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Abstract. New technological solutions for the effective, objective and cost-sen-

sitive monitoring of cultural heritage are needed. Accordingly, a new methodo-

logical approach based on laser scanning, 3D photogrammetry, artificial intelli-

gence and GIS interaction is presented in this paper. The main goal is to develop 

a software that could detect and compare various architectural and urban ele-

ments by comparing 2D and 3D data of objects and places of the same cultural 

heritage from different time periods. This represents a breakthrough technologi-

cal tool for governments to track the broad-scale status of heritage and act in a 

timely and proactive manner.  

The methodological approach was to inspect changes comprised of geomet-

rical alterations in 3D data and pixel-based information changes in 2D data. The 

proposed solution was developed as part of a project financed by the Research 

Council of Lithuania entitled Automated monitoring of urban heritage imple-

menting 3D technologies. The first results of the project are presented in this ar-

ticle. All pictures and tables in this paper were prepared by the authors. 
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1 Introduction 

The preservation of urban heritage is one of the main challenges in contemporary soci-

ety. It is closely connected with several dimensions, including global-local rhetoric, 

cultural tourism, armed conflicts, immigration, cultural changes, investment flows and 

infrastructure development. [1] Nowadays, cultural organisations are often responsible 

for heritage management and must contend with a consistent lack of resources that are 

crucial for proper heritage preservation, maintenance and protection. This is particu-

larly problematic for countries with a low Gross Domestic Product (GDP) or unstable 

political situation.  

One possible solution to these problems is an automated heritage monitoring soft-

ware system based on 3D data and artificial intelligence (AI) technologies to increase 

monitoring efficiency (scale, financial, time and data objectiveness factors). A system 

prototype was developed and tested by Vilnius University and Terra Modus Ltd. in the 

context of the project Creation of automated urban heritage monitoring software pro-

totype (2014). This prototype helped to initiate a development of a full-capability sys-

tem which remains under development by Vilnius University within the framework of 

Copyright © 2020 for this paper by its authors. Use permitted under 
Creative Commons License Attribution 4.0 International (CC BY 4.0).



the project Automated urban heritage monitoring implementing 3D and AI technolo-

gies. This project is financed by the Research Council of Lithuania (project time 2018–

2022) [2]. It should be noted that the creation of a new method of Computer Vision is 

not within the scope of this paper. Instead, this article researches and combines the best 

monitoring practices into one single and cost-effective solution that is suitable for large 

scale real-life conditions. This paper presents the general pipeline and the first stage of 

the project. 

1.1 Brief Overview of 3D and AI Technological Solutions for Heritage 

Monitoring  

Artificial intelligence has been used in the context of cultural heritage within the last 

two decades [3]. Three-dimensional data analysis for machine learning procedures has 

been applied relatively recently, where deep convolution network-based calculations 

have been performed in this sector [4].  

During last two to three years, these technologies have accelerated, hence convolu-

tional neural networks (CNN) suggested more and more capabilities. On the other hand, 

more well-known and established 3D laser scanning and 3D photogrammetry technol-

ogies for collecting real world data have mainly been used in case studies [5], where 

only some technological pipelines are presented, but no analytical technological inte-

gration in more difficult tasks, such as cultural heritage maintenance, is applied.  

A deeper analysis of the sparse literature suggests that there have been almost no 

studies on the use of 3D and AI-based technologies to monitor cultural heritage [6]. 

Therefore, the contribution of this paper is potentially important for this sector. 

 1.2 Elements of Traceable Alterations 

Urban cultural heritage values are defined from a theoretical point of view. In this pro-

ject, our primary target was Lithuania. This is why all the framework and terminology 

used to describe heritage in this paper are based on Lithuanian national law, legislation 

and ratified international conventions such as the Convention for the Protection of the 

Architectural Heritage of Europe (1985). For this reason, urban cultural heritage could 

be dismantled into a list of elements – valuables – that could be tracked with the digital 

monitoring system that is under development: 

• valuables of an area

a) structure of the plan (radial, annular, regular, linear, hybrid); planned structure net-

work (roads, streets, squares, pedestrian paths, possessions); quarters; holdings (pos-

sessions); roads, streets, squares, driveways, passages, paths; elements of nature);

b) volumetric spatial structure (structure of volumetric spatial structure); open spaces

(streets, squares, squares, parks); enclosed spaces (yards, passages); panoramas; silhou-

ettes; dominants, characteristics of arrangement of place ant its decoration, colours and

surface details.

• valuables of a building
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a) height and height levels

b) volumetric composition, volume, shape of the roofs, elements of the roof (skylights,

hatches, fireproof walls, chimneys);

c) structure of facades, compositions, volumetric elements (acroteriums, fountains,

awnings, oriels, balconies and railings, exterior staircases and ramps, pillars and colon-

nades), décor of the facades (sculptures), and other elements (rain drains, fire escape

ladders, lifting elements);

d) doors, windows and gates.

During the first stage of the project, most common alterations (done legally and il-

legally) in urban heritage areas (e.g., Vilnius old town) are identified: doors, windows, 

gates, height of the building, volume of the building, roof elements (e.g. new skylights 

and volumetric skylights).  

2 Methodology for Digital Monitoring of Cultural Heritage 

The methodological framework (Table 1) mainly consisted of two aspects. Firstly, 3D 

technologies (3D laser scanning and digital 3D photogrammetry) were used to collect 

the geometrical data and other (e.g. albedo, colour). Secondly, AI technologies were 

used to identify and compare the valuables. 3D laser scanning is the most accurate way 

of collecting geometrical exterior information about buildings and their surroundings, 

where handheld and drone-based photogrammetry helps to collect information about 

roofs and closed from open access spots in the area.  

This method offered additional advantages in relation to the time and costs associ-

ated with the data collection, which is usually taken with a more than 5 cm accuracy in 

a non-destructive way. Moreover, every time the data were collected (for comparison 

in time), the entire geometrical data package was gathered without distinguishing be-

tween the ‘most important’ and ‘least important’ objects and places. Performing the 

monitoring digitally offered additional opportunities, for example the possibility of re-

constructing destroyed buildings or open access to particular cultural object for educa-

tional, tourism, augmented reality, game industry or other purposes (e.g., projects like 

Cyark.org/). 

2.1 Theoretical Preconditions for Digital Monitoring 

Digital monitoring is based on seven conditions. The first is that all objects in the mon-

itoring process are tangible, while the second stipulates that physical valuables can be 

expressed as simple geometrical forms or mathematical expression. The third condition 

is that monitored objects can be fully scanned and photogrammetrically processed. 

Fourthly, the data derived from Lidar devices and from photogrammetry are same qual-

ity (e.g., density, coverage). The fifth condition is that detection of cultural heritage can 

be analysed by AI algorithms. The sixth is that the digitally processed results should be 

able to be checked in reality. Lastly, the seventh condition is that digital monitoring is 

based on non-destructive and non-invasive 3D and analytical technologies.  
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Table 1. Geometry alteration methodology for urban architectural cultural heritage monitoring. 

Method ap-

plied 

Criteria and technol-

ogy 

Results First level of inter-

pretation 

M
E

A
S

U
R

E
 

• Lidar technologies

• Digital camera (pho-

togrammetry)

• Satellite recipient

• Point cloud

• Digital photos

• GPS/Glonass data

• Point cloud data

corresponds to

real physical

characteristics of

objects

• Digital photos are

suitable for pro-

cessing 3D mod-

els

• Coordinates are

precise (within a

desirable accu-

racy)

D
A

T
A

 

P
R

O
C

E
S

S
IN

G
 

• Data pre-processing

• Data optimization

• 2D → 3D conversion

• 3D data merging with

coordination

• Selection and filtra-

tion for needed 3D

data

• Coordinated 3D 

data scene or real 

objects 

• Data suitable for

AI processing

D
E

T
E

C
T

IO

N
 O

F
 

E
L

E
M

E
N

T
S

 

• Identifying cultural

objects valuables ele-

ments and localiza-

tion using AI

• Database with se-

mantic labels and

location metadata

• Identified valua-

ble elements in

the point cloud or

photography

C
O

M
P

U
T

A
T

IO
N

A
L

 

A
N

A
L

Y
S

IS
 O

F
 

M
E

A
S

U
R

E
M

E
N

T
S

 

• AI algorithms for the

inspection of geomet-

rical alteration (in

3D)

• AI algorithms for the

inspection of pixel

value and form alter-

ation (in 2D)

• Geometrical

changes

• Pixel value

changes

• Demolition

• Sustain

• Addition

• More space/

volume

• Less space/

volume

The information collected from the different time period measurements served as data 

for the AI analysis, which can automatically identify the needed valuables and their 

changes during a particular time period. The data comparison was conducted by inter-

pretation. 

The first level of interpretation demonstrated some information about geometrical 

changes. The second level depended on the particular legal status and local legislation 

for managing cultural heritage (i.e., the meaning of the detected changes depends on 

legislation). The first level of the interpretation could be evaluated by logical operators 

(Table 2). For example, alteration is described as ‘status quo unchanged’, ‘reduction in 
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volume by 65%’. The second level of interpretation could be a legal analysis of the first 

level results (e.g., ‘reduction in volume = fact of illegal demolition works’). 

Table 2. Logical operators of alteration detection. XYZ – initial data of X, Y, Z; +1 – modus of 

alteration. ‘Importance’ means which operator is higher in hierarchy. By optimising the analysis, 

second level operators could be eliminated.  

In this project, only the first level of interpretation was under consideration. 

3 Data Analysis with Deep Learning Technology: 

Case Study of Vilnius Old Town 

To performing the inspection of alterations in Vilnius Old Town, a database of 3D and 

2D fixation was required. To conduct comparisons, further data about the same objects 

from different time periods was needed. The current asset condition assessment proce-

dures are highly time consuming, laborious, expensive and can even pose a threat to the 

health and safety of surveyors, particularly at height and roof levels that are difficult to 

access. The challenges and limitations of our model and alternative solutions in real-

life applications were identified. 

After initial experiments, we eliminated solutions that used only photogrammetry to 

process 3D point clouds. This solution provides material that enables precise examina-

tion, but it is not time-effective and would be difficult to apply at a large scale, partic-

ularly in the context of an old town, as in Vilnius (area of 350 ha). Advances in Lidar 

sensors and the decrease in cost over the last five years meant that performing handheld 

scanning with systems like Geo-Slam Horizon, which was used to collect 3D infor-

mation on the ground in Vilnius, was suitable to our project’s needs. On the other hand, 

Lidar usually does not provide sufficient information about small decorative objects [7] 

in facades; for this reason, high-definition images of facades were also used. These 

photos were also required for performing semantic segmentation procedures to identify 

valuables in the analysed data. Consequently, the data collection (for status fixation and 

for semantical segmentation) of objects under the monitoring process was carried out 

in real-time using mobile devices, cameras, drones and Lidar scanners.  

Logical opera-

tor 
Earlier data Later data 

Sequence of altera-

tion 

im-

portance 

destruction XYZ -XYZ is→ non first 

creation XYZ XYZ + 1 non→ is first 

increase of 

area/volume 
XYZ XYZ + 1 is→ is (increase) second 

decrease of 

area/volume 
XYZ XYZ -1 is→ is (decrease) second 

unchanged 

status quo 
XYZ XYZ is→ is first 
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3.1 Collecting the Data 

The biggest challenge was the data set creation. The Old Town of Vilnius presents a 

vast variety of architecture styles. For example, it has been reported that there are al-

most 100 different types of window shapes in the Old Town of Vilnius. In open access 

data [8], there are no sufficiently large data sets for training old town facades semantic 

segmentation’s classifier. We also found that archive of the Department of Cultural 

Heritage under the Ministry of Culture in Lithuania was not suited to our needs. It con-

tained a vast number of facade images, but one half were taken before World War II, 

and the second half were taken in present times. The first half were comprised of highly 

professional images, containing all element of the facades, but were very low resolu-

tion. Among the second half, the majority of the pictures were low resolution and were 

taken from perspectives that did not provide all elements of the facades (Figure 1). 

Fig. 1. Sample 2D photos of Vilnius Old Town from the Department of Cultural Heritage under 

the Ministry of Culture, https://kvr.kpd.lt/#/static-heritage-search, last accessed 2020/02/11 

For the purposes of the experiment, we created a small data set of old town facade 

images – 420 high resolution units – where the windows and doors were annotated 

manually by human experts. Annotation was performed using Labelbox tools, which 

enables annotations to be exported in a TensorFlow format. The data set is currently 

updated with a larger number of additional images of Vilnius Old Town and other cit-

ies’ old town building facades. After completing the project, our 2D photo data set will 

be available as an open data set.  

A second database (for testing) was prepared by the project team and partners (Spot-

land Ltd) using Lidar data of Vilnius Old Town from the summer of 2019. To ensure 

the completeness of measurements, a photogrammetric survey using a drone was con-

ducted to cover architectural structures from above (e.g., rooftops, roof windows). To 

cover structures that could not be seen from above, the whole area was surveyed using 

a handheld SLAM scanner (GEO-Slam Horizon). For geo-referencing the results 

ground control points (GCP) were surveyed using a GPS station and theodolite. The 

first step in the processing was performed using Pix4D software, and the photogram-

metric survey was processed using regularly distributed GCPs. The ground-based mo-

bile scans were processed with the manufacturer’s own software, GeoSLAM Hub. Geo-
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referencing was performed in a second step using CloudCompare. Once aerial and 

ground derived point clouds were processed and georeferenced, the SLAM point clouds 

were fine-aligned to the drone point clouds. This was carried out using the iterative 

closest point algorithm implemented in CloudCompare (Fine Registration ICP). As a 

result, ≈21 ha area was captured with detailed precision (~4 cm RMS), with ≈2.9 billion 

points where 1 m2 covers ≈13400 voxels.  

In addition, 2017 Lidar data from the National Land Service under the Ministry of 

Agriculture is the Lithuanian State was used. Unfortunately, the data density is very 

sparse (45 points/1m2), hence only a few valuables such as the heights of buildings or 

volumetric alterations could be identified with the final system. 

The third part covered the GIS data-based mapping of facade information with cor-

responding objects in the Lidar scanner material and also involved mapping the results 

to the general orthophoto of heritage objects of the old town. In this case, in the GIS 

layers of all Vilnius’ heritage objects with attribute information (coordinates, perime-

ters, etc.) were filtered.  

3.2 AI workflow and some results 

Experiments on the first technical section were concluded. After detailed research on 

open source technical solutions for the facades, semantic segmentation Google 

DeepLab v.3+ (addition to Tensorflow) and PASCAL VOC 2012 standard to facilitate 

learning transferring techniques were chosen [9]. It is well documented and has a large 

community of developers and researchers in the internet. Image segmentation involves 

partitioning an image into multiple segments to facilitate the analysis of a given image. 

There are two different types of image segmentation: semantic segmentation and in-

stance segmentation. Every pixel in the image belongs to one a particular class (e.g., 

door, roof, window). All pixels belonging to a particular class are assigned a single 

colour. It should be noted that classification assigns a single class to the whole image, 

whereas semantic segmentation classifies every pixel of the image into one of the clas-

ses. Pixel-level labelling tasks, such as semantic segmentation, play a central role in 

image understanding. Image segmentation is a long-standing Computer Vision problem 

that a number of algorithms have been designed to solve, such as the Watershed algo-

rithm, Image thresholding, K-means clustering, and Graph partitioning methods. A 

number of deep learning architectures (like fully connected networks for image seg-

mentation) have also been proposed; however, but Google’s DeepLab model has pro-

vided the best results and was sufficient for our project needs, as well as being cost 

effective [10]. 

The DeepLab model is mainly composed of two steps: the encoding phase and the 

decoding phase. The DeepLab architecture is based on a combination of two popular 

neural network architectures: Spatial Pyramid Pooling and Encoder-decoder networks. 

Spatial pyramid pooling uses multiple instances of the same architecture, which leads 

to an increase in computational complexity and the memory requirements of train-

ing. To deal with this problem, DeepLab has introduced the concept of ‘atrous convo-

lutions’, a generalized form of the convolution operation. Here, ASPP uses four parallel 

operations: a 1 x 1 convolution and 3 x 3 atrous convolution with rates (6, 12, 18). It 
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also adds image level features with Global Average Pooling. Bilinear upsampling is 

used to scale the features to the correct dimensions. DeepLab V3+ uses 

Aligned Xception as its main feature extractor, with the following modifications: 1) all 

max pooling operations are replaced by depth wise separable convolution with striding, 

2) extra batch normalization and activation are added after each 3 x 3 depth wise con-

volution, and 3) the depth of the model is increased without changing the entry flow

network structure [11].

Our initial experiment of the proposed model on PASCAL VOC 2012 and our cus-

tom 2D data set demonstrated an effectiveness performance of 80%, without any post-

processing. 

4 Conclusion 

An analytical tool was proposed for the effective monitoring of urban architectural tan-

gible heritage. Digital monitoring is based on effective 3D laser scanners and digital 

3D photogrammetry. The 2D, 3D and GIS information collected from different time 

periods could serve as a data for AI analysis to automatically identify needed valuable 

elements, its location and changes during a time period. Such monitoring could be per-

formed remotely, non-destructively and in a cost-effective way. 

Artificial intelligence can perform extremely precise calculations where convolu-

tion neural networks are best possible choice. Experimental testing with Vilnius Old 

Town demonstrated that convolution neural networks suggest vast possibilities for de-

veloping the final monitoring system. 
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