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Abstract. The paper presents a parallel calculation scheme for distributed 
memory systems for a modification of the AMLI preconditioner that performs 
incomplete inversions of matrix blocks by a technique that produces approxi-
mate inverse of a matrix by an orthogonalization procedure, referred to as the 
incomplete basis matrix method. Theoretical estimates of algorithm’s perform-
ance and the results of its experimental testing are presented. The results of ex-
perimental analysis of preconditioner parameters influence on the convergence 
of the iterative algorithm are given. The characteristics of the proposed algo-
rithm are compared with those of known algorithms implemented in the hypre 
software package. The tests on the matrices obtained from finite element discre-
tization of soil stress-strain state modelling problem showed that the proposed 
algorithm has better performance for significantly ill-conditioned linear systems 
when solving them on a small number of computational resources. 
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1 Introduction 

The need to solve linear algebraic systems arises in mathematical modelling of most 
physical processes, in particular when modelling soil stress-strain state. In many cas-
es, linear systems have ill-conditioned sparse matrices of large size. In these situa-
tions, iterative methods, such as conjugate gradient method (CG) or biconjugate gra-
dient stabilized method (BiCGstab), are most commonly used [1]. 

The main method used to improve the convergence and the accuracy while solving 
ill-conditioned linear systems is the use of preconditioners [1, 2] - matrices, whose 
multiplication on linear system matrix leads to the decrease of condition number. The 
most commonly used methods for constructing preconditioners are incomplete matrix 
decomposition (e.g. ILU decomposition [1]), incomplete matrix inversion (e.g. poly-
nomial preconditioners [3]), Geometric and Algebraic Multigrid (AMG) [4] methods, 
the Algebraic Multilevel Iteration method (AMLI) [5,6], and wavelet precondition-
ers [7,8]. 

The so-called basis matrix method [9, 10] is one of the methods developed to ana-



lyse ill-conditioned and rectangular linear systems. This method constructs iteratively 
the inverse of a given matrix using some orthogonalization procedure. Based on this 
method, an incomplete inversion algorithm is created, that can be used as a precondi-
tioner. Further, it is combined [11] with the AMLI preconditioner and applied for 
solving elasticity problems. 

The speed of the AMLI preconditioner, similarly to the multigrid ones, in particu-
lar the AMG, is low comparing to the incomplete decomposition and the incomplete 
inversion preconditioners and its application takes most of the time spent to obtain 
solutions of linear systems. This makes crucial the development of parallel schemes 
for these algorithms. While the AMLI is shown to have good scalability on vector and 
parallel-vector machines [12, 13], its parallel implementations on cluster systems are 
poorly studied. 

2 Preconditioner on the base of the AMLI and the basis 
matrix method 

The AMLI preconditioner [5] is based on the representation of an input matrix as 
having 2x2 blocks with its subsequent LU factorization:  
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where 
1

22 21 11 12=S A A A A  is the Schur complement of A . 
After approximating the Schur complement with a polynomial and the recursive 

application of the expansion (1) to the matrix 22A , the following algorithm for con-

structing a preconditioner that approximates the matrix 
1A
 is obtained:  
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For the matrix A  of the size = [ * , * ]dimA K L K L  that is divided into *L L  
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 is an approximate inverse of A . 

The AMLI algorithm can be optimally stabilized by choosing the degree of an ap-
proximating polynomial [12]. However, the applicability of this theory while solving 
stress-strain problems described by hyperbolic differential equations wasn't proved. 
As such problems are of our specific interest, we consider the simplest case of 

1( ) = ( ) = 1vP t P t t . Then, the Schur complement approximation becomes 
( 1) ( 1)k kS M   and the recursive scheme (2) simplifies to  
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In the scheme (3), the matrices 
  1( )

11
kA



 can be approximated by incomplete de-
composition methods such as the ILU factorization [14] or incomplete Gram-Schmidt 
method [15]. To make the scheme more efficient while solving ill-conditioned linear 
systems, we propose to approximate them by the incomplete basis matrix method that 
is specifically developed for this case and is described in detail in [16]. 

Summarizing, the sequential computational scheme for the preconditioning proce-

dure (3) is as follows. The matrix A  is divided into ( 1) ( 1)N N    blocks the fol-
lowing way:  
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Considering the application of the preconditioner (3) as a solution of the linear sys-

tem 
( )

0 0= , = ( ,..., ), = ( ,..., )N
N NM x b x x x b b b , it can be performed by a two-stage 

procedure, V-cycle, consisting of a "direct" and a "reverse" part. 
On the ``direct`` part of the procedure, values of the following vectors are sequen-

tially computed:  
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The ``reverse`` part consists in the sequential computation of the resulting vector  
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In (4),(5), matrices 
( )

11
iA  are the approximates to the corresponding inverse matrices 

obtained by the incomplete basis matrix method [16]. 
As the initial matrix is sparse, we use the compressed row storage (CSR) scheme 

for all the matrices. 
The approximation accuracy is controlled on the iterations of the algorithm by cal-

culating 
 1 = max i

ii
AA 

 for all the processed rows. When 1  becomes bigger than a 
given threshold value, we perform complete inversion. As the resulting matrices aren't 
always dense, we also use the CSR storage scheme doing complete inversion. 

3 Parallel implementation of the preconditioner 

To make the AMLI algorithm combined with matrix blocks incomplete inversions 
using the basis matrix method run in parallel on distributed memory systems, the 

following data partitioning scheme can be applied. Each of i  row blocks  
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is distributed on a system of P  processes by blocks of rows. Thus, each process 

stores blocks of rows of the submatrices 
( ) ( ) ( )

11 12 21, ,i i i
jA A A  and can perform multiplica-

tions that arise while applying the preconditioner (3) in parallel. 
The computational scheme that we use for multiplying a sparse matrix A  of size 

M M  by a vector v  has the following form: 

1. The process p  stores the block 

0, 1= [ ],p p pB r r
=0

= [0,..., ],
P

ii
B M = , ,i jB B i j   of the matrix A  rows and the 

corresponding elements of the vector v ; 
2. Denote a set of columns of the matrix A  in which non-zero elements are present in 

the row block pB  as pC ; 
3. The process p  sends values of the elements of the vector v  from the index set 

i pC B  to the processes , i pi C B    and receives the values of the elements 

from the index set p jC B  from the processes , p jj C B   ; 
4. After the synchronization is performed on the step 3, each of the processes inde-

pendently multiplies the block of rows of the matrix A  by the vector v . The result 
of this multiplication has the same partitioning as the vector v  has.  

Performing the ``direct`` part (4) of the AMLI algorithm, when vector multiplica-

tions by the matrices 
( )
21
iA  are organized as successive multiplications by the subma-

trices 
( )
21
i

jA
, the synchronizations are done once according to the fill-in pattern of the 

matrix 
( )
21
iA . Similarly, when the non-changeable component ix  of the result vector x  

is multiplied by the submatrices 
( )

12 , <j
iA j i  during the ``reverse`` part (5), the syn-



chronization can be performed only once according to the combined fill-in pattern of 

the submatrices 
( )
21
i
iA . 

The matrices 
( )

11
iA  can be obtained in parallel the following way: 

 The process p  handles the sequence 2 1>p pk k k  of the matrices 
( )

11
kA . The se-

quences are constructed to make the processes evenly loaded as far as it is possible. 
This is ensured by approximately the same number of non-zero elements in the ma-

trices 
( )

11
kA  that are processed by each of the processes. 

 The processes exchange the values of the elements of the matrices 
( )
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matrices 
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them. 
 Each of the processes independently performs a complete or incomplete inversion 

of the matrices. 

 The processes exchange the values of the elements of the matrices 
( )

11
iA  to restore 

the initial data partitioning. The process p  sends row blocks iB  of the matrices 
( )
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 to the processes ,i i p  and receives row blocks pB  of 
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i iA k k k  matrices from them.  

Since the data partitioning of the blocks of rows within the matrices 
( ) ( )

12 21,i j
iA A  may 

differ for the different values of i , an additional synchronization should be performed 
when vectors are multiplied by these matrices. Denote a block of rows from the sub-

matrices 
( ) ( )

12 21,i j
iA A  that is handled by the process p  as piB

. Then, before multiplying 

a vector v  with the partitioning 0= ( ,..., )i i PiB B B  by the matrix 
( )
21
iA , we need to syn-

chronize its elements to make each of the processes store the block 
...pi pNB B  . To 

do so, the process p  sends the block pi rjB B  of the elements of the vector to the 

process r  if 
,pi rjB B j i   . Then, the process p  receives a corresponding block 

from the process r  if 
,pj riB B j i   . 

Similar procedures should be performed when a vector 1= ( ,..., )i Nv v v  is multi-

plied by the matrix 
( )

12
iA  for each of its components. When the non-changeable com-

ponent jx
 is multiplied by the matrices 

( )
12

iA  during the ``reverse`` part (5) of the 
AMLI algorithm, the synchronization can be performed once before calculating the 
result of the first multiplication operation. 

When the preconditioner is used with an iterative method for solving a linear alge-



braic system, we perform a calculation of the matrices 11A  and the sets of the ele-
ments that need synchronization once on the first iteration. The execution of these 
operations will be further denoted as ``initialization procedure''. 

4 Estimation of algorithms performance 

We estimate the performance of the considered algorithms on the base of the follow-
ing assumptions: 

 the matrices 
( )

11
iA  have the same fill-in factor 11k , and the matrices 

( ) ( )
12 21,i i

j jA A  - the 

same fill-in factor 2k  which does not dependent on the block size; 

 A percentage fk  of the matrices 
( )

11
iA  for which the full inversion procedure is 

applied does not depend on the block size; 

 The inverse matrices of 
( )

11
iA  are completely filled; 

 The number of elements that each of the processes must synchronize before per-
forming a parallel multiplication is considered proportional (with the coefficient of 

proportionality equal to sk ) to the number of non-zero elements in the block of 
matrix rows. We assume that each of the processes performs only one pair of data 
exchange operations doing the synchronization; 

 The submatrices are considered evenly distributed across the system. 

Under these assumptions, the time sequential algorithm spend to perform calcula-
tions on (4), (5) can be estimated as  

  
2

1 11 2( , ) = [ 2( (1 ) ) ( 1) 4 ( 1)]p f f

n
T n N k k k k N k n n N

N
        (6) 

where pk  is the performance coefficient. 
The minimal time is achieved here for the number of blocks 
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The time spent on computation of the matrices 
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kA  with an assumption that the 

computational complexity of one step of the incomplete basis matrix method is pro-
portional to the maximal number of non-zero elements in the rows of the matrices 
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kA  can be estimated as follows:  
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where 2pk  is the performance coefficient. 



We evaluate the computation time of the parallel algorithm using the linear model 
of a pairwise data exchange operation:  

  ( ) = /s e aT n n k k  (9) 

where ek  is the bandwidth, n  is the data size, ak  is the latency. 
Taking into account (9), the total time spent by the parallel algorithm on perform-

ing calculations on (4), (5) can be estimated as  
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where P  is the number of processes. 
The minimal time spent on data exchanges for a fixed N  is achieved when the 

number of processes is equal to  
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When doing parallel computations, the time spent to calculate the matrices 
( )

11
kA  

can be estimated with the assumption that each of the processes performs incomplete 

or complete inversion of 

N

P  submatrices (we consider this number to be integer) as  
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5 Experimental analysis of the algorithm’s performance 

We apply the proposed parallel modification of the preconditioner to solve linear 
systems arising while modelling stress-strain state of the soil under a dam using the 
model of dynamic consolidation of saturated soils as described in [11]. 

The two-dimensional model has the form of the hyperbolic differential equations' 
system with respect to 8 unknown function - the horizontal and the vertical compo-

nents ,w wu v , sku , skv  of water and soil skeleton displacement vectors and their first 
derivatives. The used boundary and the initial conditions, solution domain, and pa-
rameter values are given in [11]. The problem was discretised by the Galerkin finite 
element method on a rectangular mesh with respect to the space variables and by the 
Crank-Nicolson scheme with respect to the time variable.  

While forming linear systems, their rows were ordered to form blocks related to a 
single unknown function. To minimize a number of synchronizations we use the 



Cuthill-McKee ordering of mesh nodes. Performing the diagonal scaling of rows we 
obtain matrices that have the following properties: non-symmetricity; loosely coupled 
block structure; high fill-in factor; high condition number due to different speeds of 
the simulated processes. As in the considered model of soil stress-strain state we have 
8 unknown functions, the matrices can be easily represented as 2x2 block matrices. 
Such properties of matrices make them an appropriate testing case for the AMLI pre-
conditioner that is built upon the idea of block matrix subdivision and thus can be 
efficient working with matrices that have loosely coupled diagonal blocks in their 
structure. The usage of the incomplete basis matrix method here is beneficial because 
matrices contain significantly ill-conditioned blocks and other methods like incom-
plete LU decomposition can be unstable in this case.  

The performance and the convergence of the considered algorithm were experi-
mentally studied on the SCIT-3 cluster of the Institute of Cybernetics of National 
Academy of Sciences of Ukraine. The eight-core nodes based on Intel Xeon 5345 
processors with 2GB RAM per core were used. 

The algorithm was tested on the matrix which arises on the first time step with a 

length = 2hours . This matrix of this linear system, further denoted as SD, has the 

size equal to 107856 107856  with an average number of non-zero elements in a row 

equal to 23.42 . Its condition number estimated by the LSMR algorithm [17] has an 

order of 
1210 . 

Linear system was solved using the BiCGStab [1] algorithm with the proposed 
modification of the AMLI preconditioner. The BiCGStab was used because of non-

symmetric nature of the matrix. The submatrices 
( )

11
kA  were completely inverted when 

1 < 0.05 . This resulted in the complete inversion of 50%:  of the submatrices. The 
acceptable accuracy of the calculations (here and further - the value below which the 

residual has to be reduced on BiCGStab iterations) was equal to 
910
. 

The use of the BiCGStab algorithm itself, or with the procedure of a diagonal scal-
ing of rows, did not allow obtaining solutions of the required accuracy. The computa-
tion time when the BiCGStab was used without the usage of any preconditioner was 
equal to 140 ms per iteration. 

To experimentally assess the accuracy of the estimates (6) and (7) of single pre-
conditioner application execution time on a single processor core without the initiali-
zation procedure, the linear system SD was solved with the variable size of blocks on 
which the matrix is split. The values of the estimates’ coefficients were, here and 
further, found using the least squares method on the base of the measured execution 
time. The block size which minimizes the computation time was between 125 and 
500, which corresponds to the calculated value of the theoretical estimate (7) equal to 
179. The obtained experimental data confirm the properties of the algorithm reflected 
in the estimate (6) whose accuracy was not worse than 25%. 

The performance estimate (10) in the similar case for the parallel algorithm was 
verified measuring the time spent on data exchanges between processes. The estima-
tion error here remains within 30% for the block size ranging from 250 to 3000 and 
the number of processes ranging from 12 to 24. In other cases, the error increases. For 
a fixed block size, the optimal number of processes, that ensures the minimal time 



spent on exchanges, in most cases, was slightly lower than the values calculated by 
the estimate (11). 

The time spent on the calculations of the matrices 
( )

11
kA  (initialization procedure) 

depending on the block size in the case of the sequential algorithm was measured for 
the block size ranging from 125 to 4000. Then, the time was assessed by the estimate 
(8). The accuracy of the estimate was within 12% for the block size less than 3000, 
while the block size increase leads to the increase of the error. These inaccuracies 
may be caused by a change in the percentage of fully inverted submatrices. In the case 
of the parallel algorithm, the corresponding time was measured and estimated by (12). 
The general behaviour of the estimate (12) coincides with the measured time (Fig.1) 
but the estimation errors were high. 

   

Fig. 1. Time, ms, spent on the calculations of 
( )

11
kA  matrices and its estimate in the case of the 

parallel algorithm 

Further, we studied an influence of the size of blocks on which the matrix is split 
on the iterative method’s convergence. The number of iterations required to achieve 

910
 order of accuracy was measured along with the overall time spent by the BiCG-

stab algorithm and the proposed preconditioner running on a single processor core. 
Here, an increase of the block size leads to a decrease of the fill-in factor of the matri-

ces 
( )

11
kA . As the incomplete basis matrix method performs better in terms of accuracy 

on highly filled sparse matrices, the decrease of the fill-in factor results in the increase 
of the number of completely inverted matrices. This accelerates the convergence of 
the iterative algorithm (Fig. 2) along with the significant increase of its running time. 
The block size for which the required accuracy is reached in the minimal time was in 
the range from 75 to 125 elements. 

The decrease of the number of fully inverted submatrices 
( )

11
kA  reduces the time 

spent on preconditioner initialization and thus significantly decreases the running time 
the parallel algorithm in the case when a small number of computational resources are 



used. On the other hand, the speed-up of the initialization operation is higher for the 

higher values of fk
, so the time spent on initialization becomes close to equal for the 

different values of fk
 when the number of processes increase. The time spent on the 

parallel calculations on (4), (5) behaves likewise. The smaller number of completely 
inverted submatrices, in general, accelerates this operation, but the speed-up decreases 
with the increase of the number of computing resources involved. All this, given that 
convergence is faster for a larger number of completely inverted submatrices, leads to 

the situation when fk
 reduction is effective only when a small number of processes 

are involved. 

 
Fig. 2. The logarithm of residual at the iterations of the algorithm for different percentages of 

completely inverted submatrices 

The efficiency of the proposed parallel preconditioner was compared with the effi-
ciency of known algorithms implemented in the hypre software package v.2.10.0b 
[18]. The only combination of an iterative method and a preconditioner implemented 

in the hypre which allowed obtaining solutions of 
910
 accuracy order was the Gmres 

[1] and the AMG preconditioner [3] (we will further denote this pair as the 
Gmres+AMG). The total time needed to obtain the solution of the linear system SD 

with 
910
 order of accuracy is given in Fig. 3. Here the proposed parallel precondi-

tioner was used with the block size equal to 250 and 500. It was faster than the 
Gmres+AMG when the number of processes was less than 20 with the block size 
equal to 500. However, the scalability of the proposed parallel algorithm was lower 
comparing with the Gmres+AMG. 



  
Fig. 3. Computation time, ms, subject to the number of processes 

6 Conclusions 

The parallel computation scheme was constructed for the AMLI preconditioner with 
incomplete inversion of matrix blocks using the so-called basis matrix method and the 
theoretical estimates of its performance were obtained and experimentally verified. 

For the linear system obtained while modelling stress-strain state of soil which has 

the size equal to 107856 107856 , the condition number of 
1210  order, the maximal 

achieved speed-up was 24% when scaling the algorithm on 8 processes for the block 
size equal to 500 elements. The low scalability of the algorithm here can be explained 
by the large number of data exchange operations that must be performed before each 
matrix-vector multiplication. 

We compared the characteristics of the proposed preconditioner with the AMG 
used as preconditioner in the Gmres algorithm implemented in the hypre software 
package. The scalability of the proposed algorithm was generally worse, but it had 
better performance for the considered significantly ill-conditioned linear system when 
solving it on less than 20 processor cores. 
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