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Abstract. This article presents the results of a study of the Elman neural net-
work to identify defects (delamination) in composite materials and estimate 
their area. The registration zone is a square matrix consisting of 100 elements. 
For training, we used images with different defect spot area, moving along the 
matrix and additively mixed with Gaussian noise of various intensity. The net-
work structure optimal by the criterion of testing error/training time is deter-
mined. Testing showed that when the defect spot area changes by more than 8 
times and with a noise level of 27%, the test error reaches 6%. This error is sig-
nificantly decreased when narrowing the range of the defect area changing and 
reducing the noise intensity. A block diagram of the corresponding intelligent 
system is proposed. 
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1 Introduction 

At present in a number of industries composite materials are widely used due to their 
high mechanical and thermodynamic properties at low density [1]. Most of them are 
laminated materials, so the most common defect in them is delamination. To identify 
and evaluate parameters of such defects in composites, ultrasound diagnostics of 
products are most often used. With two-sided access it is reasonable to use a shadow 
testing method with the radiating and sensor elements are located on opposite sides, 
for example, the product wall. Delamination of the material is a barrier in the path of 
ultrasound. 

A composite material is heterogeneous in structure. The spatial arrangement of re-
inforcing elements, such as fiber boundless, is often not ideal. Furthermore, in the 
balk of the material and on its surface, especially at phase boundaries, there are accu-
mulations of pores and various kinds of microdefects. Cracking of the composite ma-
trix and fibers breaks are observed. The concentration of microdefects is especially 
high at the boundaries of delamination, i.e. in places where the material begins to 
disintegrate. All these structural imperfections distort the defect image fixed by the 
sensor element. Therefore, to identify the defect and estimate the true area of the de-
lamination, it is necessary to process its noisy image. 



The perspective of using neural networks for these purposes is based on the possi-
bility of parallelizing the processing of information and their ability to learn, i.e. make 
generalizations. This makes it possible to identify images that have not been encoun-
tered in the learning process. In the problem of classification of defects images con-
sidered by us, the processing of information by a neural network in a number of key 
positions is close to the methods of non-parametric statistical training. 

Recurrent neural network differs from the classical network of feed-forward by the 
presence of feedback loops from hidden or output neurons. Their presence has a direct 
impact on the ability of such networks to learn [2]. The Elman network contains re-
current links of hidden neurons with a layer of context units consisting of unit-delay 
elements. These elements save the outputs of hidden neurons for one-time step and 
then transmit them to the inputs of the neurons. This leads to the non-linear dynamic 
behavior of the network and allows implement a learning process that develops over 
time. Promising is the integration of a neural network with other information blocks 
into a single intellectual decision-making system [3]. 

2 Problem statement 

The article aims to create an intelligent system with a core in the form of an Elman 
neural network to identify and estimate the area of distorted defect images moving 
within the control zone. In the process of solving this problem, we want to study the 
ability of recurrent neural networks to identify dynamic noisy images of various sizes 
defects in the process of scanning by the measuring transducer the product surface.  

3 Literature review  

Over the years, neural network image processing methods have been successfully 
used in the field of non-destructive testing, as well as in a number of other engineer-
ing fields. 

In the article [4], the processes of teaching and testing of a back-propagation neural 
network to identify distorted defect signals have been analyzed. Using numerical 
simulation, including a network clustering mechanism, the authors found that cluster-
ing increases the probability of signal recognition. 

The article [5] presents a deep-learning mechanism for classifying computer-
generated images and photographic images. The proposed method accounts for a 
convolutional layer capable of automatically learning a correlation between neighbor-
ing pixels. The layer is designed to subdue the image’s content and robustly learn the 
sensor pattern noise features as well as the statistical properties of images. 

The authors of [6] analyze new trends in the digitization of complex engineering 
drawings. It includes symbol detection and symbol classification. The article [7] pre-
sents a symbol recognition method which applied an interactive learning strategy 
based on the recurrent training of a Hopfield neural network. This method was de-
signed to find the most common symbols in the drawing, which were characterized by 
having a prototype pattern. The method recursively learns the features of the samples 



to the detection and classification accuracy. However, the method can only identify 
symbols that are formed by a “prototype pattern”, which means that irregular shapes 
cannot be addressed through this framework. 

Elman network [8, 9] has been successfully applied in many fields, regarding pre-
diction, modeling, pattern recognition, and control. In [10] Elman network is trained 
to predict the future value of the residual time series. Finally, the network is used to 
capture the relationship among the predicted value of the original time series and 
residual time series. 

The standard back-propagation algorithm used in Elman neural network is called 
Elman’s back-propagation algorithm. To increase the convergence, speed a new 
learning rate scheme is proposed [11]. 

Multilayer perceptron network (MLP) and Elman neural network were compared 
in four different time series prediction tasks [12]. Time series include load in an elec-
tric network series, which has a low-frequency trend, fluctuations in a far-infrared 
laser series, numerically generated series, and behavior of sunspots series. The time 
series is said to be stationary. MATLAB neural network toolbox training functions 
were used for training MLP and Elman network. Results show that the efficiency of 
the learning algorithm is a more important factor than the network model used. Elman 
network models load in an electric network series better than MLP. This network 
predicts the slope of the trend of the testing data more accurately than the MLP net-
work. In other prediction tasks, it performs similarly to the MLP network. 

One of the major problems facing researchers in the recurrent networks is the se-
lection of the hidden neuron’s numbers in neural network layers [13]. 

Jinchuan and Xinzhe [14] investigated a formula: LNNN pinh  )( , where  

L  is the number of hidden layers, inN  is the number of input neurons and pN  is the 

number of input images. 
Kallan R. [15] proposed to calculate the number of neurons in the hidden layer ac-

cording to the formula: 12  iKNh , where K  is the number of network in-

puts, ...3,2,1i . 

Generalization performance varies over time as the network adapts during training. 
The necessary numbers of hidden neurons approximated in the hidden layer using a 
multilayer perceptron were found by Trenn [16]. The key points are simplicity, scal-

ability, and adaptability. The number of hidden neurons is 
2

)1( 0 
n

nNh , where n  

is the number of inputs and 0n  is the number of outputs. 

Shibata and Ikeda [17] investigated the effect of learning stability and hidden neu-
rons in neural networks. The simulation results show that the hidden output connec-
tion weight becomes small as a number of hidden neurons hN  becomes large. The 

formula of hidden nodes is 0NNN ih  , where iN  is the number of input neurons 

and 0N  is the number of output neurons. A tradeoff is formed that if the number of 

hidden neurons becomes too large, the output of neurons becomes unstable, and if the 



number of hidden neurons becomes too small the hidden neuron’s output becomes 
unstable again. 

Hunter et al. [18] developed a method in proper neural network architectures. The 
three networks: MLP, bridged MLP and fully connected cascades network are used. 
The implemented formula: as follows, 1 NNh  for the MLP network, 

12  NN h  for bridged MLP network, were N is the number of input neurons. 

The hidden layer nodes number was determined by using the empirical formula 
[19] 12  ih NN , where hN  is the maximum number of nodes in the hidden layer 

and iN  is the number of inputs. 

In accordance with [20], the optimal number of hidden nodes is found out by trial – 
and – error approach. 

4 Neural network design method 

For preliminary processing of information received from the sensor element of the 
ultrasonic transducer, we used the Elman network, which is an example of a feedback 
network. The feedback has a profound impact on the learning capacity and the chal-
lenge in the design of a neural network is the fixation of hidden neurons with minimal 
error. The accuracy of training is determined by the parameters: neural network archi-
tecture, number of hidden neurons in hidden layers, activation function, inputs num-
ber, and weights updating procedure. 

In our case, the control zone of the ultrasonic transducer is displayed in the form of 
a square matrix of 100100  elements. The Elman network, which performs image 
processing, has 100  inputs and 100  outputs. In the process of learning the network, 
we used 8967 images. The results of calculations of the number of neurons in the 
hidden layer are shown in Table 1. 

Table 1. The number of neurons in the hidden layer of neural networks 

Source number Formula for calculating 
Number of neurons in 

the hidden layer 

[14] LNNN pinh  )( , for 1L  195 

[15] 12  iKNh , for 1i  201 

[16] 
2

)1( 0 
n

nNh  150 

[17] 0NNN ih   100 

[18] 
1 NNh  

12  NN h  
101 
201 

[19] 12  ih NN  201 

 



The Elman architecture employs a context layer which makes a copy of the hidden 
layer outputs in the previous time step. The dynamics of the change of hidden state 
neuron activations in Elman style recurrent networks [13] are given by 
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where ky  and jx  represent the output of the context state neuron and input neuron, 

respectively; ik  and ij  represent their corresponding weights; ][f  is the sigmoid 

transfer function (1).  
Network training was conducted in sequential mode. This mode requires less inter-

nal memory for each synaptic link and is preferable for real-time processes. The ini-
tialization procedure was carried out without preliminary using the priory informa-
tion. Herewith, the initial network parameters were set using a generator of uniformly 
distributed random numbers. 

The number of examples for training the network should not be too large, as this 
can lead to overtraining of the network. In this case, the learning process can end only 
memorizing learning data. Overtraining network loses the ability to generalize. In 
accordance with Widrow’s rule of thumb, the size of the training set necessary for a 

good generalization should be of the order of 









0
W

ON , where W  is the total 

number of free parameters, i.e. synaptic weights and thresholds, 0  is the permissible 

classification error. Let inn  be the number of input nodes of the network, and hn  be 

the number of neurons in the hidden layer. If the product hin nn   corresponds to the 

total number of free parameters W  network [3], then N  must have the order 
0

hin nn 
. 

If we take 100inn , 200hn  and 02.00  , then 610N . We used 8967 clean 

and noisy images for training, but each of them is repeated 100 times within the same 
epoch. Thus, the actually used volume of the training set is 896700, which is close 
enough to N . 

Hidden neurons of the Elman network, learned by the method of back propagation, 
play the role of feature detectors. Therefore, it is advisable to use this network as a 
replicator or identity map. At the same time, the input and output layers of our net-
work have the same size 100 outin nn  neurons. The network is fully connected. 

A sigmoidal logistic function is used as the transfer function of neurons of the hid-
den layer. One of the important advantages for us of this function is the high enough 
speed of calculating the derivative. The network training time largely depends on this. 
In the process of network learning, we used the conjugate – gradient method. This 
was due to the need to increase the sufficiently low rate of convergence of the quick-
est descent method and avoid computational difficulties caused by operations with the 
Hessian matrix in Newton’s method. The computational complexity of the quasi-



Newton methods is estimated as  2WO . In contrast, the computational complexity of 

the conjugate – gradient method is estimated as  WO . Thus, in our case when 
4102 W , conjugate – gradient method is more preferable. 

5 Flaw detection process simulation 

The image of the defect (delamination) has the form of a continuous black spot, which 
is formed by the n matrix cells with a color level 5L  adjacent to each other. This 
spot is surrounded by a layer of gray cells with 4L , the next layer of cells corre-
sponds to 3L  and so on to 1L  (white color). White color characterizes the areas 
of the solid defect-free material that are completely transparent for an ultrasonic sig-
nal. 

The defect image (pattern) No.1 is a black square with the size 22  cells having 
5L . The spot area of the defect is 41 S . This is the target image for the first class 

of images. Moving this image on a matrix of 1010  cells is carried out line by line. 
Checkpoint of this pattern, like all subsequent ones, is its lower left cell. In the proc-
ess of moving, the coordinates of this cell for the first row 1j change from 1i  to 

9i , then the same is repeated for 2j  and so on to 9j . Herewith the black 

spot is not distorted at the edges of the matrix. The number of images used for net-
work training in this case is 811 cN . Here, the index c  means that the displayed 

images are clean, i.e. not containing noise. 
In patterns No.2 and No.3, the left and right upper cells of the black square (No.1) 

are replaced by gray cells with 4L . The number of training images does not change 
8132  cc NN . 

Image No.4 is a black square with the size 33  cells having 5L . This is the tar-
get image for the second class of images. During the scanning process, the checkpoint 
of this square was moved along the coordinates 8...1i , 8...1j . The number of 

patterns used for network training in this case is 644 cN . Patterns No.5, 6 and 7 are 

formed similarly to No.2 and 3. For patterns No. 8 and 9 in the upper layer of the 
black square, two cells on the left and two on the right are replaced by grey ones. 

Image No.10 is a black square with the size 44  cells having 5L . This is the 
target image for the third class of images. The scanning process is similar to that de-
scribed above. The number of training images is 4910 cN . Patterns No.11, 12 and 

13 differ from the target pattern No.10 by the alternate replacement of each of the 
black corner cells with the exception of the checkpoint on the gray. Patterns No.14 
and 15 are formed similarly to patterns No.8 and 9 only for the target image No.10. 

Image No.16 is a black square of 55  cells with 5L . This is the target image 
for the fifth class of images. The scan coordinates for the checkpoint are 6...1i , 

6...1j . The number of training images is 3616 cN . Patterns No.17, 18 and 19 are 

formed similarly to patterns No.11, 12 and 13. For images No. 20, 21, 22, 23, 24 and 



25 a pair of cells of the outer black layer, shifting along the periphery of the spot, is 
replaced by gray ones. 

The distortion coefficient of the target image is determined by the ratio of the total 
area of the cells with the changed color to the area of the corresponding black spot 
(defect image).

 
 

The defect images described above were noisy. The absolute noise level P  was set 
by us as follows: 
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where icb  is the elements of a clear image matrix and inb  is the elements of the noisy 

image matrix.  
Noise is additively mixed with a clean image. We used 90,70,50,30,10P   

levels (2). Considering that the full image contains cells with a gray color gradation 
from 1L  (white color) to 5L  (black color), the question arises about the distribu-
tion of the distortion magnitude 4,3,2,1L  by the number of distorted image 

elements. We assume that this distribution is Gaussian with a zero mean value and a 
standard deviation which is equal to 1. Then the probability density is 
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Take into account that 0L  corresponds to the absence of distortion of the im-
age element, we get the following:  

        4321  LfLfLfLfP . (4) 

The corresponding distribution of L  by the number of distorted image elements 
q  is shown in Table 2 (3), (4). 

Table 2. The number of distorted image elements 

q  

1L  1L  2L  2L  3L  3L  
 , % 

4 4 1 1 - - 10 
12 12 3 3 - - 17 
20 20 5 5 - - 22 
28 28 7 7 - - 27 
36 36 8 8 1 1 31 

The relative value of the noise intensity we calculated according to Table 2. 



Herewith 
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The value of the normalizing factor k was determined based on the following. If in all 
100 cells of the matrix the black color with 5L  (presence of a defect) is changed to 
white with 1L  (defect-free material), then 4 iL  and, in accordance with (5), 

4 . Herewith 
5

4

max


L


. Taking such a change in L  in the entire matrix as a 

100% error corresponding to 1 , we get 25.14/5 k . In the article, we used the 
following restrictions: if the total value of the image intensities and the noise in this 
cell of the matrix exceeds the maximum level 5max L , then 5L , if the summary 

value was below 1min L , then 1L  was kept. 

6 Defect image capture 

The outputs of the Elman neural network are connected to the inputs of a logical ma-
trix connected in turn to a combinational circuit, which has four outputs by the num-
ber of classes of identifiable images. The functional scheme of the intelligent system 
for defect identification is shown in Figure 1. 

 

Fig. 1. Intelligent system for defect identification 

To estimate the area of defect, we propose the following methodology: the matrix 
( 1010  elements) represents the control zone of an ultrasonic transducer operating in 
shadow mode and "sounding", for example, the product wall. The full image of this 
zone is captured by the sensor unit of the transducer. 

During physical scanning of the product surface by the transducer, a noisy image 
of a defect in the form of a fuzzy dark spot may appear in the lateral part of the ma-
trix. By a local displacement of the transducer, this spot must be moved to the central 
part of the matrix. The neural network allows you to significantly clear the image of 
the defect from the noise during its movement to the center of the matrix and make 
this image more distinct. 



In the center of the matrix, there are positioned defect images capture zones, as 
shown in Figure 2. These zones correspond to images No.1 ( 22  elements), No.4 
( 33  elements), No.10 ( 44  elements), and No.16 ( 55  elements), which are 
targeted for the respected classes. The logic matrix has 100 inputs, corresponding to 
the number of outputs of the neural network that perform the function of a replicator. 
These inputs are numbered in accordance with the pair jk , where j  denotes the row 

number and k  denotes the column number of the matrix, as shown in Figure 2. 

 

Fig. 2. Capture zones for defect images 

The Boolean function IF , implemented at the same output of the logic matrix, de-

scribes images of class I, to which images No. 1, 2, and 3 belong. 

  55544544I yyyyF  . (6) 

Herewith 1I F , if elements 44y  and 45y  have a level of 5L  (black color), which 

corresponds to a logic-1 level, and at least one of the elements 54y  or 55y  has the 

same level (6). 
The Boolean function IIF  describes images of class II, to which images No. 4, 5, 6, 

7, 8, and 9 belong. 

  466664655655544544II yyyyyyyyyF  . (7) 

Herewith 1II F , if all elements involved in conjunction have a level of 5L , and 

at least one of the corner elements of the target image (No.4), i.e. one of the disjunc-
tive members in brackets had the same level 5L  (7). 

The Boolean function IIIF  describes images of class III, to which images No.10, 

11, 12, 13, 14, and 15 belong. 

 77744776756766656457565554464544III yyyyyyyyyyyyyyyyF  . (8) 

Disjunctive terms of expression (8) correspond to the corner elements of the target 
image No. 10. 



The Boolean function IVF  describes images of class IV, to which images No. 16 – 

No. 25 belong. 

  .584847788887858474

777675686766656457565554464544IV

yyyyyyyyy

yyyyyyyyyyyyyyyF




 (9) 

When forming the IVI FF   functions, we made assumptions about the optional pres-

ence of all corner elements of the target images in the defect image capture zones. 
This is consistent with control practice. 

The analysis of expressions (6) – (9) shows that the patterns described by them are 

sequentially nested one into another, namely IF  is included in IIF , IIF  – in IIIF , IIIF  

– in IVF . Thus, when fixing an image of a senior class, for example No. 16, logical 

unit will be present not only at the output IVF  of the logical matrix, but also at outputs 

IIIF , IIF , and IF . The combinational circuit shown in Figure 3 helps to eliminate this 

effect. The circuit uses inverters and four–input conjunctors and provides separate 
fixation of each class of image. Herewith, the appearance of a logical unit at one of 
the outputs IVI DD   of the combinational circuit indicates the capture of the defect 

image of the corresponding class. 

 

Fig. 3. The combinational circuit 

The proposed system of the defect area estimation allows monitoring both in the 
manual scanning mode with indication of the defect magnitude by sound or light  
signals and automating the testing process. In the latter case, when scanning the prod-
uct along parallel paths with a given step, it is easy to automatically register the area.  

 



7 Experiments and results 

To simulate the operation of a neural network, we developed the program functioning 
in the Matlab environment. Network training was carried out sequentially in three 
stages. 

1. First, a clean image No. 1 located in the lower-left corner of the matrix is fed to the 
network input. This image then moves sequentially along the rows of the matrix 
within 9...1i , 9...1j . Here i and j are the horizontal and vertical coordinates 

of the matrix, respectively. The specified scan coordinates describe the movement 
of the lower-left cell of the image. 

2. At the second stage, a clean image No.1 ( 0 ) was again fed to the network input 

and it was moved along the matrix as described in paragraph 1. Then, image No. 1, 
additively mixed with noise corresponding to %10 , was fed to the network in-

put, and this noisy image was moved along the matrix. We repeated this process 
sequentially for all remaining noise levels, up to %31 . It should be noted that 

this scanning process was repeated 100 times for each value for the noise intensity. 
3. After completing the second stage of training, in order to verify the absence of re-

training effect, we repeated paragraph 1. 

The network training process described above we fulfilled with each pattern from 
the training set. Table 3 shows the data on the image classes used for training.  

Table 3. Image classes 

Class 
num-
ber 

Target image 
and its area S 

Distorted images 

The area of  
the undis-
torted part 
of the im-

age 

Distor-
tion 

factor 
,%  

Number of 
training 
images 

I 
Image No. 1, 

S=4 
No. 2, 3 3 25.0 170100 

No. 5, 6, 7 8 11.1 
II 

Image No. 4, 
S=9 No. 8, 9 7 22.2 

268800 

No. 11, 12, 13 15 6.25 
III 

Image No. 10, 
S=16 No. 14, 15 14 12.5 

205800 

No. 17, 18, 19 24 4.0 
IV 

Image No. 16, 
S=25 No. 20, 21, 22, 23, 

24, 25 
23 8.0 

252000 

Figure 4 shows a graph of the dependence of the training time, relative to one pat-
tern   on the area of the black spot S, reflecting the area of the defect. But at the 
same time,   characterized training on clean images, without noise. Training on 
noisy images is carried out after the training on clean images. And here the training 
time relative to one pattern   is significantly less. So, for images of the first type, 



045.01 

 . For images of the second, third and fourth types, we have: 027.02  , 

032.03  , and 021.04  . 

 

Fig. 4. Dependence of the training time for one pattern α on the area of the black spot S 

Thus, we can state that the network training time at the second stage, assigned to one 
noisy image, is ten times less than the corresponding time spent at the first stage when 
training the network at the clean image. 

The phenomenon of retraining the network was not observed. 
Network testing was carried out by moving images from the set described above 

(No. 1 – No. 25) with noise levels from Table 2 along with the matrix. Testing results 
showed the following. 

If testing was carried out after a full cycle of network training on patterns of one 
class using then a noisy image with %31  from the same class, then the test error 

did not exceed 3%. This result is valid for all four classes. 
When combining images of classes I and II, i.e. with the expansion of the defect 

spot area from 3S  to 9S , the testing error on noise patterns ( %31 ) in-

creased to 8%. When combining all the images of I-IV classes in a single training set, 
the maximum testing error increased to 12%. And in the first and second cases, the 
parameter β increased significantly, its value became comparable with α. The reduc-
tion of the noise level during testing significantly decreases this error. So, with a re-
duction in   from 31 to 27%, the test error decreases by 40-50%, from 31 to 22%  
by 60-70% and so on. 

The above results were obtained by using the Elman neural network as a replicator 
with 100 outin nn , 200hn  and the number of layers 1l . An increase in the 

number of neurons in the hidden layer to 400 on average by 25% reduces the testing 
error, however, the network training time increased by 30%. A network with two 
hidden layers, while reducing the test error by 20%, trained 4 times longer than a 
network with one hidden layer. Training a network with three hidden layers took 
14 times more time than the single-layer network we used. 



8 Conclusion 

We investigated the Elman neural network as an identity map (replicator) for the task 
of identifying and estimating the area of a delamination in composite materials in the 
process of ultrasonic testing. Twenty-five images were used as training patterns. They 
were divided into four classes, according to the size of their defect area. Deterministic 
distortions caused by the nature of the testing object were introduced into the images 
of each class. Each image was moved step by step on a square matrix consisting of 
100 cells, which represents the registration area of the ultrasound transducer. Images 
were additively mixed with white Gaussian noise, the intensity of which varied from 
10 to 31%. At each scan point, the noise was superimposed 100 times. 

The process of training the network began with presenting it with the clean (with-
out any noise) patterns. In the process of training the network, it was found that the 
training time with clean patterns, assigned to one pattern fixed in a given position 
inside the matrix, increases with increasing the pattern area. Network training using 
noisy patterns was carried out after training with clean patterns. In this case, the train-
ing time, defined in the same way, turned out to be ten times shorter. 

Network testing has provided the following. If testing was carried out after a full 
cycle of network training on patterns of one class using a test pattern with a noise 
level of 31%, then the test error did not exceed 3% for any class. When combining 
images of classes I and II, i.e. with the expansion of the defect spot area from 3S  
to 9S , the testing error increased to 8%. When combining the images of all four 
classes in a single training set, i.e. with the expansion of the defect spot area from 

3S  to 25S , the maximum testing error increased to 12%. The reduction of the 
noise level during testing significantly decreases this error. So, with a reduction in   
from 31 to 27%, the test error decreases by 40-50%, from 31 to 22%  by 60-70% and 
so on. 

These results were obtained by modeling the Elman’s neural network with the 
number of input and output neurons 100 outin nn  and with the number of neurons 

in one hidden layer 200hn . This network structure turned out to be optimal by the 

criterion of error testing/training time. 
To estimate the delamination area, four nested defect spot capture zones were im-

plemented in the central part of the matrix. For this purpose, a cascade-connected 
logical matrix and the combinational circuit having four outputs by the number of 
classes of identifiable images are connected to the output of the neural network.  

Estimation of the defect area serves as the basic for determining the residual 
strength of a given unit of a product and making a decision on the possibility of its 
further operation. 
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