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Abstract. Several studies that emerged from the fields of psychology
and medical sciences during recent years have highlighted the impact
that stress can have on human health and behavior. Wearable technolo-
gies and sensor-based monitoring have shown promising results towards
assessing, monitoring and potentially preventing high-risk situations that
may occur as a result of fatigue, poor health, or other similar conditions
caused by excessive amounts of stress. In this paper, we present our initial
steps in developing a deep-learning based approach that can assist with
the task of multimodal stress detection. Our results indicate the promise
of this direction, and point to the need for further investigations to better
understand the role that deep-learning approaches can play in develop-
ing generalizable architectures for multimodal affective computing. For
our experiments we use the MuSE dataset – a rich resource designed
to understand the correlations between stress and emotion – and evalu-
ate our methods on eight different information signals captured from 28
individuals.

Keywords: multimodal stress detection · representation learning · af-
fective computing · deep learning

1 Introduction

Stress is a normal reaction of the body, mostly observed under situations where
we struggle to cope with the conditions or the changes that occur in our envi-
ronment [8]. Its effects and symptoms affect our body both physically as well
as mentally and emotionally. Stress is thus playing a very significant role to-
wards shaping our overall behavior, well-being and potentially our personal and
professional success [16].

Affective computing is the field of science that studies and develops tech-
nologies able to capture, characterize and reproduce affects, i.e., experiences of
feelings or emotions. It is a highly interdisciplinary domain, mostly influenced
by the fields of computer science, psychology and cognitive science and was
initially introduced in the late 90s by Rosalind Piccard [20]. Contributions of
affective computing have traditionally played a very important role towards de-
signing more engaging and effective Human-Computer-Interaction systems that
can adapt their responses according to the underlying human behavior [17, 22].
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However, despite the dramatic evolution of affective computing and computer
science in general during the last decade, capturing and analysing stress factors
and their effects on the body remains a very challenging problem primarily due
to the multidimensional impact that stress can have on human behavior. In the
past, several works have tried to address the problem of stress detection using
different types of sensors, tasks and processing techniques [5, 6, 4].

Through our work, we target three main contributions. Firstly, we evaluate
our study using the MuSE Datsaset [11], to our knowledge one of the rich-
est databases for stress and emotion analysis in terms of stimuli and recorded
modalities. One of the most valuable characteristics of MuSE compared to other
available resources is that stress is not induced to the subjects through a spe-
cific task that they need to complete during data collection. In contrast, the
dataset aims to capture stress as experienced by the participants in their real
lives during the time of the recordings. We discuss more about the characteristics
of the dataset later on in the paper on the corresponding section. Secondly, we
aim to overcome the process of manually handpicking features for each individ-
ual modality by proposing and evaluating a set of different deep learning based
configurations for affective modeling and stress detection. We showcase the po-
tential of such approaches and we highlight the advantage of designing modular
deep architectures that can learn unsupervised features in a task-agnostic man-
ner, hence increasing the generalizability and applicability of pretrained compo-
nents across different tasks and applications. Lastly, we propose a preliminary
approach towards learning modality-agnostic representations. Different sensors
introduce different limitations that can relate to variations in computational de-
mands, sampling rate, data availability, and most importantly, a modality-based
preprocessing and feature design process. Overcoming these obstacles is one of
the greatest challenges in most multimodal processing tasks and our modular
method demonstrates a potential solution towards that direction.

2 Related Work

Various computational methods have been proposed over the years aiming to
capture and characterize human behaviors related to stress. Technologies related
to sensor-based monitoring of the human body have the lion’s share in this
domain and different modalities and stress stimuli scenarios have been explored.

With one of the most impacting works in the area, [5] showed that multimodal
monitoring can effectively capture changes in the human behavior related to
stress and that specific factors such as body acceleration, intensity and duration
of touch as well as the overall amount of body movement can be greatly affected
when acting under stress. [1] enhanced these preliminary findings, by identifying
that fluctuations in physiological features like blood volume, pulse and heart
rate, may indicate significant changes in the levels of stress. The very insightful
review study published by [2], emphasized on the importance of considering psy-
chological, physiological, behavioural and contextual information when assessing
stress, primarily due to the intricate implications that it can have on behavior.
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Their review suggested a plethora of features, extracted from various modalities
including cameras, thermal imaging, physiological indicators, environmental and
life factors and several others, as important predictors of stress. In a more recent
study, [6] investigated the impact that stress can have on driver behavior by
monitoring some of the physiological signals indicated by the previous studies.
The authors explored a series of temporal and spectral hand-crafted features and
evaluated their methods using traditional machine learning approaches. All the
aforementioned findings have been consistently revisited, reevaluated and most
of the times reconfirmed by a series of survey studies that addressed multimodal
stress detection over the last few years [21, 9, 3].

This work has been significantly inspired by the research studies of the past.
However, in contrast to the works discussed above, we aim to approach mul-
timodal stress detection using deep learning modeling. Our motivation, stems
from the very inspiring results that deep learning has offered to the computer
science community. In the past, very few studies explored deep learning as a
tool for stress classification and feature extraction, primarily due to the limited
amount of available resources. A factor that can become a very hard constrain
given the excessive amounts of data that most deep learning algorithms require.
Some of the most popular deep learning based studies related to stress, include
the works by [14] on textual data extracted from the social media and [12] on
audio data generated by actors simulating stress and non-stress behaviors.

In contrast to those techniques, we perform multi-modal processing using spa-
tiotemporal analysis on eight different information channels with minimal data
prepossessing [22] captured from 28 eight individuals. A subject set greater than
all the research studies mentioned above. We explore the potentials of Recurrent
Neural Networks[15, 7] and Convolutional Autoencoders [10] for learning affec-
tive representations and we do an in depth evaluation of our techniques using
the MuSE dataset.

3 Dataset

MuSE is a multimodal database that has been specifically designed to address
the problem of stress detection and its relation to human emotion [11]. The
dataset consists of 224 recordings coming from 28 subjects who participated
into two recording sessions each. All subjects were undergraduate or graduate
students from different majors. The first recording session took place during
a final exam period (consisdered to be a high stress period), while the second
one was conducted after the exams ended (considered to be a low stress period).
During each session, subjects were exposed to four different stimuli, which aimed
to elicit a variation of emotional responses.

The stimuli used in each recording session were the following:

1. Neutral: Subjects were just sitting while multimodal data were being col-
lected. No emotional stimulus was provided.
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2. Question Answering (QA): Subjects were asked to answer a series of con-
troversial questions that appeared on a screen. Questions were targeted to
achieve either a positive, a negative or a neutral feeling as aftereffect.

3. Video: Subjects were asked to watch a series of emotionally provocative
videos. Similarly to QA, videos were aiming to trigger a variety of emotions.

4. Monologues: After the end of each video subjects were asked to comment for
30 seconds on the video they just watched.

During all four steps in both recording sessions the following eight different
streams of multimodal data were collected:

1. Thermal Imaging: Thermal imaging data of subject’s face were collected
during the whole period of each session.

2. RGB Closeup Video: Regular RGB video of subject’s face was recorded dur-
ing the whole duration of a session.

3. RGB Wideangle Video: RGB video recordigs showing a full-body view of
the subject was also captured.

4. Audio: User verbal responses were recorded for the interactive sections of
each recording, i.e., the QA and monologues.

5. Physiological: Four different types of physiological data were recorded using
contact sensors attached to the subject’s fingers and core body. The physio-
logical signals captured were: (1) Heart rate; (2) Body temperature; (3) Skin
conductance; (4) Breathing rate.

6. Text: Transcripts extracted from the QA. For the purposes of this study we
did not conducted any experiments using this modality.

Table 1 summarizes the statistics of the final version of the MuSE as curated
for our experiments. In this study, we consider as a sample of Stress or Non-Stress
any segment that was captured during an exam or post-exam recording session
respectively. Thus, data-points that belong in the same class may originate from
different stimuli as long as they have been captured during the same period.

Modality N(%) S(%) Total

Thermal 319 (49.9) 320 (50.1) 639
RGB Closeup 336 (51.1) 322 (48.9) 658

RGB Wideangle 336 (51.1) 322 (48.9) 658
Audio 139 (50.7) 135 (49.3) 274

Physiological 364 (49.1) 378 (50.9) 742

Total 1494 (50.3) 1477 (49.7) 2971

Table 1. Total number of samples in each class for each modality. In the case of
physiological data each sample represents an instance of all four physiological signals
captured, ie. Heart Rate, Body Temperature, Skin Conductance and Breathing Rate. In
the parentheses we report the correspondent percentage, which is equal to the random
choice accuracy. In all cases random choice is very close to 50%.
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Figure 1 illustrates the distribution of samples for each subject across the two
classes. Based on these data distributions we conducted all of the experiments
presented later in the ”Experimental Results” Section.

Fig. 1. Number of samples for each subject across the two classes for each modality.
Left columns correspond to No-Stress (N) and right column to Stress (S).

4 Methodology

For our experiments we propose a deep-learning architecture that is based on
Convolutional-Autoencoders and Recurrent Neural Networks. As briefly dis-
cussed in Section 2, Convolutional-Autoencoders (CAs) are popular for their
ability to learn meaningful unsupervised feature representations by significantly
shrinking the dimensionality of the original signal [23, ?]. On the other hand,
Recurrent Neural Networks have shown state-of-the-art results in a series of
applications across different domains and they are mostly popular for their ben-
efits on sequential information modeling [15]. For our implementation we used a
particular recurrent unit also known as Gated Recurrent Unit (GRU) [7].

The novelty of our approach stems from the fact that we use multiple iden-
tical copies of the same architecture to model each modality individually, while
applying minimal preprocessing steps on the original signals. Figure 2 illustrates
the basic components of this architecture.

In addition we propose a novel approach towards modality independent mul-
timodal representations using a modified version of our original architecture that
allows weight-sharing across all the available modalities while taking into account
modality dependent characteristics. For the purposes of this paper we refer to
this approach as ”a-modal” and we visualize it in Figure 3.

In the following subsections we will discuss in more detail the exact steps
used for preprocessing each modality as well as the individual components of
each architecture.
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Fig. 2. Architecture for modality-dependent classification. The architecture consist of
two main modules ’M1’ and ’M3’, which perform unsupervised feature learning and
supervised stress classification respectively. The two components are trained indepen-
dently. Dark-blue parts represent operations/components that are used only during
training but are omitted when testing. E and D refer to Encoder and Decoder respec-
tively, while N and S to No-Stress and Stress classes.

4.1 Modality Preprocessing

We try to minimize the computational workload of our framework by signifi-
cantly simplifying the preprocessing steps applied on each modality. Below we
describe the computations applied on each information signal before entering
the initial encoder-unit of our deep architectures.

1. Thermal: Thermal video included in MuSE was captured in a frame-rate of
30 fps. To minimize the amount of information we clamp all temperatures
between 0 and 50 degrees Celsius. Before passing the thermal video frames
through the network we resize each frame to 128× 128 and we convert each
frame into gray scale.

2. RGB: Wide-angle & Closeup video streams were in an original frame-rate of
25 FPS. The frames from these modalities were directly re-scaled to 128×128
and converted to gray scale without any additional edits.

3. Physiological: All four physiological indicators described in Section 3 were
captured in a sampling-rate of 2048 Hz. For each of the signals we extract 2
sec. windows with a 98% overlap and we compute a Fast Fourier Transform
(FFT) on each of the individual segments for each of the signals. Finally,
the four spectra are being stacked vertically to form a 4× 4096 matrix rep-
resentation for all the physiological signals combined. This representation is
used as a final input to the network.

4. Audio: The audio signal is recorded at a sample rate of 44.1 kHz. Similar
to the physiological signals, we extract overlapping windows of size 0.37
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Fig. 3. The a-modal architecture. In addition to ’M1’ and ’M3’ this model has an
extra component ’M2’ that is responsible to project the multimodal representations
in a new, modality-agnostic feature space, by maintaining their temporal coherence.
This, happens by pretraining ’M2’ on a sequence-sorting task using self-supervision.
’M1’, ’M2’ and ’M3’ can be trained consecutively and independently. Classification
happens using ’M3’ in a similar manner as in Figure 2. Dark-blue parts represent op-
erations/components that are used only during training but are omitted when testing.
N and S refer to No-Stress and Stress classes.

sec. and compute the FFT on each of the windows to create a final audio
representation of 1× 16384, which is passed through the deep architecture.
The window overlap for the audio signal is equal to 92%. This is a common
way of representing audio used in previous work [18, 19]

Unsupervised Feature Learning (’M1’ Module) As explained in the be-
ginning of this section we propose two different architectures which, share some
common core characteristics. The main component shared by both designs is the
’M1’ module, which can be seen in detail in Figure 2. This module consists of
a Convolutional-Autoencoder with 14 symmetrical convolutional layers, 7 layers
for encoding and 7 for decoding. The encoding portion has kernel sizes of 3x3
with the number of filters per layer as follows: 2,4,8,16,32,64,128. The decoding
section is a mirror image of the encoder. Every convolutional layer is followed
by a ReLU layer except for the last encoding layer which is a sigmoid. All con-
volutional layers have a stride and padding of 1. We used an adaptive learning
starting at 0.01. Every time the loss fails to improve for 5 epochs, the learning
rate is halved. The Autoencoder is being trained independently for each modality
with the objective to minimize the L1 difference between the original inputs and
the output matrices generated by the decoder. After training an Autoencoder
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on each modality we ignore the decoding part and use the encoder to produce
modality-specific vectorized representations with a fixed size of 1 × 128. The
Autoencoder architecture is almost identical for all modalities with the only dif-
ference being in the size of the initial input layer in order to facilitate the specific
representation of each modality as discussed in the previous section. In our a-
modal architecture (Figure 3), multiple copies of ’M1’ are being used depending
on the number of available modalities.

Learning A-modal Representations (’M2’ Module) Goal of the a-modal
architecture is to create a feature space that can sufficiently describe all modal-
ities not only in the spatial but also in the temporal domain, without being
restricted in the nature or the number of the available information signals.

One of the most popular obstacles in multimodal representation learning is
the frame-rate miss-matching across the different signals, which makes it difficult
to temporally align the various data-streams in the processing level. In our case,
we try to match all modalities to the maximum frame-rate of 30 fps provided by
the Thermal camera. Closeup and Wideangle RGB videos have a frame-rate of
25 fps. To ”correct” the frame-rate of these two sources we simply up-sample the
signal by duplicating every 5th frame of the original video. For the physiological
and audio signals, we extract 30 windows per second based on the principles
described previously in Section 4.1.

After fixating all modalities to the same frame-rate we use ’M1’ module as
shown in Figure 3 to extract a vector of 1 × 128 from each of them. Thus, at
every frame per second we get a set of N × 128 feature vectors, where N equals
the number of available modalities. The main component that discriminates
the original architecture of Figure 2 from the a-modal architecture is module
’M2’, shown again in Figure 3. Goal of this module is to project the multimodal
representations in a new, modality-agnostic feature space, by maintaining their
temporal coherence.

’M2’ module consists of two GRU components. GRU-A is a unidirectional
RNN responsible to project the spatio-temporal, multimodal representations into
the new a-modal space. To tune the parameters of GRU-A we use a another,
biderectional GRU (GRU-B), that aims to solve a frame-sorting problem using
the a-modal representations generated by GRU-A. This step is implemented
using self-supervision and it was inspired by the work shown by [13]. Thus, no
task-specific annotations are required to train ’M2’. The two components are
trained together using a shared objective function that aims to optimize the
sorting task by improving the quality of the projected representations. Similarly
to ’M1’, ’M2’ was trained independently. The learning function of ’M2’ is shown
below:

L = min
p,P
||p0 − pn||+ ||P − P̂ ||

Where P̂ is the reference temporal permutation matrix, P is the output of
GRU-B and represents the predicted temporal permutation matrix, p0 is the
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output of the GRU-A over a single modality and pn is the output of the GRU-A
over all modalities.

During testing, the pretrained GRU-A is used to produce a-modal projections
of the new/unknown multimodal samples, while GRU-B is omitted from the
pipeline.

4.2 Stress Classification (’M3’ Module)

In both the modality-dependent and modality-independent architectures, classi-
fication takes place using a ”time-aware” unidirectional GRU, shown as Module-
’M3’ in both Figures 2 and 3. ’M3’ is the only component that is trained in a
fully-supervised manner.

In the first case of modality-dependent classification, ’M3’ takes as input a
matrix of size h × 128, where h is a hyperparameter representing the tempo-
ral window on which we make classification decisions and is depended on the
frame-rate of each modality. This matrix is generated by stacking consecutive
vectorized representations generated by the pretrained Encoder of ’M1’. For our
experiments we make classification decisions based on 20 second long overlapping
windows with a 5 second step. We also perform early and late fusion experiments
by combining all the available information signals. In the first case, early fusion
happens by concatenating the modality-based 1D representations generated by
the ’M1’ Encoder. In the later case of late fusion, we vote over the available uni-
modal decisions using each models’ individual average accuracy as a weighting
factor.

In the case of a-modal classification the input to ’M3’ is again a stack of
feature vectors of size h× 128, with the main difference being that h=600 in all
scenarios, given that all modalities have a fixated frame-rate of 30 fps and that
we still classify 20 seconds long windows.

5 Experimental Results

We have conducted two categories of experiments that differ on the amount of
input modalities considered for the final decision making. For all our experi-
ments we perform subject-based leave-one-out cross validation and we report
the average performance metrics across all 28 subject.

Since meaningful verbal interaction was present only in parts of the record-
ings, specifically for the audio modality we have performed analysis only in the
QA recording segments where plenty of meaningful audio samples were available.
We excluded Monologues, since in most cases audio samples were very short and
poor of verbal and linguistic information with very long pauses.

Table 2 illustrates the final stress classification results using only a single
modality. For these experiments we deploy exclusively the architecture of Figure
2, as described in Section 4.

As it can be observed by the stability occurred across all the reported met-
rics, the classification results are pretty balanced between the two classes in all
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modalities. A result that is in line with the balanced nature of the dataset as
shown in Table 1 and that proves the ability of the general architecture of Figure
2 to capture and discriminate the valuable information in most scenarios.

However, despite the classification improvement observed compared to ran-
dom choice in all cases, not all modalities were equally good on detecting stress.
In particular, Closeup video and Physiological sensors showed the minimum
improvement with 1.3% and 2.4% increase against random respectively, while
Wideangle video was by far the best indicator of stress with an increase of 35%.
The superiority of Wideangle imagining can be attributed to the fact that overall
body, arm and head motion is being captured from this point of view, features
known for their high correlation to stress as explained in Section 2. On the other
hand, we believe that the poor performance of physiological sensors is due to the
the modality prepossessing performed before passing the signals through module
”M1”, as our results are contradictory to most related research. In the future
we would like to investigate more temporal-based or spectral-temporal combined
physiological signal representations as others have done in the past, since focus-
ing explicitly on spectral information seems to ignore very important character-
istics of the individual signals. Other aspects such as signal segmentation and
examination of the unsupervised features learned should also be revisited and
reexamined. With respect to the Closeup video, our post-analysis revealed that
the Autoencoder of module ”M1” failed in the vast majority of cases to recreate
facial features that could be indicative of stress. In most scenarios, the images
recreated by the decoder, were lacking the presence of eyes and lips and only the
head posture could be partially reproduced. We suspect that a reason for this
effect might have been the variability of features present in the our training data,
in combination to the limited amount of available samples. Thus, causing the
Autoencoder to overfit on the background information. In the future, we would
like to experiment on transfer-learning approaches by fine-tuning a pretrained
Autoencoder model on facial data, since such methods have shown promising
results in a variety of applications. Lastly, Thermal and Audio signals provided
also noticeable improvements against random choice with 9.9% and 19.5% in-
crease accordingly. It has to be noted that since Audio was considered only in the
QA sections, the available samples were significantly limited. This emphasizes
the effectiveness of the proposed method to capture impactful affective audio
features without the need of vast amounts of data.

In Figure 4 we illustrate sample images as they were recreated by the the
Autoencoder of ”M1” for the Wideangle, Thermal and Closeup videos. It is
easy to observe that the more details included in the reconstructed image the
highest the performance of the individual modality. In the case of Wideangle,
body postures can be depicted quite well, while in Thermal images the warmer
areas of the face (a feature that we can intuitively understand that may be
similar across different subjects under stress) have been satisfactorily captured.
However as explained above Closeup images could not be represented efficiently.
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Recordings Modality Acc Pr Rec F1

All Thermal 59.9 60.1 59.7 59.9
All Wideangle 86.1 85.8 85.9 85.8
All Closeup 52.4 53.8 52.2 53.0
All Physiological 53.3 55.0 50.1 52.5
QA Audio 70.2 70.4 70.4 70.3

Table 2. Results as percentages on modality-dependent experiments using the ar-
chitecture of Figure 2. Audio was analyzed using only the samples available in the
QA section. Acc, Pr and Rec refer to accuracy, precision and recall evaluation met-
rics respectively. Reported results are averaged across all users after a leave-one-out
subject-based evaluation across all 28 subjects.

Fig. 4. Reconstructed images by the Autoencoder of module ”M1”. Top row corre-
sponds to the original images and bottom one to the generated ones. Images in (a)
refer to Wideangle, (b) to Thermal and (c) to Closeup videos.

Table 3 corresponds to multimodal experimental results. We report early and
and late fusion results based on the architecture of Figure 2 and a-modal fusion
based on the top performing modalities using the architecture of Figure 3.

Early fusion was conducted by concatenating the modality-based vectors
generated by ”M1” before passing them through ”M3” while late fusion was
a simple voting across the different decisions made by each unimodal classifier.
Both early and late fusion were conducted on all the available modalities.

For a-modal fusion we perform two different experiments, one using only Au-
dio and Wideangle on the QA recording segments (top two performing modal-
ities) and one using Wideangle, Physiological and Thermal on all the available
data (top three performing modalities). Thus, illustrating the flexibility and the
potential of this approach.

As mentioned before, since valuable verbal interaction is available mostly in
the QA recordings, for each fusion method we perform two experiments. One
using exclusively the QA recordings ,where all five modalities where consid-
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ered, and one on all the available recordings where we considered only Thermal,
Wideangle, Closeup and Physiological information.

Our results indicate that late fusion of the individual decisions provided by
far the best results in all cases. Early fusion could not scale up its performance
when audio features where not available and showed overall inferior performance
compared to the other two fusion techniques. A-modal fusion also provided rel-
atively poor results compared to the modality-dependent late fusion approach.
However, a-modal results were overall slightly better to early fusion in terms of
average accuracy across the two types of experiments (QA and All recordings).
Moreover a-modal fusion performed better compared to Closeup and Physio-
logical unimodal models and provided results slightly inferior to the Thermal
unimodal approach. In addition, the results provided by the a-modal approach
are very stable between the two experiments (similarly to the late fusion), despite
the fact that completely different modalities were used. This observation may be
indicative of the stability of the learned a-modal representations, but further ex-
perimentation is needed. However, this was not the case in early fusion, since the
two experiments (QA vs All) had a 5.6% difference in performance despite the
fact that the majority of the modalities were the same. These results prove the
ability of the a-modal method to learn robust, modality-agnostic representations
that carry and combine affective knowledge from all the available resources. Our
findings indicate that there is obviously a long way to go until models of general
affective awareness become a reality. However, they highlight the possibilities of
such methods and motivate us towards investigating this topic further.

Recordings Fusion Acc Pr Rec F1 Avg Acc

All Early 53.0 52.1 51.7 51.9 54.6
QA Early 54.7 61.8 53.4 57.3

All Late 87.8 87.2 87.9 87.6 88.5
QA Late 89.4 89.3 89.4 89.3

All A-modal 56.1 55.7 57.3 56.6 56.8
QA A-modal 57.3 58.2 55.7 56.9

Table 3. Results as percentages on multimodal experiments. We perform three types
of such experiments; early and late fusion using the modality-dependent architecture
of Figure 2 and a-modal fusion based on the architecture of Figure 3. Each method
was tested both on all recording parts of MuSE, using all modalities except audio and
on the QA alone by including audio. For the a-modal experiments we evaluate only
using the top performing modalities as shown in Table 2. In particular, when testing on
all the recording parts, Physiological, Wideangle and Thermal signals were used while
on QA we evaluated using Wideangle and Audio. Acc, Pr and Rec refer to accuracy,
precision and recall. Results are averaged across all users after a leave-one-out subject-
based evaluation across all 28 subjects. Avg Acc refers to the average accuracy between
the two experiments conducted on the different recording segments.
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6 Conclusions & Future Work

In this paper we investigated the abilities of deep-learning methods on producing
affective multimodal representations related to stress. We proposed a modular
approach that enables learning unsupervised spatial or spatio-temporal features,
depending on the way that the different modules are combined. We showed
how each module can be trained and reused independently and how different
combinations of the modules can lead to different ways of combining modalities,
each coming with its own advantages and disadvantages.

In particular we demonstrated an architecture (Figure 2) able to learn spatial
modality-dependent representations in a modality agnostic way and we evaluated
the abilities of each information channel to capture signs of stress. Additionally,
we proposed a variation of this original architecture (Figure 3) able to produce
modality-independent representations, by operating on an arbitrary number of
input signals that can be highly unrelated with each other but very informative
towards understanding the targeted task; in this case the detection of stress.

One of the main assets of the proposed method is its ability to provide promis-
ing results across all the evaluated experiments by minimizing the preprocessing
steps of all the available signals and by completely avoiding manual feature en-
gineering. The presented results showcase that deep-learning methods can pro-
duce rich affective representations related to stress, despite the relatively limited
amount of data. Moreover, they show that they can function as mechanisms to
process, extract and combine information coming from multiple resources with-
out the need of explicitly tailoring each classifier on the characteristics of each
individual modality. These findings motivate us towards researching these topics
in greater depth.

In the future we would like to investigate alternative approaches of repre-
senting the different modalities before processing them through the deep archi-
tectures as we believe that it can highly impact the performance of the model.
However, our priority is to do so without compromising the minimal computa-
tional preprocessing cost as discussed in this paper. Furthermore, we plan to
apply our methods on other applications in the spectrum of affective comput-
ing such as alertness, fatigue and deception detection. Finally, we would like to
investigate alternative architectures, that can lead to improved results both in
terms of classification and computational performance.
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