apache Spark [18-20], for which the optimization 
of settings differs from that for small files. Using well-known benchmarkings for 
assessing distributed computations performance [11, 13, 18, 19] does not always 
allow determining an optimal set and values of the Spark tuning parameters for RDDs 
and Data Frames in the package and stream modes. Therefore, there are unsolved 
problems related to investigating conditions for minimizing execution time for big 
size files and saving properties of files generated synthetically, according to the 
considered technique – forming big size files by cloning small files. 

In the future we are planning to test the above technologies for data with volumes 
higher than 50 GB, maybe 100 GB, under the condition of the scalability of the 
Apache Spark cluster. An important research direction is also associated with investi-
gating the performance of the considered technologies when they are used for 
methods and tests in maching learning [19-21]. 
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