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Abstract. In this paper, a model of a transport conveyor system using a neural 
network is demonstrated. The analysis of the main parameters of modern con-
veyor systems is presented. The main models of the conveyor section, which 
are used for the design of control systems for flow parameters, are considered. 
The necessity of using neural networks in the design of conveyor transport con-
trol systems is substantiated. A review of conveyor models using a neural net-
work is performed. The conditions of applicability of models using neural net-
works to describe conveyor systems are determined. A comparative analysis of 
the analytical model of the conveyor section and the model using the neural 
network is performed. The technique of forming a set of test data for the proc-
ess of training a neural network is presented. The foundation for the formation 
of test data for learning neural network is an analytical model of the conveyor 
section. Using an analytical model allowed us to form a set of test data for tran-
sient dynamic modes of functioning of the transport system. The transport sys-
tem is presented in the form of a directed graph without cycles. Analysis of the 
model using a neural network showed a high-quality relationship between the 
output flow for different conveyor sections of the transport system. 
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1 Introduction 

The transport conveyor is a complex dynamic stochastic distributed system. The 
transport conveyor is an integral part of the technological process at enterprises with 
the flow method of organizing production [1]. Conveyor transport is widely used in 
the mining industry [2–6]. Table 1 shows a number of basic characteristics of con-
veyor-type transport systems. One way to save energy, which is necessary for the 
functioning of such systems, is to increase the level of congestion of the conveyor line 
[7–9]. To reduce the energy costs required to move one ton of material along the 
transportation route, systems are used to control the speed of the belt or the intensity 
of the material at the entrance of the conveyor section from the input bunker [10–12]. 
The effectiveness of the conveyor control system is largely determined by the model 
of the transport system. This fact acquires special significance when designing control 
systems for a transport system consisting of a large number of sections. 



Table 1. Characteristics of long-ranged conveyor transport system 

Сonveyor name Length 
(km) 

sections Power 
(kW) 

Speed 
(m/sec) 

Capacity 
(t/h) 

From the Bu Craa mine to the coast at El 
Aaiún, Western Sahara, [2] 

128.7 11   2000 

Sasol's Impumelelo project in South 
Africa (2015), [2] 

27.5 1  6.5 2400 

The Henderson Coarse Ore Conveying 
System, the North American Continental 
Divide (2000), [3,4] 

24.0 3 12700 4.5 2270 

Çöllolar Lignite Open Pit Mine, Turkey 
(2011), [5] 

17.4 26 46300  9350 

From a mine in India to a cement plant in 
Bangladesh (2005), [2] 

16.5 1  6.5  

Neyveli Lignite Corp., India (2007), [5] 14.0 8 2520 5.4  
Open Cast Mine Reichwalde, Germany 
(2010), [5] 

13.5 6 19350 5.5 6000 

Coarse ore conveyor system Minera Los 
Pelambres, Chile (1998), [5] 

12.7 3 25000  8700 

Tianjin China Port Authority, China 
(2005) [6] 

8.98 1 4x 
1500 

5.6 6000 

Baumgartner Tunnel, the Metropolitan 
St. Louis (Missouri) , USA [6] 

6.18   2.54 200 

Barcelona Tunnel (the Metro (Train) 
Extension Project), Spain (2005) [6] 

4.71 1 3.5  1500 

2 Literature review 

To build the models on which the systems for controlling the speed of the belt or the 
intensity of material input at the entrance of the conveyor section from the input bun-
ker are based, use the finite element method [13–18]; finite difference method 
[18,19]; Lagrange method [19]; a method using the aggregated equation of state [20]; 
system dynamics method [10]; multiple regression method [26–28]. Most often used 
in models for calculating flow parameters a finite element method. This 
method allows you to determine the value of the flow parameters of the conveyor 
section for dynamic transient conditions, taking into account the distribution of mate-
rial along the transportation route. The finite element method, before the advent of the 
analytical model (PiKh–model) of the conveyor-type transport system [12], was per-
haps the main method used by researchers to construct the conveyor model. The use 
of neural network methods and multiple regression methods to describe flow parame-
ters was less promising than the finite element method. One of the reasons is that the 
researchers focused on modelling a single section of the conveyor. Another, no less 
important reason is the lack of test data in the right amount for training a neural net-
work or for building a regression model. When considering a model of a transport 
system, which consists of a large number of separate conveyor sections, the use of the 
finite element method is unreasonable even when modelling a transport system con-
sisting of several dozen separate sections. A good tool, in this case, is the PiKh– con-



veyor system model. In this case, a separate model is built for each separate section. 
Combining sections into a common system leads to a system of equations [29, 30]. In 
the event that a separate section does not include an accumulating bunker, the number 
of equations of the system is equal to the number of sections. In [29], a model of a 
conveyor system consisting of 2 sections is presented. In [30], the principles of con-
structing a model of the main conveyor are considered.  

3 Formal problem statement 

If the transport system is a conveyor [31], which consists of tens or even hundreds of 
separate sections, and each section has a system for controlling the rate of material 
input from the input bunker and a belt speed control system, then using analytical 
models can be associated with significant difficulties. In this case, the application of 
methods using the neural network and multiple regression methods is of scientific and 
practical interest for solving the problem. The more the number of sections in the 
transport system, the stronger the interest of researchers in applying methods using 
the neural network and multiple regression methods. In this regard, in this work, we 
will pay attention to constructing a model of an assembly line using a neural network. 

4 Conveyor section model 

To describe the conveyor section (Fig. 1) let us use the classic dynamic distributed 
model of the conveyor in a dimensionless form (PiKh-model) [12]: 
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The state of the flow parameters of the conveyor line at a point in time t  at the point 
of the transport route with the coordinate S  is described by dimensionless variables: 
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where dS  is length of the conveyor line; dT  is the characteristic time of the passage 

of the material along the transport route;    St,0 ,    St,1  is the linear density of 

material distribution and material flow at a point in time t  at the point of the transport 
route with the coordinate  dSS ,0 ;  is the limit value of the linear density of the 

material for the analyzed conveyor section; )(S  is the initial distribution of material 

along the technological route; )(tb is the intensity of the flow of material into the 

bunker; )(t is the output flow of material from the bunker to the input of the con-

veyor section, limited by max ; )(ta is conveyor belt speed; )(t is the predicted 

output flow of the material from the conveyor section;  S  is delta function; )(SH is 

Heaviside function. 

 

Fig. 1. Schematic diagram of the conveyor line [2] 

Equation (1) with initial conditions (2) corresponds to the solution [12]: 
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The system of equations (8), (9) determines the behaviour of the flow parameters of 
the conveyor. The linear density of the material along the transport route )(0  ,  at 

an arbitrary point in time   can be determined if the intensity )(  of the rock enter-

ing the conveyor line entrance and the speed of the conveyor belt )(g  are known. 

The linear density of the material )1(0 ,  and the material flow )1(1 ,  at the output 

from the transport conveyor system 1  is determined by the expressions 
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Equation solution 

 01)( trG   (11) 

allows you to calculate the duration of the transition period 0  trtr , during 

which the material flow at the exit from the transport system is determined by the type 
of expression of the linear density of the material )(  at the initial time 0 . The 

linear density of the material )(0  ,  at an arbitrary point   at the time tr   is 

related to the linear density of the material )0(0 ,  at the input of the transport sys-

tem at the time    
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If we introduce a definition for the delay time    , then expression (13) can 

be represented as follows 
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The delay time   sets the period of time during which the element of material 

received at the entrance of the transport system at a time   passes the path along the 

transportation route equal to . When 1 , the expression 
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determines the relationship between the linear density of the material at the input and 
output. The value of the linear density at the output is equal to the value of the linear 
density at the input with a delay 1 .  

5 Conveyor section model using a neural network. 

The system of equations (8), (9) determines the linear density of the material along 
the transportation route and allows you to calculate the material flow at an arbitrary 
location of the transport path of a separate conveyor section. At a constant speed of 
movement of the conveyor belt, the expression determining the linear density of the 



material  m,0  and the material flow  m,1  at the time   at the output of the 

transportation route m   takes a simple form with a constant time value of the 

delay time mm      . If the speed of the belt is not constant in time, then to 

calculate the flow parameters of the conveyor transport system, it is necessary to de-
termine the value of the delay time m   for each m-th section from the equation 
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If the transport system consists of a large number M of individual sections, then it is 
required to solve the M-equations (8), (9). Additional restrictions are imposed due to 
the complexity of constructing an analytical system of equations that determines the 
flow of material from the place of production to the place of processing [32, Fig.1 and 
Fig.2]. Therefore, with a large number M of individual sections, it is advisable to 
build aggregated models of transport systems. One of the approaches to designing 
aggregated models of conveyor transport systems is the use of neural networks [32–
37]. To describe the functioning of a separate conveyor section of the transport sys-
tem, we use dimensionless variables (4) - (7) of the model (1), (2), which allow us to 
determine the state of the flow parameters of the individual conveyor section at a time 
 : )(m  is the intensity of the input flow of material; )(mg  is conveyor belt 

speed; m  is section transport route length. Let's move on to the construction of a 

neural network using the example of a branched transport system. As an option for 
analysis, we will use the structure of the transport conveyor shown in Fig. 2, which 
consists of 8 separate sections (M = 8). It should be noted that the state of the flow 
parameters at the output sections (section m = 7.8) is determined by the parameters of 
the 4 input sections (section m = 1,2,4,5). The transport system has nodes where the 
material flows converge (Fig. 5.a) and nodes where the material flows diverge (Fig. 
3). When considering, let's assume that there is no bunker control. The amount of 
material flow through the bunker remains unchanged. This situation is common, it 
represents the case when the parameters of the bunker are not controlled. In this case, 
the bunker at the entrance of a separate section does not contain material. For nodes in 
which the material flows converge, the intensity of the input material flow is deter-
mined through the parameters of the converging sections. For the case when the node 
contains two incoming flows and one outgoing (Fig. 3), the balance relation holds: 
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For nodes in which the material flows diverge, the intensity of the input material flow 
is also determined through the parameters of the converging sections. For the case 



when the node contains an incoming flow and two outgoing flows (Fig. 3), the bal-
ance ratio has the form: 

 

Fig. 2. Diagram of a branched conveyor transport route 

 

Fig. 3. Schemes for calculating the balance of flows in the nodes of the conveyor transport 
route: a) converging node; b) diverging node  
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Let us assume that the state of the transport system is determined at a moment in 
time , if at that moment in time the parameters of each individual conveyor section 
are determined: )(m , )(mg . When constructing an aggregated model of a con-

veyor transport system in the absence of control, we exclude from consideration the 
parameters )(m  of the internal nodes, which can be determined through the flow 

parameters of the mated sections. 
The architecture of the neural network to build an aggregated model (Fig. 4.) Let us 
introduce the notation for the parameters of the input layer of the neural network 



 )(23 mmx  , )(13 mm gx  , mmx 3 , m=1..M, (190) 

where m is the number of the conveyor section (Fig. 2). For the transport system 
model in Fig. 2, the input parameters (20) )(37 x , )(616 x , 

)(719 x , )(822 x  are excluded. Similarly, let us exclude the velocities for 

sections m=3,6 from the input layer. We introduce the notation for the parameters of 
the output layer 

 )( 7711  ,y  , )( 8812  ,y  . (20) 

The output parameters 1y  and 2y  correspond to the output material flow for m=7,8 

sections of the transport system Fig. 2. 

 

Fig. 4. Neural network architecture 

The topology of the hidden layer of the neural network for models of the conveyor 
section using part of the parameters (20) was considered in [34]. For forecasting, one 
hidden layer with six nodes was used. As an activation function, the Logistic function 
was selected:  
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Weights are initialized with random values. In [33], a 4-20-1 conveyor system model 
was considered to study the dependence of the output material flow on 4 input pa-
rameters, among which an important parameter is )(mg . The inner layer contains 20 

nodes. In [35], the topology of a neural network of the form ( 1m - 2m -14)= 



 1494   was considered, where 12 12  mm  is the number of hidden layers; 

41 m  is the number of nodes in the input layer. In this paper, let's focus on the to-

pology 9-3-2. This architecture corresponds to the transport system model of 4 sec-
tions with parameters (20) )(23 mmx  , )(13 mm gx   and one node whose 

value is one. The hidden layer contains 3 nodes. The output layer contains 2 nodes 
(21). The activation function has the form (22). The length of the conveyor is differ-
ent. 

6 Preparation of test data 

As noted above, for existing transport systems it is almost impossible to obtain com-
plete experimental data for training a neural network for transient modes. For training 
of the neural network, test data is required that contain a wide range of values. How-
ever, the functioning of the transport system in such a range of flow parameters is 
associated with high energy costs. Additionally, the lengths of the sections of the 
existing transport system are defined and cannot be changed. In this regard, let's use 
the PiKh – model (1), (2) [12] to prepare the test data, which allows us to construct an 
exact solution that determines the state of the flow parameters of the transport system. 
Let us believe that the intensity of the material flow )(m  to the input of the m-th 

non-node section of the conveyor and the belt speed )(tam  m-th section is known: 
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at the initial linear density along the route of the conveyor section 
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To go to dimensionless coordinates, we choose the characteristic size dS , the charac-

teristic process time dT  for the transport system 

 6SSd  , 6TTd  . (28) 



The choice of characteristic quantities is arbitrary and is used to select the scale of the 
scale for measuring system parameters for conducting a numerical experiment. We 
assume that the 6th section will be one of the most loaded elements of the system, or 
at least for a functioning transport system this section will be in operation for maxi-
mum time. To simplify the dependencies )(m , )(tam , )(tm , used to form test 

data, we assume  

 da TT  , dTT  , dSS  . (29) 

Let us also introduce the characteristic flow of material in the network 03 kh . The 

value of the characteristic flow is equal to the sum of the average values m 0  of the 

non-nodal sections. It should be noted that the choice of characteristic values is arbi-
trary and also determines the scale of the variables m 0  of the problem under con-

sideration. Taking into account (30), should write 
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Since the choice dT  is arbitrary, the parameter dT  is defined in such a way that 

equality 
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then dimensionless coefficients can be written as 
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For training the neural network, test data were used [38]. Test data was generated on 
the foundation of the model (1) - (7) [12] in accordance with the scheme of the trans-
port system of Fig. 3 and the architecture of the neural network shown in Fig. 4. Test 
data is based on an analytical model (PiKh-model). The parameters of the analytical 
model correspond to conditions (23)–(37).  



7 Analysis of the results 

Fig.5 shows the output flow of section 8 of the transport system (Fig. 2, Fig. 4) for the 
analytical model and the neural network model. The calculation of the parameters of 
the output flow for the neural network model is performed for the number of epochs 

equal to 300,000 and the learning coefficient 510  
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where the updated weight value 1,, nkjW  (for an epoch 1n ) is calculated on the 

basis of its old value and the error ),( mm yzEE  , determined by the mN  parameters 

of the output layer between the test data mz  and the values my  of the neural network 

model (Fig. 4). To analyze the process of training a neural network, data from a test 
run comes in a strictly specified order. This allows for multiple repetitions of training 

 

Fig. 5. The value of the output flow of section 8, calculated using the analytical model (8, out-
put) and the neural network model (8, outputA) 

 

Fig. 6. The magnitude of the MSE error depending on the number of training epochs 

with various parameters of the network architecture and compares the effect of chang-
ing parameters. The value of MSE (Mean squared error) depending on the number of 
training epoch is shown in Fig. 6. For training with 375000 epochs and a test sample 



of 9000 lines, the MSE is 0.445 [38]. The learning results show that the predicted 
values of the output flow of section 8 obtained using the neural model are different 
from the values of the flow parameters of the test sample (analytical model). This 
result is explained by a rather large MSE value. Further comparative qualitative  

 

Fig. 7. The value of the output stream of section 3 calculated using the analytical model (3, 
output) and the output flow of section 8 calculated using the neural network model (8, outputA) 

 

Fig. 8. The value of the output flow of section 8 with an offset by the delay 15.168   

analysis of the output streams of material from two different sections gave a rather 
interesting result. The value of the parameter of the output flow of section 8 (neural 
model) qualitatively repeats the values of the parameter of the output flow of section 
3 (neural network model). Repetition is carried out with some delay (Fig. 7). The 
delay value is the value 15.168  ( Fig.7) [38]. This value can also be calculated 

using the test data table [38]. On the other hand, using test data, let's calculate the 
average delay for section 6 and section 8. Material that leaves section 3 should go 
through section 6 and section 8 until it reaches the output of section 8 of the transport 
system. Thus, it should be assumed that the delay between the value of the material 
flow in section 6 and in section 8 is 8668   . Test data allow us to deter-

mine the average value of the delay for sections 6 and 8: 8754.06  , 

4287.08  , 3041.168  , which is pretty close to the value synthesized by 



the neural model ( 15.168  ).The offset of the output flow of section 8 is shown in 

Fig. 8.  
The developed model of a transport system using the neural network opens up new 

prospects for the design of control systems for a multi-section conveyor. Also, one of 
the differences between this work and works [21–25] is that a new method of data 
preparation for training a neural network is proposed. This allows you to significantly 
expand the field of study of the behaviour of the parameters of the transport system 
for various established operating modes of individual sections. A separate area of 
further research is the definition of similarity criteria for transport systems. Such an 
approach will make it possible to determine the basic models for various operating 
modes of the transport conveyor and to study in detail the characteristics of the flow 
of the material for individual sections. 

8 Conclusion 

A model of a conveyor transport system using a neural network is one of the tools for 
research a transport system with a large number of separate sections. The advent of 
the analytical PiKh–model [12] made it possible to generate test data that are neces-
sary for training a neural network. The lack of a test data set is one of the problems 
that impede the process of constructing neural models. In many cases, the formation 
of a set of test data in the required range of parameter changes is an insurmountable 
obstacle. In this regard, an important result of this work is the development of a 
method for generating a set of test data for training a neural network that simulates 
conveyor-type transport systems. A distinctive feature of the modelling of transport 
systems is that they are complex dynamic distributed systems in which the signal 
propagates with a delay. And this article presents the first results of constructing a 
neural model on the foundation of an analytical model. Using the simple architecture 
of a neural network (9-3-2) as an example, a qualitative relationship between the out-
put flows of the material of different sections is shown. The qualitative relationship 
between the output flow parameters of section 3 and section 8 is shown. A quantita-
tive assessment of the estimated time of movement of the material through the sec-
tions of the transport system is given. 
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