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Abstract. Information technologies significantly expand the capabilities of 
modern medicine. Using of artificial neural networks is becoming particularly 
promising. They are actively used for diagnostics based on patient data. How-
ever, the problem of network synthesis with a satisfactory topology and accu-
rate diagnosis remains important. Neuroevolution methods allow to solve this 
problem without much involvement of an expert. Moreover, these methods 
make it possible to effectively use the parallel power of modern computer sys-
tems. On the other hand, parallelization raises a number of new problems. The 
paper suggests mechanisms for improving the crossover operator. The proposed 
solution allows you to reduce resource consumption and improve the synthesis 
process.  
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1 Introduction 

The human factor often causes a number of problems. This also applies, of course, to 
medicine. A doctor's mistake can mean the loss of a patient's health or even their life, 
and doctors make mistakes not infrequently. Even the highest-level professional can 
make mistakes, because the specialist can be tired, irritated, concentrating on the 
problem worse than usual [1-3]. 

In this case, information technologies can come to the rescue. For example, the 
IBM Watson cognitive system [4-7] copes with work in the medical field at a fairly 
high level (oncology, reading x-rays, etc.) [4], [5]. But there are other solutions pro-
posed by independent researchers. A number of scientists regularly present successful 
results of using artificial intelligence systems in medical diagnostics [8-11].  



Artificial neural networks (ANN) have come into practice wherever it is necessary 
to solve problems of forecasting, classification or management. Problems of medical 
diagnostics are a sub-division of problems classification and forecasting of the ob-
ject's condition. The following reasons determine the impressive success of the use of 
ANNs [10-13]: 

 a huge number of opportunities [12], [13]. ANNs are a powerful modeling method 
that allows reproducing extremely complex dependencies. In particular, neural 
networks naturally are nonlinear. In problems where linear application is unsatis-
factory (most medical diagnostics problems), linear models do not work well. In 
addition, neural networks cope with modeling linear dependencies in the case of a 
large number of variables; 

 lеraining on examples (data about the object) [14], [15]. Neural networks are trained 
using examples. Initially, representative data is selected, and then a training algo-
rithm is run that automatically perceives the data structure. 

On the other hand, a user who trains a neural network needs a certain set of knowl-
edge about how to select and prepare data, select the appropriate network architecture, 
and interpret the results [14-20]. Therefore, it can be assumed that the probability of 
error passes from the expert in knowledge of the problem area to the expert in the 
design of the ANN [16], [18]. 

Neuroevolution methods of ANN synthesis are based on an evolutionary approach 
[21]. These methods can simultaneously configure the network structure and weights. 
This allows getting ready-made neural network solutions with only data from the 
training sample, and in most cases does not require the user to have deep knowledge 
of the ANN theory [22], [23]. 

Advantages of using neuroevolution methods [24-27]:  

─ a wide variety of resulting topologies – possible solutions with" non-standard " 
ANNs structures;  

─ adaptivity;  
─ universality;  
─ the use does not require a deep knowledge about the ANN; 
─ possibility of using a parallel approach. 

The most well-established neuroevolution method is the genetic algorithm (GA). 
Unlike other optimization technologies, GA contain a population of trial solutions 

that are competitively managed using defined operators [28-30]. GA is inherent in 
iterative training of a population of individuals. The capacity of GA increases with the 
use of distributed computing. Such algorithms are called parallel genetic algorithms. 
They are based on splitting a population into several separate subpopulations, each of 
which will be processed by GA independently of other subpopulations. 

However, when it comes to parallelizing, it should be taken into account that the 
main disadvantage of GA is a constant desire for a population containing one local 
optimum, which leads to a constant decrease in the genetic diversity of the population, 
which reduces the ability of GA to search for a global optimum and/or adapt to chang-



 

ing parameters of target functions [31], [32]. Therefore, the task of improving the 
methods of evolutionary optimization based on increasing the adaptive characteristics 
of the method is urgent. 

2 Literature review 

 
As noted above, GA is one of the most acceptable ways to synthesize ANN. This is 
due to the fact that at the initial stage there is absolutely no information about the 
direction of movement in terms of setting the matrix weights. Under conditions of 
uncertainty, evolutionary methods, including GA, have the highest chances to achieve 
the necessary results.  
At the same time, there is a significant disadvantage of using genetic algorithms-the 
multi – iterative nature of the methods, serious time costs. To solve such problems, 
parallelization can be used to branch out the execution of calculations between the 
cores of modern computer systems. However, when designing a parallel approach, 
you should consider the most common problems encountered: 

 selecting or developing a strategy for interaction between the components of the 
algorithm; 

 choosing the frequency of migration between populations; 
 determination of migrating individuals and their number; 
 determining the structure of the evolution of individual populations. 

Consider the problems in more detail. The structure of a parallel system is an impor-
tant factor in the performance of a parallel algorithm, since it determines how quickly 
(or how slowly) a good solution spreads to other populations. If the system is strongly 
connected, then good solutions will quickly spread to all streams and can quickly 
"saturate" the population [33]. On the other hand, if the network is loosely connected, 
solutions will spread more slowly and threads will be more isolated from each other. 
Further parallel development and recombination of different solutions can occur to 
obtain potentially better solutions. 

A common trend in promising parallel genetic algorithms (PGA) [34], [35] is the 
using of static system structures that are defined before the algorithm is run and re-
main unchanged. 

Another method of constructing a structure is to create a dynamic system [33-35]. 
In this case, the flow is not limited to links with a certain fixed number of threads; 
instead, migrants are directed to threads that meet a certain criterion. As a similar 
criterion, the degree of population diversity or the measure of genotypic distance be-
tween two populations (or the distance from a characteristic individual of the popula-
tion, for example, a favorite) is taken. This structure requires mechanisms for tracking 
events in neighboring populations, and if an event occurred in one of the neighboring 
populations, then an event should be expected in the second population. 

The frequency of migrations also has a big impact on the final decision [33], [34]. 
As it known, too frequent migrations lead to degeneration of populations, and rare 



ones, on the contrary, to a decrease in convergence. Various methods are used to 
regulate the frequency of migration, which can be divided into two types: adaptive 
and event-based. In the first case, adaptation methods are used to adjust the migration 
frequency during the algorithm operation. In the second case, methods are used that 
determine the need for migration, that is, migration is performed only when an event 
occurs. 

Selection mechanisms are used to select individuals for migration [36-40]. It is 
known that individual chromosomes may contain "good" fragments of the genetic 
code, but these parts may be in chromosomes that are poorly adapted. But at the same 
time, excluding similar ones can lead to premature convergence, or skipping the glob-
al optimum. 

Using different strategies imposes the main restriction: the necessity of forming the 
same type of chromosome structure. But the effect that is possible with successful 
formation can be much greater than when using a single GA structure in all popula-
tions [37]. 

It is also worth noting that a large number of migrations and even dynamic ex-
change of intermediate information between threads requires additional overhead, 
which sometimes largely negates the achievement of parallel execution of calcula-
tions [36], [38]. 

Moreover, we should not forget that even the sequential version of GA imposes 
significant resource requirements (especially RAM), compared to gradient methods 
[39], [40]. This is because in most cases a population of neural networks is used. 
Hence, when parallelizing, keep in mind that the requirements will increase according 
to the number of threads involved. 

Therefore, the use of additional mechanisms and the introduction of hybrid meth-
ods, at different stages of operation, will improve the performance of the PGA. 

3 Parallel genetic algorithm with smart crossover 

The paper proposes a parallel genetic method. Parallelization will occur in the follow-
ing way. Initially, we will generate a population of individuals on the main core of the 
system, where each individual is a separate neural network: 

  nNNNNNNP ,...,, 21 , (1) 

where, P  is population, 

nNN  is neural network, 

n is the size of population. 
Also, at the initial stage, the main free parameters of the method will be set: the 

stop criteria, population size, and so on.  
The next step is to divide the population into subpopulations and distribute sub-

populations between the cores of the multi-core system.  



 

The cores will perform the same sequence of actions with subpopulations: evaluat-
ing the genetic information of individuals, sorting and selecting the best individuals, 
crossing and selecting the new best individuals. 

Then the selected best individuals are sent to the main core, where they are re-
sorted and selected the best representatives. The new best individual is evaluated for 
the stop criterion. If the resulting individual is satisfied, it becomes a solution and the 
method ends. If the solution is not satisfactory, the best individuals from the subpopu-
lations are crossed and a new population is obtained, which is re-distributed between 
the system cores. 

Diversity is maintained in the process of evolution by the fact that each species 
(subpopulation) develops without exchanging genetic material with other species. 
This is an important aspect of this model. The exchange of genetic material between 
two different species usually produces non-viable offspring. In addition, mixing of 
genetic material can reduce the diversity of populations. This approach will also sig-
nificantly reduce the share of overhead associated with the transfer of information 
between the system cores. 

Now let's look at the mechanisms that allow optimizing the use of RAM, while 
maintaining the adaptive characteristics of the method. In the proposed method, it is 
recommended to use a smart crossover, which is based on uniform crossing and rank 
selection enhanced by criteria conditions.  

Uniform crossover is one of the most effective recombination operators in standard 
GA [41], [42].  

Uniform crossover is performed according to a randomly selected standard that 
specifies which genes should be inherited from the first parent (other genes are taken 
from the second parent) [42]. In other words the general rule of uniform crossover can 
be represented as follows: 
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It has long been known that setting the probability of passing a parent gene to a de-
scendant in a uniform crossover can significantly increase its efficiency [35], [36], and 
also allows emulating other crossing operators (single-point, two-point). It is also 
known that the use of the uniform crossing operator makes it possible to apply the so-
called multi-parent recombination, when more than two parents are used to generate 
one offspring. Despite this, in most studies, only two parents are used and the fixed 
probability of transmitting the gene is 0.5 [41]. 

Even crossing gives greater flexibility when combining rows, which is an impor-
tant advantage when working with GA. 

However, it should be noted that even crossing requires additional computing pow-
er. On the other hand, uniform crossover makes it possible to emulate the operation of 
simpler types of crossing, such as two-point crossover. Therefore, we will use a two-



point crossover to work on threads. This approach will allow you to implement this 
method in the future on computing systems running graphics processors (GPUs). 

It is proposed to strengthen the ranking selection by introducing additional criteria 
that will help to track various characteristics of neural networks more subtly, namely: 
excessive memory usage and approximation properties of the neural network. 

The general scheme of the method is shown in Fig. 1. 

4 Experiment 

4.1 Description of the experiment 

A sample of Parkinson's Disease Classification Data Set will be used for the experi-
ment [43].  

The data used in this study were gathered from 188 patients with PD (107 men and 
81 women) with ages ranging from 33 to 87 (65.1Â±10.9). The data used in this study 
were gathered from 188 patients with PD (107 men and 81 women) with ages ranging 
from 33 to 87 (65.1Â±10.9) at the Department of Neurology in Cerrahpasa Faculty of 
Medicine, Istanbul University. 

The control group consists of 64 healthy individuals (23 men and 41 women) with 
ages varying between 41 and 82 (61.1Â±8.9). During the data collection process, the 
microphone is set to 44.1 KHz and following the physician’s examination, the sus-
tained phonation of the vowel was collected from each subject with three repetitions. 
Table 1 shows the main characteristics of the data sample. 

Table 1. Main characteristics of the Parkinson's Disease Classification Data Set 

Criterion Characteristic Criterion Characteristic 

Data Set Characteristics  Multivariate Number of Instances 756 

Attribute Characteristics Integer, Real Number of Attributes 754 

The following hardware and software have been used for experimental verification 
of the proposed parallel genetic method for ANN synthesis: the computing system of 
the Department of software tools of Zaporizhzhya national technical university (Na-
tional university “Zaporizhzhia politechnic”), Zaporizhzhia: Xeon processor E5-2660 
v4 (14 cores), RAM 4x16 GB DDR4, the programming model of Java threads. 

The results of the proposed method will be compared with the results of the meth-
od considered in the previous works [44]. Old modification will be called PGM (Par-
allel genetic method) and new variant – PGM SC (Parallel genetic method with smart 
crossover). Note that when working, the size of the parent pool for even crossing will 
be equal to the number of system cores involved. 

4.2 The results of the experiment 

In the Fig. 2 is graph of the execution time (in minutes) of the proposed method on 
computer systems, which depends on the number of cores involved.  



 

 
 

 

Fig. 1. Parallel genetic method for ANN synthesis with smart crossover  

It can be seen from the graphs that the proposed method has an acceptable degree of 
parallelism and is effectively performed on MIMD parallel system. In addition, the 
processor in multi-core computer supports Turbo Boost technology [45–47], making 
the time of the method execution on the single core much less than on the core of 
which does not support this technology. 

Fig. 3 shows graphs of changes in communication overhead. Since the new method 
offers the transfer of only the best individuals, this allows you to significantly reduce 
the transfer of excess information. This is explained by the fact that communication 



overhead of the proposed method execution on computer systems is relatively small, 
and the number of parallel operations significantly exceeds the number of serial op-
erations and synchronizations. In communication overhead, is understood the ratio of 
the time spent by the system for transfers and synchronization among cores to the 
time of target calculations on a given number of cores. 

 

 

Fig. 2. Dependence the execution time of the proposed method to the number of involved cores 
of the computing system 

 

Fig. 3. Communication overhead performing the proposed method to the number of cores in-
volved of the computing system 

Fig. 4 shows graphs of speedup changes. Based on the fact that the communication 
overhead has decreased, the speedup of execution increases significantly. 

The graph of efficiency of computer systems is presented in Fig. 5. It shows that 
the using of even 14 cores of computer systems for the implementation of the pro-
posed method retains the efficiency at a relatively acceptable level and indicates the 
potential, if necessary and possibly, to use even more cores. 

 



 

 

Fig. 4. The speedup graphics of calculations on computing system 

 

Fig. 5. The efficiency graph of computing systems when executing the proposed method 

5 Conclusion 

Based on the results of experiments, it can be argued that the proposed method can be 
used in the synthesis of neural network diagnostic models. The proposed smart cross-
over mechanism significantly optimizes the synthesis process by using an adjustable 
uniform crossover and additional criteria at the selection stage.  

However, we are not talking about large-scale implementation of neural networks 
in hospitals around the world. The main problem in terms of the spread of these tech-
nologies is that neural networks are a kind of "black box". Specialists enter data and 
get a certain result. But the creators of such systems may not fully understand how 
this result was obtained, what algorithms and in what sequence are involved. If neural 
networks could be made more transparent, and the principle of their operation could 
be easily explained to medical practitioners, then the rate of spread of this technology 
would be much higher. 
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