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Abstract.  A comparative analysis of machine learning classification of sto-
chastic time series based on their multifractal properties is proposed. Multifrac-
tal time series were obtained by generating realizations of fractional Brownian 
motion in multifractal time. The features for classification were statistical, frac-
tal and recurrent characteristics calculated for each time series. The various ma-
chine learning classifiers were chosen for classification: bagging with classifi-
cation and regression decision trees, random forest with classification and re-
gression decision trees, fully connected perceptron and recurrent neural net-
work. Both cumulative time series of multifractal Brownian motion and time se-
ries increments were carried out. It was shown that in general, classification ac-
curacy is higher when using series of increments. When classifying realizations 
of multifractional Brownian motion, bagging and recurrent neural network 
showed the best accuracy. 
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1 Introduction 

Over the past decades, it has become apparent that many complex objects and systems 
have fractal (self-similar) properties. This applies to time series that reflect the dy-
namics of complex nonlinear systems. Numerous studies show that changes in the 
structure or state of a system lead to changes in fractal properties of the corresponding 
time series. The results of time series fractal analysis are widely used in practice, in 
particular, for analysis of information systems with self-similar data flows to prevent 
system overload and to analyze and predict financial markets [1-4]. 

In these cases, models of fractal processes that are used for forecasting, modeling, 
etc. play an important role. One of the interesting and applied in practice models is the 
fractional Brownian motion in the multifractal time proposed by Mandelbrot [5,6]. 
Currently, multifractional Brownian motion is used to model various phenomena [7–



9], among which the prevailing place is occupied by financial series [10-14] and self-
similar infocommunication traffic [15]. 

In recent years, to solve practical problems associated with the analysis and recog-
nition of dynamic phenomena, time series classification by machine learning has been 
used [16–20]. Typically, time series are collected in classes based on whether they 
have a common attribute or property. Often a change in the state of a system entails a 
change in its fractal structure. For example, telecommunication traffic under DDoS 
attacks change their fractal properties [21-23]. Thus, the task of classifying time series 
based on their fractal properties is relevant. However, the classification of time series 
by machine learning methods is a fairly new area and most of the studies do not take 
into account their fractal properties. 

The objective of the work is a comparative analysis of the fractal time series classi-
fication carried out by machine learning methods. Time series are realizations of the 
fractional Brownian motion in the multifractal time and time series of their incre-
ments, which are divided into classes according to their fractal properties. The ensem-
bles of decision trees and neural networks are considered as classification methods. 

2 Fractal Random Processes and Models   

A random process ( )X t  is self-similar if the process  Ha X at  has the same finite-

dimensional distribution laws with ( )X t . The parameter H , 0 1H  , is called the 

Hurst exponent. It is the self-similarity degree and the measure of the long-term de-
pendence of the process. The moments of the self-similar process satisfy the scaling 

relation ( )
q qHE X t t    

.  

Multifractal random processes are inhomogeneous fractal processes and have more 

flexible scaling relation: ( ) 1( )
q qE X t t     

, where ( )q  is a nonlinear function of 

scaling exponent [24]. 
One of the most used characteristics of multifractal processes and time series is the 

generalized Hurst exponent ( )h q , which is associated with the function ( )q  by the 

ratio [25]: 

 
( ) 1

( )
q

h q
q

 
 . 

The value ( )h q  at 2q   corresponds to the value of Hurst exponent H . The self-

similar process are monofractal, their scaling exponent ( )q  is linear. 

The popular models of the multifractal processes are the stochastic conservative 
binomial multiplicative cascades [24]. Such multifractal models are constructed using 
an iterative algorithm, where the values of the cascade realization are the values of 
some specially selected random variable. The conservatism of the cascade consists in 



 

the fact that for any number of iterations, the sum of the cascade values remains the 
same. 

B. Mandelbrot proposed a multifractal model of financial time series which is 
based on fractional Brownian motion in multifractal time by operation of subordina-
tion [5,6]. The subordination is a random substitution of time and it can be repre-
sented in the form    ( )Z t Y T t , where ( )T t  is a nonnegative nondecreasing ran-

dom process called subordinator, ( )Y t  is a random process, independent of ( )T t . 

In [6] it is proved that if  X t  is the process of subordination 

    ( )HX t B t   (1) 

where ( )HB t  is fractional Brownian motion with Hurst exponent H  and ( )t  is 

conservative binomial multiplicative cascades, then  X t  is the multifractal process. 

The scaling function  X t  is defined by 

 ( ) ( )X q Hq  , (2) 

where ( )Hq  is the scaling function of the multiplicative cascade ( )t .  

Quite often, for practical purposes, it is not interested in the time series itself, but in 
its increments. The series of increments Xdif  for time series  X t  is determined by 

the formula 

    ( ) 1Xdif t X t X t   . (3) 

3 Features for classification by machine learning  

One of the most important issues of the time series classification task is the selection 
of features by which the partition into classes is carried out. Changes the time series 
fractal properties entails the changes the statistical and correlation properties. There-
fore, statistical, fractal and recurrent characteristics calculated from the time series 
were chosen as features. 

The studies presented in [26, 27] showed that the statistical characteristics that re-
flect the change in the fractal properties of the time series are variance, coefficient of 
variation, median, asymmetry coefficient, etc. As features representing fractal proper-
ties, it is convenient to use the values of the Hurst exponent H  and the generalized 
Hurst exponent ( )h q  such as the mean and standard deviation of the generalized 

Hurst exponent, the specific values ( )h q  and the range ∆h. 

A fairly new approach to the selection and use of time series features in machine 
learning is the calculation of recurrence characteristics. The recurrence plot of a time 
series  X t  is a matrix, where an element with coordinates (i, j) characterizes the 

proximity of points  iX t  and  jX t  in phase space [28]. A numerical analysis of 



recurrence plots allows calculating the quantitative characteristics of recurrence such 
as a measure of recurrence, a measure of determinism, a measure of entropy, etc. 
These characteristics are advisable to use as features in machine learning classifica-
tion [23,29,30]. 

4 Classification Methods  

The ensemble methods of decision trees bagging and random forest, as well as neural 
networks, were chosen as classifiers. 

The ensemble of models is a complex model consisting of separate basic models. 
Component models can be of the same type, or different. One of the first and most 
famous ensembles is bagging, based on the statistical bootstrap aggregating: multiple 
sample generation based on a single sample [31]. In this classification method, all 
elementary classifiers are trained and work independently of each other. Several sam-
ples of the same size are extracted from a single training sample, each of which is 
used to train one of the ensemble models. The decision is made either by voting: the 
class that was chosen by a simple majority of models is selected by averaging, which 
is defined as the average of all outputs. 

The decision tree method is one of the simple and effective solutions to classifica-
tion tasks in many different areas. Decision trees change quite a lot with a small 
change in the data sample, however, when several trees are combined into an ensem-
ble, the spread in the values of the target variable becomes much smaller. In this pa-
per, as one of the methods for classifying time series, was used the bagging with clas-
sification and regression decision trees. When using regression trees, the result of the 
classification model is the probability of matching the time series with the class. 

Random Forest is a bagging method with regression or classification decision trees. 
However, unlike its main version, it has several features, in particular, in addition to 
randomly selecting learning objects, features are also randomly selected [32]. In this 
work, for comparison, along with the bagging, a random forest was also used with 
classification and regression decision trees. 

Neural networks are widely used as classifiers. There are many neural network ar-
chitectures designed to classify various objects. During the experiment, different neu-
ral networks were investigated and two neural network architectures were selected. 

The first neural network was a fully connected perceptron of seven large layers 
with activation function of the ReLU type. Using the ReLU activation function is less 
expensive and significantly accelerates the convergence of gradient descent. After 
each full connected layer, the level of regularization was included in the network. As 
a regularization method, batch normalization was chosen [33], which is used to stabi-
lize the neural network and prevent the effect of overtraining. The second network 
contained recurrent levels to take into account the relationship between elements. For 
both neural networks, the Adam stochastic optimization method (Adaptive Moment 
Estimate) [34] was used. 



 

5 Experiment Description 

To simulate multifractional Brownian motion  X t  realizations the generation of 

multifractal cascades ( )t  with ( , )Beta   -distribution [27] were used. They were 

subordinates for the fractional Brownian motion ( )HB t  by (1). In the case when the 

cascade weight coefficients are the values of ( , )Beta   -distribution, the scaling 

exponent  q  is uniquely determined by the value of the Hurst exponent H , 

0.5 1H   [35]. 

When specific ( , )Beta   - distribution for the multifractal cascades was set and 

the specific Hurst exponent of fractional Brownian motion was selected, subordinated 
processes  X t  with needed Hurst exponent H which is determined by (2) was 

obtained.  
In this paper, each class was a set of model time series of multifractional Brownian 

motion  X t  with the Hurst exponent H  belonging to the same range of values. For 

each time series, the Hurst exponent was chosen randomly within the appropriate 
range. The values of the Hurst exponent are changing in the range from 0.5 to 1 with a 
step 0.05. The minimum and maximum values of the Hurst exponent were selected 
0.51 and 0.99, respectively. Thus, the training of models was carried out in 10 classes, 
where H{[0.51, 0.55), [0.55, 0.6), [0.6, 0.65), … , [0.9 0.95) , [0.95, 0.99]}. 

Figure 1 shows the realizations of cascade processes  t  (top) and corresponding 

realizations of multifractional Brownian motion  X t  of different classes (bottom). 

 

  

  

Fig. 1. Realizations of cascade processes (top) and corresponding realizations of multifractional 
Brownian motion (bottom)  



For each multifractional Brownian motion realization, the realization of its increments 
was obtained by (3) and classification of increment time series was also carried out by 
a separate experiment. Figure 2 shows corresponding realizations of increments of 
multifractional Brownian motion, which shown in Fig. 1. 

 

Fig. 2. Realizations of increments of multifractional Brownian motion 

Thus, each class of time series is a set of realizations of multifractional Brownian 
motion or their increments with the same multifractal properties. To classify the sta-
tistical, fractal and recurrent characteristics of time series were used as features. The 
obtained features were the inputs of each of 6 classifiers: bagging with classification 
and regression decision trees, random forest with classification and regression deci-
sion trees, fully connected perceptron and recurrent neural network. 

The research was conducted for a time series of different lengths: 512, 1024, 2048 
and 4096 values. Such length is associated with the method of generating realizations 
of the binomial stochastic cascade. Model training for each class was carried out on 
300 examples of training time series and was tested on 150 test ones. 

6 Results and discussion 

To implement bagging and random forest methods and neural networks, Python with 
libraries of machine learning methods was used [36]. The results of the classification 
of multifractional Brownian motion realizations indicate different classification accu-
racy for different classifiers. The best practice was the bagging with regression trees 
and a recurrent neural network. The worst results were shown by the Random forest 
with classification trees and a fully connected perceptron. Fig. 3 shows the histograms 
of the probability distribution of matching to class number for each value of the Hurst 
exponent for classifying time series with a length of 1024 values by the recurrent 
neural network. Such distributions are typical for all variants of classification.  

Table 1 presents the average probabilities of class determining depending on the 
length of time series and the method of classification. The dependence of the classifi-
cation accuracy on the length of the time series is obvious since the longer the series, 
the more accurately its fractal and recurrent characteristics are considered. Starting 
from the length of 2048 values, the probability of a correct class definition for bag-
ging, random forest with regression trees and the recurrent neural network becomes 
greater than 0.9. 



 

 

Fig. 3. Distribution of probabilities of the class number determining depending on the value of 
the Hurst exponent 

The classification performed on the increments realizations of the multifractional 
Brownian motion showed better results. In this case, it was sufficient to use only the 
statistical and fractal characteristics of time series without building recurrence plots 
and calculating recurrence characteristics. This significantly reduces the training time 
and the structure of classifiers. 

Table 1. The average probability of class determination for the cumulative realizations 

Bagging  Random forest Neural network Length 
of time 
series 

classification 
trees 

regression 
trees 

classification 
trees 

regression 
trees 

perceptron recurrent 

512 0.547 0.564 0.575 0.592 0.587 0.594 

1024 0.781 0.796 0.631 0.685 0.627 0.785 

2048 0.918 0.936 0.769 0.933 0.698 0.940 

4096 0.956 0.961 0.957 0.962 0.764 0.969 



Table 2 presents the average probabilities of class determination depending on the 
time series length and the method of classification for the increments realizations. The 
high probability of the correct class determination quickly is achieved even for rela-
tively small lengths of time series. 

Table 2. The average probability of class determination for the increments realizations 

Bagging  Random forest Neural network Length 
of time 
series 

classification 
trees  

regression 
trees 

classification 
trees 

regression 
trees 

perceptron recurrent 

512 0.899 0.900 0.903 0.899 0.791 0.744 

1024 0.985 0.986 0.982 0.986 0.949 0.957 

2048 0.995 0.995 0.996 0.995 0.970 0.973 

4096 0.998 0.998 0.998 0.998 0.979 0.981 

Conclusion 

The multifractal time series were classified by machine learning methods. Time series 
were obtained by generating realizations of fractional Brownian motion in multifractal 
time. Both cumulative time series of multifractal Brownian motion and series of in-
crements were carried out. 

Time series were divided into classes according to their multifractal properties. The 
classification was carried out on the basis of quantitative features calculated for each 
time series. The features for classification were statistical, fractal and recurrent char-
acteristics. Such classifiers were chosen for classification: bagging with classification 
and regression decision trees, random forest with classification and regression deci-
sion trees, fully connected perceptron and recurrent neural network. 

The results of the research have shown that the accuracy of the classification is 
higher when the increments time series were classified. When classifying cumulative 
realizations of multifractional Brownian motion, method of bagging with regression 
trees and recurrent neural network showed the best accuracy. 
In future research it worth to concentrate on the classification of real multifractal time 
series using different classification algorithms. 
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