
Copyright © 2020 for this paper by its authors. Use permitted under Creative 
Commons License Attribution 4.0 International (CC BY 4.0). 

 

Analysis of Algorithms for Constructing Dense 
Sequencing of Digraphs Vertices 

Valentina Turchyna1[0000-0003-1051-9597], Kostiantyn Karavaiev2[0000-0001-6062-4577], 

1Oles Honchar Dnipro National University, D.Yavornitsky avenue, 35, Dnipro, 49000, Ukraine 
vaturchina1949@gmail.com  

2Oles Honchar Dnipro National University, D.Yavornitsky avenue, 35, Dnipro, 49000, Ukraine 
karavaiev_k@fpm.dnulive.dp.ua  

Abstract. In this work behavior of one exact polynomial algorithms for particu-
lar case of optimal sequencing problems when it’s used for arbitrary graphs and 
sequencing widths is analysed. Based on this analysis several modifications of 
this algorithm are developed. Results of computational experiments has shown 
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that has a dense sequencing for even sequencing width.  
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1 Introduction 

When solving practical problems related to the optimal allocation of a finite set of 
jobs (tasks, projects, operations, etc.) between executors, two main classes are distin-
guished: the first - problems in which the order of execution is arbitrary, the second - 
problems in which technological constraints are imposed. This work is devoted to the 
latter. Since the technological constraints can be mathematically modeled with a di-
rected acyclic graph, the problems under consideration are formulated as optimization 
problems on graphs. In general, these problems are NP-hard, so it is important to have 
effective approximate algorithms of polynomial complexity [1, 2]. 

2 Formulation of the problem 

Consider one of the well-known problems of sequencing vertices of a directed graph. 
Suppose that a finite set of jobs is specified, on the order of execution of which the 
technological constraints are imposed [3-5]. Assuming that all jobs have the same 
execution time, the minimum time for which, without violating technological restric-
tions, all jobs can be executed by a given number of performers has to be determined. 



It is natural to set technological constraints in a form of directed acyclic graph 
),( UVG , nV  , where V  is the set of vertices whose elements are associated with 

the jobs. Then the arrows correspond to the technological constraints. One of the op-
timization problems that arises in this case is the construction of optimal parallel se-
quencing, which is defined as such placement of the vertices of the digraph in line-
arranged places for which the following conditions are satisfied: 

─ in each place there is no more than a given number of vertices, denoted h ; 
─ if a pair of vertices   Uji , , then vertex i  is located to the left of vertex j ; 

─ the number of non-empty places (called the sequencing length and denoted l ) on 
which all vertices of the graph are placed is minimal. 

In the general case, that is, for an arbitrary graph G  and width h , this problem is 
NP-hard, so directional search schemes such as the branch and bound method are 
used to find the exact solution. Only for four partial cases the exact algorithms of 
polynomial complexity are found. This is the case when the graph G  is directed for-
est [6] (this algorithm is called the level principle), when 2h  (two algorithms are 
known, one based on lexicographic order [7], the other one is being under the scrutiny 
in this work), when the graph G  is opposing forest [8] and when the graph G  is 
graph of bounded height [9]. 

3 Algorithm based on maximal matching 

Suppose that we have an arbitrary acyclic directed graph G  and 2h . In this case, in 
order to construct the desired optimal sequencing, one can use an algorithm that was 
historically first. This method of constructing S  is called the algorithm based on the 
maximum matching. 

Algorithm based on maximum matching.  

1. For а graph ),( UVG , we construct an undirected graph ),( EVG , where   Eji , , 

if there is no path in the graph G  neither from vertex i  to j  nor from j  to i . 

Such a graph will be referred to as the reachability graph. 

2. In the obtained graph G , we find the maximal matching, which is denoted 
EM  , that is, a subset of the edges of the maximal cardinality with no vertices 

in common. 
3. In the desired sequencing S , we consider all places empty and set 1k . 
4. If G  is empty, then the algorithm is finished. 
5. One of the following cases is possible: 

(a) Among the open vertices of G , there exists one that does not belong to any of 
the edges in M , then we choose it to be placed. 

(b) In the set M  there is an edge  ji,  such that vertices i  and j  are open, then 

we choose them for the placement and remove  ji,  from M . 



(c) In the set M  there is a pair of edges  pi,  and  qj,  such that vertices i  and 

j  are open, and between vertices p  and q  there is an edge in the graph G , 

then we choose vertices i  and j  for placement, edges  pi,  and  qj,  are re-

moved from M , and the edge  qp,  is added to M . 

6. We place the selected vertices on the thk  place of the sequencing S  and remove 
them from the graph G  together with the arrows directed from them, if any. Set 

GG : , 1:  kk  and go to 4. 

It is important to note that polynomial complexity algorithms, such as the blossom 
algorithm, are known for finding M  for arbitrary undirected graphs. 

It was proved in [10] that the sequencing obtained by this algorithm is optimal. It is 
not straightforward to apply this algorithm to arbitrary sequencing width h  due to the 
specificity of operations in step 5 of the algorithm. 

4 A class of graphs for which dense sequencing exists 

Consider some of the statements and their corollaries, which will narrow down a set 
of parallel sequencing tasks that need consideration, namely, to the class of graphs for 
which dense sequencings for an even h  exist. This will allow us to generalize the 
algorithm based on the maximum matching for the case of arbitrary input data. 

To the class of graphs for which there are dense sequencings, hD , belong such 

graphs that, for a given value of the width h , have sequencings in which at each place 
there are h  vertices. 

Theorem 1. If there is an exact algorithm A  of polynomial complexity for some 

fixed sequencing width h
~

, then there is a polynomial algorithm for any hh
~

 . 
Proof. Suppose that there is some non-empty graph G  with n  vertices and some 

fixed value hh
~

 . It is clear that the length of its optimal sequencing l  is in the 
range from 1 (if hn   and all vertices are isolated) to n  (the graph is a chain) inclu-
sive. 

We construct a new graph G , which is obtained from the graph G  by adding 

 hh 
~

 chains of some length nl ,1  to it. We now construct the sequencing S  of 

the graph G  for hh
~

  by Algorithm A . It is known that it will be optimal and can 
be obtained in polynomial time. 

It is clear that if  ll , then the length of S  will also be l . On the one hand, it 

cannot be greater than l , since we have  hh 
~

 chains occupying  hh 
~

 positions 

on each of the l  places, and vertices, belonging to the graph G  can be placed on l  

places in case of hh  . On the other hand, it cannot be smaller than l , since the 

chains can only be placed in a line and their length is l . Thus, if we remove from S  

all vertices belonging to the chains, then we obtain the optimal sequencing of S  for 



the original problem in polynomial time, since the addition and removal of chains can 
be done in linear time. 

Therefore, if we can find the length of chains  ll , which is generally unknown, 
in polynomial time, then we can use algorithm A  to find the optimal sequencing for 

hh
~

 . This can be done through binary search. 

Note that  ll  corresponds to the minimum value of l  for which there will be 

 hh 
~

 vertices of the chains on all places in the resulting sequencing S  obtained by 

the algorithm A  for the graph G  and hh
~

 . Indeed, for  ll , the length S  will 
coincide with l , since it is necessary to place the chains, and the vertices of the graph 

G  can be placed on a smaller number of places. For  ll , S  will have places where 

there is less than  hh 
~

 vertices belonging to the chains, otherwise vertices of graph 

G  could be placed at a smaller number of places than l  for hh  . 
We apply binary search to this problem. We choose some integer value of 

nbal ,1, 000  , which splits this interval approximately in half. We construct a graph 

G , for that value of l . By applying algorithm A  we find the optimal sequencing S  

for hh
~

 . If there are  hh 
~

 vertices belonging to the chains on all the places of S , 

then we choose 0111 ,1, lbal  , and continue our search using this interval. If S  has 

places where there are less than  hh 
~

 vertices of the chains, then we choose 

nlbal ,1, 0111   and similarly continue the search. The algorithm convergence 

follows from the convergence of binary search for monotonic functions. The search 
requires logarithmic time, the check can be performed in linear time, and therefore we 
find the  ll  in polynomial time. 

Since all the steps of the described algorithm can be performed in polynomial time, 
their number is finite, algorithm A  has polynomial complexity under the condition of 
theorem, and thus described algorithm is exact and has polynomial complexity for any 

hh
~

 . ■ 
Theorem 2. If there is an exact algorithm A  of polynomial complexity for some 

fixed sequencing width h
~

 and graphs from 
h

D~  (for which exists dense sequencing of 

width h
~

), then there is a polynomial algorithm for an arbitrary graph for hh
~

 . 
Proof. Suppose there is some non-empty graph G  having n  vertices. It is clear 

that the length of its optimal sequencing l  is in the range from 1 (if hn  and all 
vertices are isolated) to n  (the graph is a chain) inclusive. 

We construct a new graph G , which we obtain from the graph G  by adding 

rhkm 
~

 isolated vertices to it, where n
h

n
hr 



 ~

~
, k  being some factor. This 

factor is not less than 0 (if it is sufficient to add hr
~

  vertices to G  to obtain dense 
sequencing, that is, for graphs for which there are optimal sequencings where there 
are r  free positions). It reaches its greatest value in the case of a graph-chain when 
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n
nk ~,0 . Now let us construct a sequencing S  of G  for hh

~
  using Algo-

rithm A . It is known that, if there is a dense sequencing for G , it will be optimal and 
can be obtained in polynomial time. 

It is clear that if nhlm   ~
, then S  will be dense and its length will be l . On 

the one hand, it cannot be less than l  since at least l  places are required to place the 

vertices of graph G . On the other hand, it cannot be larger than l , since in the opti-

mal sequencing S  for G  there are nhl 
~

 positions that can be occupied by iso-
lated vertices, and algorithm A  finds the optimal dense sequencing, if any. Then if 
we remove from S  all the added isolated vertices, then we obtain the optimal se-

quencing of S  for the original problem in polynomial time, since the addition and 
removal of isolated vertices can be done in linear time. 

Similarly to Proof of Theorem 1, if we can find the number of isolated vertices 

nhlm   ~
 in polynomial time, or, what is the same, the value of the factor k  for 

which the corresponding value is reached, then we can use algorithm A  to find the 

optimal sequencing for any graph for hh
~

 . 

Note that rhknhlm   ~~
 corresponds to the minimum value of k , for 

which the obtained sequencing S  by algorithm A  for the graph G  and hh
~

  will 
be dense. Indeed, for smaller values of k , obtained sequencing won’t be dense, since 
not enough isolated vertices have been added. For larger values of k , we also obtain 

dense sequencing, since we add the number of vertices that is a multiple of h
~

 . 
We apply binary search to this problem. We choose some integer value of 






h

n
nbak ~,0, 000 , which splits this interval approximately in half. We construct 

a graph G , for that value of k , then we find the sequencing of S  using algorithm A  

for hh
~

 . If S  is dense, then we choose, similarly, 0111 ,0, kbak  , and continue 

search within this interval. If S  has free positions, then we choose

 










h

n
nkbak ~,1, 0111  and similarly continue the search. The algorithm conver-

gence follows from the convergence of binary search for monotonic functions. The 
search requires logarithmic time, the check can be performed in linear time, so we 
find the required m  in polynomial time. 

Since all the steps of the described algorithm can be performed in polynomial time, 
algorithm A  has polynomial complexity under the condition of the theorem, thus we 
obtained an algorithm that is exact and has polynomial complexity for any graph G  

and hh
~

 . ■ 



Corollary 1. If there is an exact algorithm A  of polynomial complexity for some 

fixed sequencing width h
~

 and graphs from 
h

D~  (for which exists dense sequencing of 

width h
~

), then there is a polynomial algorithm for arbitrary graph and for any hh
~

 . 
Proof. It follows directly from Theorems 1 and 2. ■ 
This corollary allows us to generalize the algorithms obtained for the class of 

graphs for which there are dense sequencings, for the case of all graphs and smaller 
h . In particular, it allows us to apply algorithms obtained for even values of h  to 
smaller odd ones. 

5 Generalization of the algorithm based on the maximum 
matching 

This section will discuss the theorems that prove the feasibility of using and develop-
ing modifications of the algorithm based on maximal matching to graphs for which 
there are dense sequencings. 

Further research will use the notion of "undirected graph clique" in the classical 
sense. 

Definition. A clique is a subset of vertices of an undirected graph such that every 
two distinct vertices in the clique are adjacent [11]. 

Theorem 1. From the existence of dense sequencing for some graph G  for se-

quencing width hh
~

  follows the existence of disjoint cliques of size h
~

 in reachabil-
ity graph, covering all its vertices. 

Proof. Suppose that we have a graph G  for which the optimal sequencing S  of 

length l  for hh
~

  is dense. 

For any place  li ,1 , since the vertices of  iS   are in the same place, by the def-

inition of parallel sequencing, it follows that for any two vertices    iSviSv   21 ,  

there is no directed path neither from 1v to 2v , nor from 2v  to 1v . 

It is known that in the reachability graph G  corresponding to graph G , two verti-
ces 1v  and 2v  are joined by an edge only when there is no directed path neither from 

1v  to 2v  nor from 2v  to 1v . From the above, it follows that there are edges in G  

between all pairs of vertices  iSvv 21, , and hence they form a clique of size h
~

 in 

it. 
Since the above reasoning is true for all places in the sequencing S  and all of 

them has h
~

 vertices of graph G , and that sequencing contains all vertices of graph 
G , this leads to the conclusion of the statement. ■ 

The above statement is a necessary condition for the existence of dense sequencing 
for the graph. Note that in the case of 2h , it is sufficient. For 2h  there are graphs 
for which there are cliques of size h  covering all of its vertices, but dense sequencing 
doesn’t exist. 



It is known that pairs of vertices are considered in the algorithm based on the max-

imum matching, so it is more convenient to apply it to even values of h
~

. The follow-
ing statement proves the feasibility of using an algorithm based on maximal matching 
for this case. 

Theorem 2. Among the maximal matchings M  of the reachability graph G  cor-
responding to the graph G , there are those that give the optimal sequencing when 
applying the algorithm based on the maximum matching, when the optimal sequenc-

ing for an even width hh
~

  is dense. 

Proof. Suppose that a graph G  is given for which the optimal sequencing S  of 

length l  for hh
~

  is dense. 

We construct for it a reachability graph G . It follows from Theorem 1 that there 

exists a cover of vertices of the graph G  by cliques of size h
~

. Let's look at an arbi-
trary clique from this cover and split the vertices that are belonged to it in pairs (we 

can do this since h
~

 is even). 
Let us now consider all such pairs obtained from all the cliques forming the cover. 

These pairs form the maximum matching for the graph G , since each vertex belongs 
to only one pair (pairs contain vertices from one clique and cliques are disjoint), in 
each pair the vertices are adjacent (belong to the same clique), the pairs cover all ver-
tices (pairs cover all vertices of the cliques, and cliques cover all vertices of the 
graph). 

Consider now the algorithm based on the maximum matching, in which we will 
place as many pairs as possible on each place. If we apply that algorithm, where we 
use the resulting set of pairs as the maximum matching, then we can get the optimal 
sequencing by placing pairs from one clique in one place (vertices from one clique 
correspond to one place in S ).■ 

Note that the validity of the statement does not contradict the fact that for the 
reachability graph there may be maximal matchings, by using which we will not ob-
tain the optimal sequencing. In fact, such graphs and corresponding matchings exist. 

The above statements suggest that the algorithm based on maximal matching can, 
theoretically, find the optimal solution for problems where the sequencing width is 
even and the graphs have dense sequencing. 

We also see that in its classical form, it is only approximate to this class of se-
quencing problems. 

6 Computational experiment 

To experimentally determine the accuracy of an algorithm based on the maximum 
matching, it was implemented according to algorithm discussed in section 3. This 
algorithm is further referred to as the classical algorithm based on the maximum 
matching. Preference was given to vertices with smaller labels, rather than random 
choice. This will not affect the generality of the results since the randomness of the 
selection is implemented by the randomness of the graph generation and the labeling 



of their vertices. Also, to generalize the algorithm for the case of width 2h  step 5 
of the algorithm is repeated until free positions are exhausted or until we can’t choose 
the next pair or single vertex. 

During the experiment, only graphs were generated for which there are dense se-
quencings for even values of h . Their advantages include the fact that for such graphs 
the exact solution is known by generation. Transitive arrows are not removed from 
graphs because their presence does not affect the algorithm (they do not affect the 
reachability graph). The labeling of vertices in the graph is random to implement the 
randomness of the selection of pairs and vertices that do not belong to the pair. 

In this and subsequent experiments, the accuracy of the algorithm based on the 
maximum matching was verified.  

All of the experimental conditions are summarized in Table 1. 

Table 1. - Values of parameters used in testing 

n  h  Number of tests 
 20,10   10,8,6,4  10000 

 40,21   10,8,6,4  10000 

 60,41   10,8,6,4  10000 

 100,61   10,8,6,4  10000 

The results of evaluating the accuracy of the classical algorithm based on the max-
imum matching are shown in Table 2. These results and the following contain three 
parameters: the number of cases when the algorithm based on the maximum matching 
found the exact solution; the average deviation of the length of the obtained sequenc-
ing from the length of the optimal one, and the number of cases in which the resulting 
sequencing is twice as long as the optimal sequencing. In this one and following ta-
bles AMM stands for algorithm based on maximal matching. 

Table 2. - Experimental results for the classical algorithm 

Classical algorithm 
AMM is 
accurate 

Average deviation 
 of AMM 

Obtained sequencing two 
times longer than optimal  

8688 1.160823 9 
5718 1.562121 19 
2564 2.165008 4 
761 3.391384 0 

Test results show that it has very low accuracy. The number of times it gives the 
optimal solution decreases rapidly. The average deviation of the obtained solutions 
also grows very fast and differs significantly from the one even for small graphs (21-
40 vertices). In addition, there are cases where the sequencing obtained is twice as 
long as the optimal one, which exceeds the maximum accuracy estimate in [12]. Note 
that this does not contradict the statement, since the algorithm can sometimes leave 



empty positions in sequencing when open vertices are still present. Such behavior is a 
case when they belong to pairs that cannot be placed in the current step. 

From this, we can conclude that as the number of vertices in the graph increases, 
the number of maximal matchings that give suboptimal solutions increases faster than 
the number of matchings that give optimal ones.  

It is known that the resulting matching is strongly depends on the labels of vertices 
in the graph. One can assume that if we can relabel the vertices so that algorithm is 
more likely to find matchings that give optimal sequencing, then we can improve its 
results. It is also known that the vast majority of optimal solutions for graphs are sat-
isfying the level principle. Therefore, it is natural to expect that if we relabel the verti-
ces of the graph according to the level principle, then we can increase the likelihood 
of getting a matching, which gives an optimal solution. The results of the correspond-
ing experiment are shown in Table 3. 

Table 3. - Experimental results for the classical algorithm with the relabeling of the vertices 

Classical algorithm with relabeling 
AMM is 
accurate 

Average deviation 
 of AMM 

Obtained sequencing two 
times longer than optimal 

9290 1.083099 0 
6485 1.317496 0 
3078 1.684051 0 
943 2.509551 0 

From the experiment we observe that such relabeling slows down the decrease of 
accuracy of the algorithm and significantly slows the growth of the average deviation. 
There were no cases where sequencing that are twice as long as optimal were ob-
tained, but the hypothetical possibility of their existence remains. 

The sequencings that are twice as long as the optimal one are obtained, since the 
algorithm can leave empty positions because the open vertices are bound in pairs that 
cannot be placed. This behavior of the algorithm further aggravates the impact of the 
initial matching. An obvious way to reduce this effect is to allow splitting the pair if it 
cannot be placed in the current step, but at least one of its vertices is open. The result-
ing algorithm is later referred to as modified algorithm based on the maximum match-
ing. The results of the accuracy evaluation of this algorithm are shown in Table 4. 

Table 4. - Experimental results for the modified algorithm 

Modified algorithm 
AMM is 
accurate 

Average deviation 
 of AMM 

Obtained sequencing two 
times longer than optimal 

9031 1.008256 0 
8122 1.06869 0 
7387 1.166475 0 
6418 1.341709 0 



From the results we see that such modification significantly improves the accuracy 
of the algorithm. The number of cases where the algorithm was accurate for graphs 
with 61-100 vertices increased almost 8.5 times, for other cases this number also in-
creased significantly. The maximum average deviation from the previous experiment 
has halved and does not exceed 1.5. As expected there were no cases where the length 
of the resulting solution was twice the length of the exact one. 

Note also that despite the smaller average deviation for the case of graphs with 10-
20 vertices compared to the previous experiment, the number of cases where the algo-
rithm is accurate is smaller. Therefore, such modification does not always effectively 
comply with the level principle. Based on the previous results, it is hypothesized that 
if we apply the modified algorithm to previously relabeled vertices according to the 
level principle, we will increase accuracy even further. The results obtained are 
shown in Table 5. 

Table 5. - Results of the experiment for the modified algorithm with relabeling of the vertices 

Modified algorithm with relabeling 
AMM is  
accurate 

Average deviation 
 of AMM 

Obtained sequencing two 
times longer than optimal 

9675 1.006154 0 
8913 1.022079 0 
8134 1.107181 0 
7491 1.229175 0 

We see that a significant improvement in performance of the algorithm is achieved. 
The number of cases where the algorithm was accurate for graphs with 61-100 verti-
ces increased almost 10 times, compared to the classical algorithm. The average de-
viation for the first three cases is smaller than the average deviation for the first case 
for the classical algorithm and for the fourth case is comparable to it. 

All this indicates the feasibility of introducing modifications to the algorithm. 
Therefore, the effect of the initial matching on the result obtained is much smaller. 
Note that the algorithm did not lose the ability to violate the level principle.  

It can be assumed that if we apply, in addition to algorithms based on the level 
principle, such a modified algorithm, we can further improve the overall results, first 
of all due to cases in which to obtain optimal sequencing it is necessary to violate the 
level principle. To verify the latter assumption, an experiment was performed compar-
ing the accuracy of a modified maximum matching algorithm with the best of results 
of lexicographic and double-label algorithms. The latter further along referred to as 
combined algorithm (CA). The same parameters were used as for the previous ex-
periments. 

The results consist of two parts: comparison of the algorithms with each other and 
comparison of the accuracy of the algorithms by the values of the objective function. 
A comparison of the algorithms with each other contains the number of test cases in 
which sequencing with a shorter length is obtained by the AMM; in which a sequenc-
ing with a shorter length is obtained by the combined algorithm, and in which se-
quencings of equal length are obtained by the algorithms. A comparison of the accu-



racy of the algorithms contains the number of cases when an exact solution was ob-
tained by the algorithm based on the maximum matching; when an exact solution is 
obtained by the CA; the number of cases when one of the algorithms was accurate and 
the average deviation of the length of the solutions obtained by the algorithms from 
the length of the optimal one. 

The results of the experiment are shown in Table 6. 

Table 6. - Results of comparison of accuracy of the modified relabeling algorithm and the 
combined algorithm 

Modified algorithm with relabeling and combined algorithm 
Sequencing obtained by 

AMM is shorter 
Obtained sequencings 
have the same length 

Sequencing obtained by 
CA is shorter 

5 9673 322 
30 8954 1016 
50 8275 1675 
73 7547 2380 

AMM is 
 accurate 

CA is 
 accurate 

One of them is 
accurate 

Average de-
viation of 

AMM 

Average devia-
tion of CA 

9675 9992 9997 1.012308 1 
8923 9906 9936 1.02507 1 
8206 9815 9865 1.098105 1 
7436 9674 9747 1.232059 1 

The results obtained confirm that, even with all modifications, the algorithm based 
on maximal matching is significantly inferior to the algorithms based on the level 
principle on all indicators. However, we see that the number of cases where the algo-
rithm based on maximal matching finds shorter sequencing increases. In addition, in 
all these cases, these sequencings were accurate (this can be seen by summing up the 
number of AMM wins and the number of cases where the CA was accurate and com-
paring it to the number of cases when one of the algorithms is accurate). 

On the other hand, the number of cases when the combined algorithm gave shorter 
but not accurate sequencing increases with the number of vertices. This may indicate 
that there is some "barrier" that prevents the combined algorithm from finding the 
optimal solutions, and the more vertices there are in the graph the more noticeable it 
is. This barrier may be a level principle, more precisely the necessity to violate it. 

Let's return to the idea that the labeling of vertices in the graph strongly influences 
the result of the algorithm. The experiments with relabeling, according to the level 
principle, showed the effectiveness of this approach. It can be assumed that, if we 
randomly relabel the vertices, we will get a new matching and a new resultant se-
quencing, which may be shorter than the original one. The more times we repeat this 
procedure, the more likely it is that one of the resulting sequencings will be optimal. 

To test this hypothesis, an experiment was conducted in which the algorithm based 
on the maximum matching was applied to the generated graph, and if it gave a subop-
timal solution, then the vertices of the graph were randomly relabeled and the algo-
rithm was applied again. The described steps are repeated until the algorithm finds the 



optimal sequencing or until the maximum number of repetitions is exhausted. We call 
this modification a random algorithm based on maximal matching. In graphs genera-
tion the same parameter values as in the previous experiments were used; the maxi-
mum number of repetitions for all cases is set to 10. 

The results of checking the accuracy of a random classical algorithm based on the 
maximum matching are given in Table 7. These results contain the same columns as 
the previous experiments. 

Table 7. - Experimental results for the random classical algorithm 

Random classical algorithm 
AMM is  
accurate 

Average deviation 
 of AMM 

Obtained sequencing two 
times longer than optimal 

9946 1 0 
9277 1.034578 0 
7088 1.205357 0 
3543 1.810129 0 

From the results of the experiment we can see that the hypothesis finds its confir-
mation. Thus, the number of cases where the algorithm was accurate increased sig-
nificantly, in particular for graphs with 10-20 vertices got almost perfect accuracy, 
and for the case of graphs with 61-100 vertices the accuracy increased almost 5 times 
compared to the classical algorithm. The average deviation significantly decreased. 
There were no cases where the length of the resulting solution exceeds twice the 
length of the exact one, which may be due to the fact that the matchings that give rise 
to them are very rare. 

A similar experiment was performed for the modified algorithm. The results ob-
tained are summarized in Table 8. 

Table 8. - Experiment results for the random modified algorithm 

Random modified algorithm 
AMM is  
accurate 

Average deviation 
 of AMM 

Obtained sequencing two 
times longer than optimal 

9950 1 0 
9834 1 0 
9600 1.005 0 
9145 1.037427 0 

In the experiment obtained results similar to the previous ones. The number of cas-
es where the modified algorithm was accurate exceeds 91% for all graph sizes. For 
graphs with the number of vertices from 61 to 100 it is 12 times better than the classi-
cal algorithm. Similarly, the average deviation decreased. 

The results obtained in the last experiment are comparable to those of the algo-
rithms based on the level principle, which confirms the effectiveness of the proposed 
approach, especially considering that the chosen maximum number of repetitions was 
relatively small. Experiments with the relabeling of vertices, according to the level 



principle, are not listed, because it does not qualitatively affect the operation of the 
algorithm and therefore its accuracy.  

Considering the improvement obtained, the last algorithm was compared with the 
combined algorithm. The results can be seen in Table 9. 

Table 9. - Accuracy comparison results for the random modified algorithm and the combined 
algorithm 

Random modified algorithm and combined algorithm 
Sequencing obtained by 

AMM is shorter 
Obtained sequencings 
have the same length 

Sequencing obtained by 
CA is shorter 

4 9957 39 
59 9795 146 

132 9518 350 
195 9085 720 

AMM is 
 accurate 

CA is 
 accurate 

One of them is 
accurate 

Average de-
viation of 

AMM 

Average devia-
tion of CA 

9960 9995 9999 1 1 
9841 9928 9987 1 1 
9599 9816 9948 1.014963 1 
9160 9674 9867 1.041667 1.009202 

From the results we observe that the scores of the random modified algorithm are 
much higher than the scores of the modified one. The number of cases when it and the 
combined one give the sequencing of same length exceeds 90%. The number of cases 
where the sequencing obtained by algorithm has a smaller length is also much larger 
and increases rapidly with the number of vertices in the graph. In contrast to the pre-
vious comparison, there are cases, when the algorithm found shorter sequencings, but 
they were not optimal. The number of cases in which at least one of the algorithms is 
accurate for graphs of all sizes exceeds 98.6%, which significantly improves the re-
sults when using only algorithms based on the level principle. From this we can con-
clude that the resulting algorithm not only effectively comply with the level principle, 
but also violates it if necessary. 

All previous results further confirm the effectiveness of random algorithms based 
on maximal matching, as well as the importance and prospectivity of the modifica-
tions of the classical algorithm as such that may violate the level principle.  

The disadvantages of the random algorithm compared to the algorithm with rela-
beling, according to the level principle, include its non-determinism, which greatly 
complicates the analytical study of its properties. 

The results obtained in this section have practically proved the feasibility of using 
the algorithm based on maximal matching and its modifications to the problems of 
optimal sequencing with graphs for which there are dense sequencings and even 
width. 



7 Conclusion 

The well-known class of discrete optimization problems (which are formulated as 
optimization problems on graphs), and requiring the development of new effective 
approximate polynomial algorithms, was investigated. 

The theorems allowing to reduce the problem of optimal sequencing with arbitrary 
graph and sequencing width to the problem with graph, for which exists dense se-
quencing, and even width, have been proved. It was substantiated that to solve prob-
lems from this class it is suitable to apply an algorithm based on maximum matching. 

For the algorithm based on maximum matching, several modifications have been 
developed. Experimental verification has established that they significantly increase 
its accuracy. In addition, the joint application of the proposed algorithms and known 
algorithms based on the level principle resulted in an accuracy exceeding 98%. 
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