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Abstract.   Based on the analysis of literary sources, the article sets the goal of 
forming a methodological application of information technology in diagnostics, 
as well as in predicting the state of complex technical systems. It is advisable to 
carry out a diagnostic assessment of the system failures risk based on modeling 
their components interaction. To achieve this goal, an informational cognitive 
model has been developed that allows for diagnosis to assess complex technical 
systems components failure risk. In order to provide a search for the failures 
causes of a complex technical system diagnosed subsystems components, a de-
cision support model has been developed and researched. Using the developed 
informational cognitive model for diagnosing complex technical systems, the 
method and decision support model allows us to: diagnose the risk values of 
system component failures when information about component failures is re-
ceived; to predict system components failure risk value in order to select a strat-
egy for their recovery; support decision making when searching for the causes 
of system component failures. The developed methods and models, the pro-
posed solutions for informatization of diagnostics and prediction of the complex 
system technical condition provide flexibility and adaptability. 

Keywords: complex technical system,  diagnostics, simulation, cognitive mod-
el, decision support 

1 Introduction 

Designed complex technical systems (CTS) are characterized by multicomponent 
structural and functional complexity. The increasing complexity of CTS requires the 
development of new methods to ensure such systems reliability. Reliable CTS opera-
tion isn’t possible without diagnostic tools and predicting the technical condition of 
systems. Diagnosis and prediction CTS’s state with an assessment components failure 
risk needs information support based on modern advances in information technology. 



2 Description of Problem 

Currently, it remains relevant to develop new methods based on information tech-
nology applications in the CTS diagnosis with an assessment of their components 
failure risk [1-3]. A widely used method for predicting system’s technical condition 
based on modeling using time series CTS parameters characterizing [4]. Advantages 
and disadvantages of such methods are described in several publications [5,6]. When 
forecasting based on retrospective data, machine learning systems based on artificial 
neural networks are used [7]. For monitoring, diagnosing the causes of CTS failures, 
forecasting, deep learning methods are also used [8-10]. Intelligent methods used in 
CTS diagnostics and prediction systems include evolutionary programming. Modifi-
cations to the Bayesian approach and Bayesian networks can be used to predict CTS 
accidents and failures occurrence. In [11], a dynamic Bayesian trust network is pre-
sented, which allows predicting the values of failure probabilities and searching for 
defects and malfunctions in decision support systems.  

At present, simulation modeling (SM) is widely used, which makes it possible to 
experiment with the analytic-probabilistic model, exploring various situations and 
simplifying the decision-making process. Simulation software in particular, SM prod-
ucts, such as Arena, AutoMod, AnyLogic, Extend, GPSS World and others, contrib-
utes to the widespread are widely used for research tasks. However, software tools 
facilitate the process of diagnosing and predicting CTS components failures risk, but 
do not facilitate the solution of the time-consuming task of collecting initial informa-
tion, its interpretation, formalization, and an adequate ratio with a specific CTS. A 
promising SM method for studying systems reliability during their transitions be-
tween different state variants is cognitive simulation (CIM) based on models in the 
form of oriented graphs that reflect the CTS components interaction [12-17]. 

The analysis CTS cognitive models for both diagnosis and prediction system com-
ponents failures risk showed the need to develop an informational cognitive model for 
diagnosing CTS components failures risk as a whole, a forecasting model and deci-
sion support when searching for the causes diagnosed systems components failures. 
Prospects for the further development of CIM methods for diagnosing and predicting 
CTS components failures risk with interpretation, formalization and an adequate ratio 
of incoming information about the technical condition of the system. In order to inter-
pret, formalize and adequately correlate the incoming information during the study of 
the reliability of systems during their transitions between different state options, fur-
ther improvement of the software for diagnostics and prediction CTS components 
failures risk is necessary. It is necessary to develop methods and models, new solu-
tions for informatization of diagnostics and predicting the technical condition of a 
complex system to ensure: flexibility - the ability to use methods at any level to assess 
CTS subsystems components failure risk with their various configurations; adaptabil-
ity - methods must have the ability to adapt when changing the configuration of CTS  
subsystems.  



3 Information software for the diagnostics, forecasting and 
decision support CTS subsystem failures risk assessment  

3.1 System concept 

The concept of the CTS risk failures assessing in emergency scenarios is based on 
combining heterogeneous CTS components into a single model [18-20]. The model 
should provide an CTS failures risk assessment taking into account the interconnect-
edness and interaction of their components in regard to significance and criticality for 
the entire system functioning as a whole, and also ensure the identification of struc-
tural threats and vulnerabilities in the CTS. 

The cognitive model can be represented as a functional graph 
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where ЕTVG ,, , G- sign oriented graph;  ivV  , i=1,2,…k - cognitive map 

vertices;  ijeE   - many arcs connecting the vertices vi and vj; Т – time;  ixX   

- vertex parameters;  ijji еvvfF ,,  - connection function between vertices; Q – 

vertex parameter space. 
As a measure of damage to an undesirable event, it is proposed to determine the 

structural damage of components and inter-component communications (IC) in accor-
dance with the method for assessing the CTS structural failure risk. Performing diag-
nostics to assess the components failures risk and the IC of the ICE with the subsys-
tems, failures probabilities for the system’s components and IC are preliminarily de-
termined. For this, statistical data obtained for a fixed time, containing information on 
the number of component and IC outages, is used. The components and IC failure 
probabilities CTS sub-systems are determined as 
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where  – the i-th component failure probability; – the i-th IC failure probability; 

– the i-th component number of failures;  – the i-th IC number of failures  ; 

 ч. – statistical testing period. 

3.2 Modelling CTS diagnosis software development 

When implementing CIM, it is proposed to use developed application software for 
modeling is based on the client-server architecture. A striking modeling impulse on 
the system effect was applied for the CTS diagnosis. For this, the distribution of the 
operating system Debian GNU / Linux 8.0 (stable) is used. Python was used as the 
programming language. Data on the CTS components is hosted in the NoSQL Mon-
goDB. Data exchange between the client and server side is carried out using the Rest-
full API. The initial data of the models are presented in JSON format. Automation of 
the system was carried out on the basis of GNU make tools. Analysis of the results 



was carried out by Calc Libre Office means. The diagrams of use cases are used to 
determine the general boundaries and context of the simulated domain at the develop-
ing software initial stages for assessing the risk of CTS failures, damage from loss of 
system operability and formulating general requirements for its behavior (Fig. 1). 
Software use cases diagram allows us to develop project main entities models by 
building class diagrams. A software class diagram fragment is shown in Fig. 2. 

 

Fig. 1. Diagnosis software use case diagram 

 

Fig. 2. Diagnosis software class diagram  

The classes GraphsOverview, MainWindow, ChartViewWindow, GraphsOver-
viewWindow, GraphWindow, GraphWindowView, CalcutePage, Main-
WindowView, and ChartViewModel implement a number of interfaces to provide the 



necessary visualization functions for the processed and calculated data. To implement 
the indicated logic, the following interfaces for CIM were used and involved in the 
form of a graph: IComponentConnector (to ensure the connection of element objects 
among themselves); IContent (for displaying and implementing functions of dynamic 
linking and drawing objects of a working graphic container on the corresponding 
form); INotifyPropertyChanged (for handling events created graphic objects proper-
ties changing); IStyleConnector (to change the type of communication between com-
ponents).The features of the system’s physical representation are described in the 
relationship between system basic components form formalization. To do this, use the 
component diagram (Fig. 3) allows us to determine system architecture, taking into 
account the relationship between software components, which may be the source, 
binary and executable code. The main module (MainApp) carries out the functions of 
calling the appropriate modules to process user requests for: constructing a graph 
model (GraphBuilder) based on the use of external dependencies Graph # and Oxy-
Plot, as well as the WPF GraphLay-out module to ensure the interactive visualization 
container operation with received models calculation system failures damage and risk;  
viewing the results in tabular form to evaluate their values; construction and viewing 
a graph showing calculations results in a ranked form.. 

 

Fig. 3. Diagnosis software component diagram 

As graphic libraries connected in external dependencies mode, Graph # and Oxy-
Plot were used. Graph # library for graph visualization, containing some layout algo-



rithms, as well as for controlling GraphLayout WPF applications. Supported build and 
delete algorithms: Fruchterman - Reingold; Kamada - Kawai; ISOM LinLog; simple 
tree layout; Sugiyama; Force-Scan allocation algorithm. In order to simulate the inter-
action of objects in the designed software over time, as well as messages exchange 
between them, a sequence diagram (Fig. 4) is used  Each of the above forms (except 
the main one) is a separate fragment dynamically loaded in a single space in the new 
tab form (TabPane object), located at the main form. The basic component of the 
graph structure construction method is the Sugiyama algorithm. 

 

Fig. 4. Diagnosis software flow chart 

In order to describe the CTS diagnosis software functionality, we denote the key 
classes that implement created software’s business logic: 
1. Calculations class CalculatePage: UserControl, IContent, IComponentConnector. It 

interprets and uses the obtained results of constructing a system model in the graph 
form to assess damage and the failures risk. 

2. A class for constructing and displaying a ranked graph of calculated failure risk 
values  ChartViewModel: INotifyPropertyChanged. 

3. The CIM construction class in the graph form GraphWindowViewModel: INoti-
fyPropertyChanged. 



The system resulting graph model display class Graphs Overview: UserControl, 
IContent, IComponentConnector.The developed CTS diagnosis software used for 
research allows the user to: 

 create a CTS CIM in the graph form, with support for the model name functions, 
setting a brief description, creating a new vertex and its image on the panel, creat-
ing a connection between the vertices, choosing an algorithm for positioning and 
displaying the structure in a graphic container; 

 view the structure of the previously created CIM in the form of a graph with the 
vertices and edges total number display, supporting the loading operation into the 
program workspace; 

 import a graph in *.json format for its visualization in the system; 
 export CIM as a graph to a separate graphic file in *.jpg format; 
 calculate the damage from failures values and the simulated CTS components fail-

ures risks and display the results in a summary table; 
 build graphs obtained results visualization in a ranked form. 

CTS subsystems are a dynamic structure, because their components have a differ-
ent wear degree and change their characteristics at different speeds. All this leads to 
the following requirements for the decision-making support method (DSM) used 
[11,20] when searching diagnosed CTS subsystems components failures causes: flex-
ibility - the ability to use the method at any level to assess the ICE components failure 
risk with their various configurations; adaptability - the method should have the abil-
ity to adapt to changes in the CTS subsystems configuration. To support decision-
making on failure ICE subsystems risk assessments as well as when searching for 
failed system components, a method based on dynamic Bayesian trust networks 
(DBTN) is used [21]. The method has several advantages over other methods in as-
sessing the likelihood of a CTS failure-free operation. The use of DBTN allows us to: 
assess the risk of CTS failures upon receipt of a new information about element fail-
ures; to predict the value of the risk of CTS failures in order to choose a system re-
covery strategy; support decision making when searching for the cause of component 
failure and the CTS as a whole. The proposed approach, regardless of the structure of 
the CTS, is based on the fact that the objective function of assessing the health of the 
objective function CTS components efficiency assessing through DBTN is 

 MGPF b ,)(  ,             (3)  

where G – acyclic directed network graph; M – ICE subsystems DBTN components. 
The graph vertices are CTS’s subsystems, which, taking into account the hierarchy, 

are determined as 
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where v – CTS element name; i – network block number, n – number of blocks in the 
network; j – network level number; m –levels number in the network. 

Based on the component location in the DBTN structure, two types of graph ele-

ments (vertices) are possible: parents ))(( 1 j
i
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 CTS subsystems diagnosed DSM model implementation is carried out in accor-
dance with the decision support algorithm for assessing CTS subsystems failure risk 
and consists in constructing the CTS DBTN using the following databases: design and 
regulatory documentation; expert evaluations of decision support for typical failure 
risk scenarios; decision support criteria; statistics of diagnosed data on the static and 
dynamic CTS subsystems elements characteristics. 

A data sample is formed for a specific scenario CTS subsystems components data 
failure risk occurrence during analyzing procedure. Data is then interpreted and proc-
essed using blocks for acquiring knowledge, supporting decision making, and manag-
ing rules. As a result, they are replenished with new bases and knowledge data, data 
and rules, which then enter the analysis decisions unit. 

4 Experiments and results analysis 

4.1 Developed simulation model research 

An automobile internal combustion engine system was chosen as an example of the 
diagnostic method practical implementation for assessing the CTS subsystems failure 
risk. Automobile internal combustion engine (ICE) as a directed graph diagram with 
subsystems is shown in Fig. 5. 

 

Fig. 5. Internal combustion engine directed graph diagram 

The scheme of an internal combustion engine with subsystems (Fig. 5) consists of: 
TAB – traction battery; DVS – internal combustion engine; ZRD – drive mode dial; 
BS – unit for summing voltages and powers; OPE – reversible energy converter; 
PHM – speed and torque converter; MP – mechanical transmission; VK – driving 
wheels; MSI – clutch between DVS and OPE shafts; MS2 – clutch between OPE and 
MP shafts; ROPE –  OPE knob; RPHM – regulator PHM; RDVS –  DVS controller. 



СIM modeling results let us to evaluate failures risk for all internal combustion en-
gine’s elements with subsystems and rank the calculation results (Fig. 6). From the 
internal combustion engine elements structural damages results it follows that the 
most critical elements are the elements TAB, BS and RDVS. This is due to the high 
values of their structural damage (1.0, 0.85 and 0.75). Less critical elements are ele-
ments MP, VK, namely mechanical transmission, drive wheels; having slightly lower 
structural damage values (0.15 and 0.05).  

 

Fig. 6. Structural risk results ranking of CTS elements with sub-systems 

It also follows that the engine itself belongs to the most ICE vulnerable elements 
with subsystems, based on the obtained values of the element failure risk (0,089). 
Less vulnerable ICE elements with subsystems include the OPE regulator (0.02). 

The construction and study of the CTS subsystems component failure risk assess-
ment DBTN was carried out using the GiNIe software product [22]. 

4.2 Decision support method CTS subsystems failure risk assessing research 

Simulating ICE subsystems DBTN (Fig. 7) for different values of the subsystem 
failure probability (risk) at the CTS model input the risk values for 20,000 hours of 
ICE operation was determined (Fig. 8). 

Research results let us define that with an increase subsystem’s failure risk at the 
CTS model input from 0.09 to 0.26, the daughter CTS failures risk values increase 
notably. 

Simulation model for assessing the failure risk during the ICE subsystems opera-
tion study showed that even a relatively small number of the subsystems considered 
components generate a large possible scenarios number and options leads to extreme 
situation when any component might be damaged. When models are supplemented 
with indicators of real subsystems criticality and spatial arrangement, models scale 
increases several times. The studied subsystems scale enlargement leads to a further 
increase in sub-systems emergency conditions.  

The practical implementation of the proposed method for diagnosing the risk of 
failure of ICE subsystems can easily apply to any CTS structure, which has any com-
plexity degree, any relationships between CTS components and subsystems. 

 
 



 

Fig. 7. DBTN for ICE subsystems in the GeNIe environment when determining CTS subsystem 
failures risk (subsystem failure risk at the model 0.26 input) 

 

Fig. 8. ICE subsystems failure risk with the subsystem operability loss probability at the system 
input 0.26 



4.3 Practical implementation and research of the decision support forecasting 
method and model in CTS subsystems finding failures causes  

 
Practical implementation and research of the decision support forecasting method 

and model in CTS subsystems finding failures causes are provided on ICE example. 
When conducting studies diagnosed ICE subsystems DSM model each subsystem 
influence degree on the probability of performance loss the both subsystems and CTS 
failures risk as a whole was determined.  

From a retrospective research results analysis the subsystems were installed to the 
greatest extent, affecting the overall system performance. 

Emergency situations studying and CTS events analysis has the main goal to de-
termine the cause of the system performance loss. From the research results it follows 
that the maximum failure risk during the subsystems operation is 20,000 hours for the 
ZRR subsystem. The ZRR subsystem is interdependent in operation from other ICE 
subsystems. Therefore, it is necessary to check the subsystem in order to find the 
failure cause. To identify the possible cause of the ZRR failure, relevant research 
processes were carried out using the search scheme for the ZRR subsystem failure 
cause, shown in Fig. 9. 

 

 

Fig. 9. ZRR subsystem cause failure search scheme 



The ZRR subsystem failure cause search was performed in accordance with the al-
gorithm shown in Fig. 10.  

The purpose of the use of DBTN in assessing both the performance loss probability 
and the subsystems failure risk is an a posteriori conclusion. It consists in the fact that 
upon information receipt about subsystems failures, a priori failures probability (risk) 
that is incompatible with the evidence and is equal to zero. 

A priori data are listed and form in a posteriori failures probability (risk) estimate, 
which is a priori data for processing new information. The posterior conclusion is 
based on data analysis procedures resulting from the DBTN usage.  

 

Fig. 10. ZRR subsystem failure cause search algorithm 

When this approach is implemented, studies based on a priori and posterior data 
modeling have determined CTS subsystems for various time intervals that have the 
vastly impact on the CTS performance. It has been established that BS and ZRR be-
long to such subsystems (Fig. 11, 12). 

The performed researches allow us to obtain algorithmic and methodological sup-
port for making informed decisions at the stage CTS subsystems operation ща any 
complexity. The used troubleshooting algorithm in СTS provides: finding technically 
critical subsystems at all system levels, which maintenance must be performed imme-
diately; troubleshooting time optimization. 

 



 

Fig. 11. A priori and a posteriori probability BS performance loss upon receipt of information 
about failures in ICE subsystems 

Developed models research results application for the CTS emergency situations 
retrospective analysis purpose allows us to solve the determining their causes prob-
lem. 

 
 

 

Fig. 12. A priori and a posteriori ZRR performance loss probability upon receipt of information 
about failures in ICE subsystems 

This becomes especially relevant when the accident analysis the identification of 
its root cause and appropriate measures adoption eliminates or reduces the adverse 
events recurrence likelihood, which means that it will fulfill the task and increase the 
CTS components operation reliability. 

5 Conclusion 

Using the developed methods and models of diagnostics, forecasting and decision 
support when searching CTS diagnosed subsystems components failures causes al-
lows you to: diagnose the system components risk failures values upon receipt of 
information about failures in subsystems; to predict the risk of system components 
failure in order to select a strategy for their recovery; support decision making when 
searching for the causes of system components failures; increase the efficiency of the 



operation of the CTS as a result of subsystems elements prone to failure early identi-
fication. 

The application of the developed software for the CTS diagnostic processes with 
an assessment system failures risk makes it possible to identify the least efficient 
components and inter-component communications, the functioning of which signifi-
cantly affects the operability and reliability of the entire system. 

The developed methods and models, the proposed solutions for informatization of 
diagnostics, as well as forecasting the technical condition of a complex system, unlike 
existing approaches, provide: flexibility - the ability to use methods and models at any 
level to assess CTS subsystems components failure risk with their various configura-
tions; adaptability - methods and models have the ability to adapt when changing the 
configuration CTS subsystems. 
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