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Abstract. This article focuses on the aspects of the decision support system for 
the machine learning methods selection in big data mining development. The 
paper includes the results of the analysis of the problem of intellectual process-
ing and analysis of big data. It describes proposal ways of using metadata as a 
basis for the formation of an analytical rating for evaluating machine learning 
methods. The paper presents the results of designing and using a decision sup-
port system for evaluating machine learning methods for solving data mining 
problems. The developed decision support system allows us to reduce the 
analysis time of suitable methods for solving machine learning problems by a 
data science analyst, taking into account the specifics of the input data arrays, 
their volumes, structure and other metadata.  
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1 Introduction 

Currently, there is a steady trend of regular growth in the volume of data collected 
in the various business organizations f production, operational and research activities 
processes [1]. The sources of the such big data volumes (Big Data) appearance are 
often customers various behavioral factors, the frequency and size of payments for the 
services or goods, parameters and characteristics of installed technical equipment, 
medical indicators for diagnosing human health and others [2-4].  

Due to the statistical visibility and representativeness, the value of such data lies in 
the possibility of using it to search for hidden and unobvious relationships between 
individual factors (attributes) and target actions of clients to adjust and formulate 
business development strategies [5].  

In fact, the implementation of such tasks becomes possible based on the use of data 
mining methods in order to extract new knowledge by forming and proving hypothe-



ses about significant relationships between the individual attributes of data samples 
[6-8]. 

Thus, the constant companies need to ensure a sufficient level of quality in the 
provision of goods and services, due to the high level of competition in the organiza-
tion’s business targets requires usage of the data science, data mining methods and 
technologies in key business processes [9]. For this purpose, machine learning (ML) 
methods can be used to build various regression and predictive models for the busi-
ness objectives. 

2 Description of Problem 

The concepts which are laid down in this approach allow data mining specialists to 
conduct a comprehensive phased Big Data analysis and processing, sequentially im-
plementing the necessary processes, including distributed structuring of heterogene-
ous data, their consolidation, aggregation, cleaning and pre-processing, eliminating 
anomalies, omissions, errors side values [10-12].  

However, all these processes are time-consuming for analysts on the experimental 
selection and mathematical model selection with the corresponding hyperparameters 
and quality assessment metrics. One of the key factors to provide a successful and 
prompt solution of a target problem by an analyst is his experience in building ML 
models, business problems vision depth and the software tools, technologies and li-
braries knowledge [13,14].  

This can lead to subjectivity of the analysis results and affect the accuracy and 
generalizing ability of the formed ML models. At the same time, the computational 
costs of the computer equipment used in the data analysis process are also significant, 
which affects the total cost of developing ML models [15] 

An additional complication is the correlation, evaluation, and required ML method 
or their combination selection processes for the effective solution of the data mining 
posed problem (with the achievement of the model created by a sufficient accuracy, 
adequacy level and generalizing ability) without lengthy computational experiments.  

This problem becomes especially relevant in cases where the Big Data sample size 
exceeds the permissible amount of disk space in the used data warehouses [16-19]. If 
there are limitations in the throughput capacity Big Data transmission in serial or 
parallel mode in a local or global network, then effective analysis of such data be-
comes difficult [20-24]. A possible solution is to compress, transform or structure the 
data with the extraction of quantitative and qualitative meta-information from them 
[25-28]. 

In this regard, the urgent and relevant task is to automate the processes of selecting 
suitable ML methods based on the input Big Data volumes analysis, their various 
statistical and probabilistic characteristics, taking into account the subject area specif-
ics and the ML problem type. This can be done by developing a decision support 
system (DSS) with a number of intellectual functions for the formation and account-
ing of meta-information about data attributes, their structure, level of generalization 
and significance. 



Currently, there are various analytical systems on the market for comparing and 
comparing various ML methods for solving classification and regression problems on 
Big Data, however, their functionality is limited and does not allow to fully take into 
account the nature of the input data, their volume and subject area of analysis. DSS 
that can be adapted for such ML tasks are Wolfram Mathematica, EIDOS, Expert 
Choice and ViEA. But, there is no possibility of a flexible system configuration for 
the user’s needs, filling with new functionality and updating dependencies is not per-
formed regularly. This makes it impossible to use such solutions to obtain reliable and 
reliable data mining results [29]. The purpose of this article is to develop a DSS pro-
ject for choosing ML methods to solve data mining tasks on user-specified data sets 
based on their structure and volume to reduce time spent on detailed experimental 
calculations. 

 

3 Decision support system development 

3.1 System concept 

The functioning of the proposed system is carried out in several stages: 

 data import; 
 formation of meta-information from the downloaded data; 
 Data Mining tasks type and methods selection; 
 specification of criteria and metrics for ML model quality assessing; 
 obtained ML models creation and evaluation; 
 ML models obtained results visualization and the issuance of a methods ranked list 

which provides the highest quality solution to the problem.  

The process of DSS in general is shown in fig. 1. 

 

Fig. 1. General system operation 

DSS supports the ability to import various training datasets and test ML models in 
*.csv, *.xls and *.json formats. If necessary, the processing of structured relational 
data supports the integration of SQL database management systems MySQL and 
Postgresql, as well as NoSQL MongoDB. Data loading is performed in multi-threaded 



mode with blocks from 2 to 128 MB in each, which allows us to distribute computing 
processes and scale the system in the future. 

After importing data, the system gives a message about the success of the opera-
tions performed and provides a brief meta-information, which includes: the total 
number of records in the loaded data set, signs number, signs and records number 
ratio, data amount. The user can set the block size for further analysis depending on 
the displayed data. 

Since the size of the analyzed data volume in data mining tasks can reach large 
values, this can reduce the efficiency of computing operations in the analysis process. 
Therefore, the user is invited to choose one of the options: make a selection of a given 
size from the imported set from 0 to 100% or select a value randomly with the possi-
bility of stratified sampling by a specific column to maintain proportions. This allows 
us to reduce the amount of RAM used to store data and speed up the computing anal-
ysis operations process. To ensure the analysis process flexibility the user has the 
opportunity to select the necessary features by disabling or removing unnecessary 
from the system, as well as specify one or more target output variables. 

For each column from the dataset table, the selection indicates whether it is nu-
meric or categorical. For columns with numerical values, the following statistical 
information is displayed: range of values, standard distribution, average value, me-
dian, asymmetry coefficient, kurtosis coefficient, chi-square test of the normal distri-
bution test, Pearson correlation with the target variable (if one was specified) and its 
confidence. For columns with categorical values, the following is displayed: number 
of categories, relative mode frequency and Gini coefficient. 

The system allows us to take into account the specifics of the data mining task be-
ing solved and set the priority of assessing the ML model quality based on the opera-
tion speed or the accuracy obtained. This is one of the target criteria for forming a 
ranked methods list. DSS implements support for 2 types of data mining tasks: classi-
fication and regression. Depending on the type of task, the user must specify the nec-
essary metric for evaluating ML models.  

For classification tasks, the following metrics are supported: accuracy (share of 
correct answers), recall (share of found objects of a positive class), precision (share of 
truly positive from classified positive objects), F1 (harmonious average), AUC. For 
regression tasks, metrics are supported: mean squared error (MSE), and mean abso-
lute error (MAE). After the data import is completed, the analysis process is started in 
the background. The analysis consists in the phased creation of model instances with 
hyperparameter values in the ranges specified by the user (or in the default range 
specified for each ML method) and their assessment by the selected metrics. It is pos-
sible to view detailed logs of obtained metric estimates at individual iterations and 
epochs of training and testing ML models in *.txt format. 

After the system performs data analysis procedures, the results are displayed in the 
form of a summary report on the most suitable ML methods for the criteria selected 
by users, which automatically saves to the *.xls file and is shown at the system’s log 
screen. The structure of the general report has a tabular form and contains: the name 
of the method, the level of its adequacy for the selected data set and task (in relative 
units from 0 to 100), the approximate predicted RAM amount needed for training and 



testing ML method on the sample, and the predicted time spent on carrying out com-
puting processes. 

User can select the criteria for ordering methods in a window for displaying analy-
sis results. In particular, it is possible to sort the methods by individual metrics, speed, 
accuracy or ease of results interpretation (which depends on the data amount). 

For a simpler and more understandable the analysis results interpretation DSS sup-
ports visualization using a bar chart, where each column reflects the quality of an 
individual model in the rating form for a given metric. It is possible to save the con-
structed graphic visualizations in *.png format. 

Based on the developed concept of the system’s functioning, its design and soft-
ware implementation can be carried out next. 

3.2 DSS project implementation 

To display the relationship between users and the system, a diagram of use cases 
was compiled (fig. 2). The main unary scenarios of user interaction with the system 
are: selecting a data set, viewing data statistics, updating the task, viewing models 
rating. The server side provides support of optional data set selected part retrieval, 
imported data set statistics generation, computational processes for compiling the 
rating and its graphical visualization, saving results to a file. 

 

Fig. 2. DSS use cases diagram 



The system is divided into some components that perform various parts of the task. 
These components, as well as the data exchange between them, are shown in fig.3. In 
this diagram, the UserInterface component is responsible for user interaction with the 
system, providing controls, as well as reflecting the selected table, its statistics and the 
ranking list generated. The TableManager component is responsible for loading and 
storing tabular data, it receives the path and data loading mode from the interface, 
after which it provides the other components with a dataset table. 

The TableAnalyzer component is responsible for removing statistics from a table. 
After extracting statistical data and obtaining additional information from the user, the 
ModelRanker component determines which of the ML models are most likely to be 
suitable for this task. After that, the generated rating of models is displayed to the 
user, and is also saved in the file system by the RankingSaver component. 

 

Fig. 3. DSS component diagram  

To formalize the key functional processes that are carried out in the system and 
their relationship, a sequence diagram of actions has been drawn up, which reflects 
the basic call operations (fig. 4). The user through the interface sets the path to the 
data in the TableManager, which returns meta-information for the selected dataset 
table. After specifying the sampling mode and confirming the selected set, TableAna-
lyzer extracts statistical information, showing the result to the user. Next, user speci-
fies the necessary ML methods, hyperparameters, model quality assessment metrics 
and selects the target and input columns (stored in the Preferences object), based on 



which the required metadata is determined and computational operations are per-
formed to evaluate the method.  

ModelRanker object sequentially downloads the resulting ML models to generate a 
consolidated rating by storing a detailed calculation log in a file and displaying the 
output data in short form to the user. 

 

Fig. 4. DSS user sequence diagram 

To visualize the system software implementation structure, a class diagram was 
created, a fragment of which is shown in fig. 5. This diagram shows the structural 
relationships between the various classes in the DSS. The user interface object has 
one-way associations with the table manager object (which in turn is associated with 
the table analysis object), the report saving object and the rating creating object. An 
analyzing table object creates an object containing metadata and statistical data for 
each column, which is a necessary process for rating models. After the user enters all 
the necessary options for data analysis, UserInterface creates an object of the prefer-
ences class.  



 

Fig. 5. DSS main classes diagram fragment  

The functionality of this class is used as the basis for creating a rating. After creat-
ing a rating of models according to user-specified metrics, this object is used by the 
user interface to display and the ReportSaver class to save it to the file system. A 



special method has been created in the ModelRanker class to load the ML model used 
to compile the rating along a given path. This allows us to simplify the process of 
choosing a suitable model for ranking in the ranked list form by quickly changing the 
model estimation algorithm used, which will allow analysts to train and use the cre-
ated models in the future. 

After user receiving the rating it’s possible to estimate the approximate time of the 
ML model training process for each of the methods involved and the RAM amount. 
The approximate time of creating a model for non-iterative learning algorithms is 
estimated based on extrapolating the obtained model training duration on a given 
records number and attributes on an active workstation by the records number ratio 
and attributes with the data set used. The approximate model training time is calcu-
lated by multiplying the measured training time by the computational complexity with 
the substituted ratios. The training speed can largely depend on the user's workstation 
hardware therefore, it is not calculated accurately, the error can be up to 15-20%. The 
approximate spatial complexity is calculated in a similar way using the known mem-
ory usage and the table size and features ratio. 

In the creating DSS process were used several technologies such as: Python 3.7 
programming language, Pandas library for analyzing and manipulating data, library 
for working with ML sklearn models, XGBoost library, libraries for performing 
mathematical operations and scientific calculations NumPy and SciPy. PyCharm is 
used as an IDE. The matplotlib library was used to create the graph visualization in-
terface. 

The system user interface is implemented using block layout in the web application 
form. It includes 4 tabs with graphical components for managing data import proc-
esses (clicking on the corresponding button and selecting the desired data set in the 
dialog box), displaying data and statistical information in a tabular form, selecting and 
setting model parameters in text fields and drop-down lists and viewing the results of 
operations in the graphs and charts forms using Matplotlib and Chart.js libraries. 

4 Experiments and results analysis 

During the DSS creation several algorithm variants were considered for ranking 
the models, taking into account the possibilities of their training and the implementa-
tion complexity, due to the need in each sign of the dataset and metadata. Analysis of 
literary sources [15-19] let us to perform the following algorithm which based on the 
use of an artificial neural network (NN) multilayer perceptron: 

1. For each attribute, the values of its statistics, metadata, and task type are used as 
input for NN. The NN model provides values that reflect the relative ranking of ML 
models by metrics for each attribute. 

2. The generated ratings for each characteristic are taken into account by calculat-
ing the arithmetic average of all issued ratings. 

3. The obtained models relative ratings values by metrics are reduced to a range 
from 0 to 1 so that 0 are not suitable models (with a low metrics rating), and 1 is the 



most suitable. If a certain metric isn’t compatible with the task type, it will not be 
displayed to the user.  

This algorithm provides the possibility of combined accounting for the different 
task type, meta-information about data and statistical data for each attribute in the 
rating. If a single feature doesn’t affect the quality of the compared models, NN is 
able to produce values close to 0 for the rating of such a feature that will not introduce 
significant errors and will not affect the final analysis result. Since all operations in 
this algorithm can be differentiated, it is possible to train the used ML model by the 
stochastic gradient descent method. 

The model formation for ranking is based on the learning algorithm with a teacher. 
Metadata, task type, and attribute statistics taken from imported data sets are used as 
input for training.  

As the target variables, model ratings obtained by experimental models comparison 
using various metrics on data sets are used. Ratings are converted to a range from 0 to 
1 so that the value higher, the algorithm is better in evaluating relative to others. The 
loss function ensures the correspondence of the generated rating for each ML experi-
mental rating model. 

The developed DSS has been tested on several experimental model comparisons. 
The methods of linear regression, decision tree, random forest, support vector method 
(for classification and regression), xgboost, logistic regression, and naive Bayes clas-
sifier were evaluated.  

The comparable metrics used to assess the models quality were AUC, F1, precision 
and recall for classification and MSE with MAE for regression. When creating mod-
els, the values of their hyperparameters are set by default in accordance with the pre-
defined values by the library, except for random forest and xgboost algorithms, in 
which the number of trees was set to 64. 

For experimental comparison, a cross-validation method was used on the basis of 
dividing the sample into 10 equal parts, with a stratified breakdown for the classifica-
tion problem. 

In the study of the system operation the Diabetes dataset was used for the regres-
sion task. The data set has 442 records and 10 attributes with real values. Signs indi-
cate age, gender, weight to height, average blood pressure, and 6 blood counts. The 
target variable is the diabetes degree.  

At the stage of data cleaning, objects in which at least one of the attributes departed 
by more than 3 standard deviations for all values of this attribute were deleted from 
the dataset.  

After cleaning, 97.3% of the original objects remained. Due to the fact that during 
the experimental comparison some of the models used require input data normaliza-
tion, all features were normalized to the range from -1 to 1, and the target variable to 
the range from 0 to 1. 

After testing the models using the cross-validation method, regression model met-
rics (MSE, MAE) were obtained (Table 1). Results are sorted by MSE metric (best to 
worst). 



Table 1. Experimental model metrics 

Model Name MSE MAE 
Linear Regression 0.030 0.141 

Random Forest 0.033 0.149 
Support Vector Regressor 0.034 0.144 

XGBoost 0.034 0.149 
Decision Tree 0.062 0.193 

The experimentally obtained metrics were converted to the models ranking. A val-
ue 1 is the best result, 0 is the worst (Table 2). The results for experimental part were 
obtained using the developed software script in Anaconda and Jupiter notebook envi-
ronment in usual "step by step" mode. The results for DSS part were obtained by im-
porting dataset with default model’s hyperparameter setting. 

Further, using the collected statistics on the characteristics, metadata and a data set, 
the system generated a ML models rating for this task. As can be seen from the ob-
tained results, the order of the best models in the rating issued by the system ap-
proximately coincides with the experimental rating. 

Table 2. Experimental and analytical model ratings 

Experimental DSS Model Name 
MSE MAE MSE MAE 

Linear Regression 1.000 1.000 0.731 0.728 

Random Forest 0.897 0.856 0.653 0.731 
Support Vector Re-

gressor 
0.892 0.938 0.682 0.383 

XGBoost 0.880 0.842 0.657 0.580 
Decision Tree 0.000 0.000 0.368 0.368 

For ease of comparison, a diagram was presented showing the comparative rating 
of models obtained experimentally and generated by the developed DSS (fig. 6). 

 

Fig. 6. Comparison of the experimental and rated by the DSS 



Based on this rating, the system was able to determine the best model (according to 
experimental comparison), but with less confidence. It is also noticeable that the eval-
uation of the support vector mechanism and XGBoost was put in the wrong order. 
Evaluation of a bad model, decision trees, was put below others, but far from experi-
mental values. The reason for the decision tree low rating could be that in regression 
tasks the tree outputs only discrete values, which will increase the error of MSE and 
MAE.  

5 Conclusion 

Summarizing the comparisons of the estimated and experimental model ratings, we 
can say that DSS is capable of fairly accurate ML models estimation depending on the 
type of task, metadata, and data set statistical information, its level of accuracy reach-
es 70-75%. Errors sources in the ML model ratings are: a relatively small training set 
and the test data set similarity with the training one, which negatively affects the 
model’s generalizing ability to analyze data dependencies. 

Since the recommended ML methods ranked list issued by the DSS is not always 
accurate, in tasks with critical requirements for the model’s reliability, completeness 
and accuracy it is advisable to conduct additional exploratory analysis on the selected 
fragment of the data set according to the first 3 methods issued by the system.  

Due to the fact that the data set table’s size may be larger than free memory, it was 
important to make possible records selection without loading the file completely into 
memory. The implementation of this functionality depends on which sampling mode 
is selected and in what format the table is saved. With stratified random sampling, 
memory usage is higher than in other modes, since it is necessary to calculate the 
different values number in the selected column. Therefore, there may be cases when 
some data are missing in the table; therefore, this problem must be taken into account 
when collecting statistics from the table. 

When compiling statistics for some data sets, the missing fragments in the samples 
were ignored, which also introduced some errors in the data analysis process. The 
ability to fill in the missing data using various algorithms is one of the options for the 
future system development and upgrading. 

Reference 

1. Rudnichenko, N., Vychuzhanin, V., Shybaieva, N., Shybaiev, D., Otradskaya, Т., Petrov, 
I.: The use of machine learning methods to automate the classification of text data arrays 
large amounts. Information management systems and technologies. Problems and solu-
tions. Ecology, Odessa, pp.31-46 (2019). 

2. Sandryhaila, A., Moura, J.M.: Big data analysis with signal processing on 
graphs:representation and processing of massive data sets with irregular structure. IEEE-
Signal Process. vol. 31(5), pp. 80–90 (2014). 

3. Dietrich, D., Heller, B., Yang, B.: Data Science & Big Data Analytics: Discovering, Ana-
lyzing, Visualizing and Presenting Data. Wiley, Hoboken (2015). 



4. Rudnichenko, N., Vychuzhanin, V., Shybaieva, N., Shybaiev, D.: Big data intellectual 
analysis in the diagnosis of the transportation systems technical condition. Systems and 
means of transport. Problems of operation and diagnostics. KSMA, Kherson, pp.57-69 
(2019). 

5. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Sci-
ence, vol. 349(6245), pp. 255–260 (2015). 

6. Chen, H., Chiang, R.H., Storey, V.C.: Business intelligence and analytics: From big data to 
big impact. MIS Q. vol 4, pp. 1165–1188 (2012). 

7. Vychuzhanin, V.V., Shibaev, D.S., Boyko, V.D., Shibaeva, N.O., Rudnichenko N.D.: Big 
data mapping in the geopositioning systems for fishing industry. International Scientific 
and Technical Conference on Computer Sciences and Information Technologies. pp.28-31 
(2017). 

8. Phillips-Wren, G.: Ai Tools in Decision Making Support Systems: A Review. International 
Journal on Artificial Intelligence Tools. vol.21 (2012). 

9. Rudnichenko N.D., Vychuzhanin, V.V., Shybaiev, D.S.: The use of cluster data analysis to 
highlight measures of factors affecting the performance similarity of complex technical 
systems. Informatics and mathematical methods in simulation. vol. 3, pp.214-219 (2017)   

10. Zeng, X., Lu, J.: Decision Support Systems with Uncertainties in Big Data Environments. 
Knowledge-Based Systems. vol.143 (2018). 

11. Rudnichenko, M.D., Gezha, N.I., Belyaev, K.O., Kuzmin, A.D.: Performance analysis of 
machine learning model ensembles. In III All-Ukrainian scientific-practical conference of 
young scientists, students and cadets “Information protection in information and commu-
nication systems”. Lviv. pp.259-260 (2019). 

12. Gomez, D., Rojas, A.: An empirical overview of the no free lunch theorem and its effect 
on real-world machine learning classification (2015). 

13. Han, J., Kamber, M., Pei, J.: Data mining: concepts and techniques, Morgan Kaufmann 
(2011). 

14. Padhy, N., Mishra P., Panigrahi, R.: The survey of data mining applications (2012). 
15. Sumiran, K.: An overview of data mining techniques and their application in industrial en-

gineering (2018). 
16. Ramageri, B. M.: Data mining techniques and applications (2010). 
17. Engels, C., Bratsas, C., Koupidis, K., Musyaffa, F.: Requirements for statistical analytics 

and data mining (2016). 
18. Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning: from theory to algo-

rithms. Cambridge University Press (2014). 
19. Jordan, M. I., Mitchell, T. M.: Machine learning: trends, perspectives, and prospects 

(2015). 
20. Ayon, D.: Machine learning algorithms: A Review (2016). 
21. Chugreev, V.L.: Decision support systems using machine learning methods and predictive 

analytics. Problems of economic growth and sustainable development of the Vologda terri-
tories, pp.79-83 (2016). 

22. Sinitsyn, E.V., Tolmachev, A.V.: Model of the system of decision support in the financial 
markets for enterprises on the basis of probabilistic analysis and machine learning. Herald 
UFU. Economics and Management Series. vol.18. pp.378-393 (2019). 

23. Savenkov, P.A.: Using machine learning methods and algorithms in management decision 
support systems. Journal of Science and Education, vol. 55, pp.23-25 (2019). 

24. Korneev, S.: Decision support systems in business. Networks and business. vol.25, pp.102-
110 (2005). 



25. Chichirin, E.N.: Intelligent methods in simulation of decision making processes. Computer 
tools, networks and systems, vol. 17, pp.86-94 (2018). 

26. Kogalovsky, М.Р.: Metadata, their properties, functions, classification and presentation 
tools. In the 14th All-Russian Scientific Conference "Electronic libraries: perspective 
methods and technologies, electronic collections". Yaroslavl (2012). 

27. Kogalovsky М.Р.: Metadata in computer systems. Programming, MAIK Science "Interpe-
riodica", vol.39, pp.28-46 (2013). 

28. Skvortsov, N. A., Bryukhov, D. O., Kalinichenko, L. A., Kovalev, D., Stupnikov. S. A.: 
Metadata on scientific methods to ensure their reuse and reproducibility of results.. RCDL. 
Yaroslavl (2014). 

29. Kalinichenko, L. A., Stupnikov, S. A., Vovchenko, A. E., Kovalev, D. A.: Conceptual de-
clarative problem specification and solving in data intensive domains. Informatics and Ap-
plications, vol. 7. (2013). 


