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Abstract. With the development of modern telecommunications systems and 
the exponential growth in the demand for information transmission, there is a 
constant lack of bandwidth for the available telecommunication channels under 
the management of routers and communicators, because it is necessary to dis-
tribute the load of the network segments taking into account their self-similar 
nature of the traffic. Now, it is not possible to analytically build criteria and al-
gorithms for optimal traffic management to ensure QoS measurements. The cor-
respondence of the practical results with the theoretical ones was experimen-
tally confirmed, although non-standard metric of the coverage measure expres-
sion was used in the derivation of analytical dependencies. That’s why it was 
decided to develop theoretical method and provide experimental confirmation 
using conventional methods of estimating the time series’ fractal dimension. 
The actual possibilities of adjusting the Hearst index on a given time scaling 
were established as a result of the numerical experiment. The obtained time se-
ries with the help of a cascade binary sequence generator have multifractal 
properties. That is, the cascade generator has more possibilities for receiving 
traffic, which will correspond to the examples of binary traffic in real telecom-
munication networks. However, the cascade generator requires further theoreti-
cal study to analytically express the coefficients to obtain the desired fractal 
characteristics and flow intensity.  

Keywords: multifractal properties, binary sequence, Markov Chains, traffic 
modeling, Hurst exponent.  

1 Introduction 

With the development of modern computer telecommunications systems and the ex-
ponential growth in the demand for information transmission, there is a constant lack 
of bandwidth for the available telecommunication channels under the management of 



routers and communicators, because it is necessary to distribute the load of the net-
work segments taking into account their self-similar nature. Unfortunately, it is not 
possible to analytically build criteria and algorithms for optimal traffic management 
to ensure QoS measurements. Therefore, to select suitable modes of work for real 
telecommunication equipment the simulation systems (in particular: ModelNet, Ohio 
Network Emulator, ENDE, EMPOWERb OPNET, Emulab, NISTNET, DummyNet, 
NS, GTNeS, NSE, NETWARS) are commonly used [1,2]. As a result, such systems 
should have telecommunication traffic simulation sources with self-similar properties 
that would meet the actual characteristics determined experimentally at the simulation 
preparation stage. 

The analysis of imitation methods for telecommunication traffic sources distin-
guish the following: Poisson processes; fractal Brownian motion-based generators; 
fractal Gaussian noise with discrete wavelet transform generation (where wavelet 
coefficients are independent random variables with normal distribution); Levi's fractal 
movement (a generalized Brownian movement, which is self-similar and forms distri-
butions with "heavy tails"); autoregressive models (which assume that the current 
value of the process is the sum of a constant weighted sum of the previous values and 
the error of the model); neural network models (that are trained with experimental 
traffic to predict a new element); Markov chains (that allow you to create relatively 
simple models of discrete traffic generation with a wide range of properties) [3-5]. 

In most cases, the choice of traffic generation method should be based on the traf-
fic properties obtained experimentally from the telecommunication system, for which 
traffic management algorithms will be implemented. 

In [6], the authors analyzed Markov chain-based generation methods that are char-
acterized by low computational complexity and a wide range of applications. An ana-
lytical expression of the generator parameters was solved to ensure the intensity of the 
simulated flow and its fractal dimension. However, the generated traffic, as shown in 
further studies in this article, contains multifractal properties that did not meet the real 
indicators, which led to the goal of improving the traffic generation simulator for 
telecommunication networks to replicate and manage multifractal properties. 

 

2 Literature Analysis and Problem Statement 

As a result of the previous study [6], a traffic generator G (Fig. 1) was used, which 
contains states "1", "0" and the probabilities to keep the state are 0)"0""0(" pp   

and 1)"1""1(" pp  . The generator outputs the value of the current state discretely 

upon an event of keeping or changing the state. 



 

 
Fig. 1. Fractal Binary Sequence Generator 

 
For such a generator flow intensity is determined as [6]: 
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Note that with 10 pp   flow is generated with an intensity of 0.5; but as the prob-

abilities to keep the next generated value is changed, flow’s fractal dimension changes 
as well. A number of simulation experiments must be performed to confirm the theo-
retical conclusions. 

The theoretical estimation of fractal dimension of the generated binary traffic was 
carried out [6], which depends not only on the probabilities of the generation parame-
ters, but also on the size of the sub-band, i.e. scaling over time. To abstract from the 
size of the sub-band, a limit was found when the length of the sub-band tends to one. 
However, the obtained results are theoretical and experimental confirmation using 
conventional methods of estimating the time series’ fractal dimension is required. 

3 Evaluation of the Hurst exponent 

The experimental simulation involves performing R/S analysis on the generated bi-
nary sequence. One of the R/S analysis implementations is described in [7]. The 
measurement is performed 200 times on different implementations of the sequence 
due to low accuracy of the method. The result of the experiment is Hurst exponent 
values, which are shown in Fig. 2 and Fig. 3, where the probabilities of keeping the 
state unchanged are 0.1 and 0.9, respectively: 

 



 
Fig. 2. Hurst exponent measurement series at 5, 10, 15, 20 samples,  1.010  pp  

 
Fig. 2 and Fig. 3 show that the probability of keeping the next state value equal to 

the previous does not change the intensity of the flow of "1", but the probability of 
obtaining long chains with values "0" and "1" is greatly changed. With a high prob-
ability of keeping the next value equal to the previous )9.0( 10  pp , a persistent 

series (Fig. 3) with Hurst exponent value 002.0947.0 H  is obtained. In the case 
of high probability to keep the next value opposite to the previous one 

)1.0( 10  pp  – an antipersistent series with Hurst exponent 004.0218.0 H  is 

obtained. 
 

 
Fig. 3. Hurst exponent measurement series at 5, 10, 15, 20 samples, 
 9.010  pp  

 



 

In [6] the authors have obtained an estimate of the fractal dimension of a series 
produced by the traffic generator G (Fig. 1) on another metric, when the coverage was 
considered zero if the series contains only "1" or "0" elements. The fractal dimension 
of the series relating to the Hurst exponent as (2): 
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where 10 ppp  . The dependence of the Hurst exponent )( pH  on the probability 

of the next value change for p  is shown in Fig. 4 where theoretical dependence is 

upper red curve and practically measured dependence is blue curve. 
 

 
Fig. 4. The dependence of the Hurst exponent on the probability of re-generation by 
the traffic generator G 
 

There are procedures of conformity assessment, formation and implementation of 
control actions, efficiency estimation during regular mode. In case of intelligence 
based mode the additional procedures are executed when efficiency decreases. 

The authors assumed that the problem of efficiency decreasing can be solved based 
on artificial intelligence principles utilization. 

Let’s consider the algorithms for data processing. The list of algorithms can be pre-
sented as: 

– 1A  is an algorithm of data collecting; 

– 2A  is an algorithm of conformity assessment; 

– 3A  is an algorithm of parameters stability assessment in case of changepoint; 

– 4A  is an algorithm of preventive and corrective actions formation; 

– 5A  is an algorithm of preventive and corrective actions implementation; 

– 6A  is an algorithm of decision making about efficiency providing after control 

actions implementation; 



– 7A  is an algorithm of decision making about additional data processing proce-

dures; 
– 8A  is an algorithm of decision making about usage of intelligence based proce-

dures; 
– 9A  is an algorithm of statistical processing for diagnostic variables; 

– 10A  is an algorithm of statistical processing for reliability parameters. 

Algorithms 7A , 8A , 9A , 10A  have complex structure and contain the set of proce-

dures.  
All algorithms are generalized. For detailed description of algorithms it is neces-

sary to solve synthesis and analysis problems, to choice best option for criterion of 
maximum efficiency, etc. Initial information for synthesis and analysis problems is 
measured data trends model.  

Considered algorithms contain detection, estimation, filtration, extrapolation, in-
terpolation, and other procedures. There are algorithms with known sample size, and 
sequential algorithms. The sequential procedures have advantages in duration of deci-
sion making [3]. 

Usage of adaptability principles is based on the following approaches:  
– logic based solution finding;  
– fuzzy logic; 
– Bayesian network; 
– adaptable learning after observation; 
– semantic network; 
– neural network, etc [4]. 
More over, during diagnostic variables measuring, expert evaluation and subjective 

probability based estimates can be used [1].  
There are different types of adaptation:  
1) adaptation to the models and models parameters;  
2) adaptation to the external conditions;  
3) adaptation to internal changes in operation system (OS);  
4) adaptation to the new requirements of regulatory and normative documents;  
5) adaptation to OS aims, etc. 

4 Estimation of the Hurst exponent at different scales over time 

For the binary series, the fractal dimension depends on the length of the sequence for 
which rescaled range (R/S) analysis is performed [8, 9]. Estimation value of the Hurst 
exponent can be calculated by estimating the dependence of the R/S on the time span 
n  (where n  is set of time span intervals, i.e. ,...4/,2/, NNNn  ). For example, 
under the same conditions as in Fig. 2 and 3, an increase in scaling (when the range 
and dispersion are calculated not at intervals of 5-20 samples, but in 450-600 sam-
ples) results the Hurst exponent values 5.0)9.0()1.0(  HH . Fig. 5 and 6 shows the 

results of the conducted experiment, which displays the "degeneration" of the Hurst 
exponent up to 0.5. 



 

In Fig. 5 the generator G was used with the probabilities of keeping the previous 
state unchanged as 1.010  pp , which should result in a visible antipersistence. 

However, it is obvious from that graph that aggregating cumulative sums of 
450/500/550/600 samples keeps the Hurst exponent close to 0.5. Scilicet, on the 
specified time scale the generated sequence does not differ from a random time series 
in which the next element is independent of the previous one. This shows that the 
central limit theorem is valid, and therefore, as the quantity of samples increases for 
the number series’ cumulative sums, these sums are getting closer to the normal dis-
tribution. 

A similar impact of the cumulative sums values distribution approximation to the 
normal distribution is observed for the persistent series with high probability to keep 
the previous state 9.010  pp , which can be seen from Fig. 6 as a decrease in the 

Hurst exponent values from 0.95 to 0.55. 
 

 
Fig. 5. Hurst exponent values in the series at 450, 500, 550, 600 samples, 

1.010  pp  

 
Fig. 6. Hurst exponent values in the series at 450, 500, 550, 600 samples, 

9.010  pp  



As shown in [10] (Fig. 7), the change in fractal dimension with time scaling 
of real traffic data is relevant for quite a long time, as evidenced by publications on 
the development of an effective multifractal traffic generator [11, 12]. In this case, the 
fractal dimension can both increase and decrease with changing time scale on the real 
data. 

 

 
Fig. 7. Change of the Hurst exponent from time scale [10, Fig. 1.a] 

 
In order to reveal the dependence of the Hurst exponent on the length of partial 

(cumulative) sums in R/S analysis, the dependence graph of the Hurst exponent on the 
length of these sums (Fig. 8) is shown. 

 

 
Fig. 8. Dependence of the Hurst exponent on the N interval’s length in case of R/S 
analysis 

 
Fig. 8 contains two bundles of curves, where each curve corresponds to one ex-

perimental determination of the Hurst exponent with the specified scaling. The upper 
bundle (red curves) corresponds to the experiment of measuring the Hurst exponent 



 

with the generator G parameters set to 9.010  pp , and the lower bundle (green 

curves) parameters are 1.010  pp . It is obvious that both bundles approach 

5.0H . 
Practical implementations of the communication networks’ multifractal traffic 

may vary at different scales, so the purpose of this work is to add to the binary traffic 
generator based on stochastic automaton G a mechanism that would be able to control 
the fractal dimension of the binary series at different scales. This will greatly increase 
the relevance of the generated data to actual network traffic and extend the applicabil-
ity of the generator. 

Adjustment of the fractal dimension of the generated traffic based on the generator 
G can be performed with the proposed model (Fig. 9), which is based on a cascade 
binary traffic generator [13, 14]: 
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Fig. 9. Multifractal binary sequence generator 

The proposed generator is cascaded and contains an external generator G , which 
aggregates the generators 0G  and 1G . Such generator G is characterized by the 

following properties: 01,00 pp  – the probability of keeping the next value unchanged 

for the generator 11100 ,; ppG  – the probability of keeping the next value unchanged 

for generator 101 ,; ppG  – the probability of keeping the next set of d  values for the 

same 1G  generator as in the previous series. 

According to the formation of cumulative sums, the generators 0G  and 1G  must 

differ in a sufficiently long period, which is not possible at the same intensity of the 
generated flow according to the limit theorem. Therefore, the generators are config-
ured to generate sequences with the same fractal dimension but with different flow 
intensities. Therefore, on a large scale, the generator G  is responsible for balancing 
the total flow intensity, which in this example is symmetrical and thus averages the 
flows from the generators 0G  and 1G . 

In order to visually evaluate the formed sequence, a binary series that is aggre-
gated by 25 counts of the generator G cycles is shown in Fig. 10. The result is a char-



acteristic of high-intensity pulsating flow 5.0 . This series is obtained with the 
following generation parameters (2): 

 
;15.0;95.0;9.0;9.0;10 010010  ppppd  

95.0;15.0 1110  pp                               (2) 

 

 
Fig. 10. An example of a cascaded traffic generator that has persistence on a wider 
time scale 

 
The Fig. 11 is similarly constructed, but with the following parameters (3): 

 
;15.0;95.0;05.0;05.0;10 010010  ppppd  

95.0;15.0 1110  pp         (3) 

 
It should be emphasized that the changes occurred only for the traffic generator G. 

 

 
Fig. 11. An example of a cascaded traffic generator that is persistent and antipersis-
tent on a different time scale 



 

 
For the cascade generator G, a graph for the dependence of the Hurst expo-

nent on time scale is plotted (Fig. 12). The graph contains three bundles of curves that 
correspond to the parameter of generator G described as (2) as (3), which have al-
ready been shown in Fig. 8, and the parameter set described below (4): 

 
9.0;9.0;9.0;9.0;0.1;0.0;10 1110010010  ppppppd  (4) 

 
Set of parameters (4) means that the modulator switches to the operation only of 

the generator 1G , with parameters 90.0;90.0 1110  pp , and it corresponds to the 

operation of the generator G, without correction of the fractal dimension in large time 
scales. In Fig. 12 parameters set (4) is shown by the green bundle of curves, which is 
equivalent to the upper bundle of curves in the graph. 8. Red and blue bundles are 
equivalent to sets (2) and (3) respectively. 

 

 
Fig. 12. Comparison of the dependence of the Hurst exponent on time scale for the 
cascade and standard generators G 

 
The most important property for using a cascade generator is its ease of 

setup, which actually means being able to get the coefficients 

1110010010 ,,,,,, ppppppd  from the real traffic sample. In [6] the authors have al-

ready obtained the following ratio for the generator G: 
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where )1(G  is the probability for the modulator to use the first generator and )1(G  – 

to use a zero generator. 
The corresponding flow intensities for the dependent generators can be ex-

pressed from (1) as (6): 
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The total flow intensity for the cascade generator can be expressed as (7) due 

to the known "portions" of the work of the both generators 0G  and 1G : 
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According to (7), the expression of flow intensity in traffic depends on six 

parameters, which indicates the possibility to change the properties of the generated 
traffic within wide limits. However, in practice, this dependency is not applicable, 
because the fractal dimension of traffic on two temporal scales needs to be linked 
here, but this problem has not yet been solved. 

 

5 Conclusion  

The correspondence of the practical results with the theoretical ones was experimen-
tally confirmed, although non-standard metric of the coverage measure expression 
was used in the derivation of analytical dependencies. 

The actual possibilities of adjusting the Hearst index on a given time scaling were 
established as a result of the numerical experiment. The obtained time series with the 
help of a cascade binary sequence generator have multifractal properties. That is, the 
cascade generator has more possibilities for receiving traffic, which will correspond 
to the examples of binary traffic in real telecommunication networks. 

However, the cascade generator requires further theoretical study to analytically 
express the coefficients 1110010010 ,,,,,, ppppppd  to obtain the desired fractal char-

acteristics and flow intensity. 
The generalized diagram of processing procedure is considered in the paper. This 

diagram suggests two modes of OS: regular mode and adaptable mode. The adaptabil-
ity principles utilization expands the possibilities of flexible control of operations. 
Three strategies of OS components inspection were analyzed. The numerical example 
showed advantages of catchall inspection. 
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