
Contextual Representation of Self-Disclosure
and Supportiveness in Short Text

Chandan Reddy Akiti1, Sarah Rajtmajer1, and Anna Squicciarini1

Pennsylvania State University, University Park, PA 16804, USA

Abstract. As user engagement in online public discourse continues to
richen, voluntary disclosure of personal information and its associated
risks to privacy and security are of increasing concern. Users are often
unaware of the sheer amount of personal information they share across
online forums, commentaries, and social networks, as well as the power of
modern AI to synthesize and gain insights from this data. We develop a
novel multi-modal approach for the joint classification of self-disclosure
and supportiveness in short text. We take an ensemble approach for
representation learning, leveraging BERT, LSTM, and CNN neural net-
works.

1 Introduction

As public discourse facilitated through social media and online forums grows
increasingly commonplace, voluntary disclosure of personal information has been
normalized. But users are often unaware or under-aware about the threat of
self-disclosure to their privacy and security. We argue that public self-disclosure
is often encouraged and even primed by a false sense of intimacy, as well as
topics and tone of conversations. Accordingly, we aim to leverage contextual
representations afforded by deep neural language models for the detection of
self-disclosure and supportive text.

The application of deep learning to NLP is made possible by representing
words as vectors in a low-dimensional continuous space. Traditionally, these
word representations were static. Each word was represented by a single vec-
tor, regardless of the context. However, this approach had fundamental deficits
for tasks like sentiment analysis where the representation of a word in context
is critically important. Instead, recent work, e.g., [1], has shown that contextual
word representations increase performance on NLP tasks.

Deep neural language models such as BERT [2] and GPT-2 [3] represent suc-
cessful attempts to create contextualized word representations. Replacing static
with contextualized representations has led to significant improvement in a num-
ber of NLP tasks [2]. In this work, we use the BERT pre-trained model from the
huggingface [4] library.

Following, we present our approach and results for the CL-Aff Shared Task
on the OffMyChest conversation dataset put forth in the AAAI-2020 workshop
on Affective Content Analysis. The task involves multi-class classification of

Copyright 2020 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0). In: N. Chhaya, K. Jaidka, J. Healey, L. H. Ungar, A. Sinha
(eds.): Proceedings of the 3rd Workshop of Affective Content Analysis, New York, USA, 07-
FEB-2020, published at http://ceur-ws.org

2 F. Author et al.

sentences with 6 labels: emotional disclosure; information disclosure; support;
general support; information support; and, emotional support.

We propose two alternative models for the task of detection of self-disclosure
and supportiveness in online users’ generated comments. The first model is classi-
fication using BERT, a bi-directional transformer. We use this model to fine-tune
our word representations and for classification using sentence representations and
hidden attentions obtained from the model. The second model is classification
using a CNN, where we replace the typical embedding layer with the pre-trained
BERT model. We apply multiple convolutions using different window sizes (num-
ber of words).

2 Problem Definition

The OffMyChest conversation dataset consists of 12,860 labeled sentences and
5,000 unlabeled sentences sampled from comments on subreddits within the
OffMyChest community, with the following tags: “wife”; “girlfriend”; “gf”; “hus-
band”; “boyfriend” and “bf”. For example, the following training sentence is la-
beled for emotional disclosure and emotional support: I hope this chapter results
in a better, healthier, more fulfilled you!!
Of particular interest in this dataset is the General Support label. This label is
intended for sentences offering support through catch phrases or quotes, which
are exceptionally difficult to distinguish using automated approaches.

Label Frequency

Emotional Disclosure 0.44
Information Disclosure 0.61

Support 0.35
General Support 0.06

Information Support 0.11
Emotional Support 0.08

Table 1. Label frequency for each label in training data.

As indicated in Table 1, sub-labels for supportiveness suffer from class im-
balance. We address this issue with weighted batch sampling. That is, we assign
a weight to each sample given by the inverse frequency of occurrence of the label
assigned to it, and then draw each mini-batch from the multinomial distribution
based on the sample weights. Thus, highly-weighted samples are sampled more
often for each mini-batch.

3 Modeling Approach

Our model leverages the generalizability of Bidirectional Encoder Representa-
tions from Transformers (BERT). As BERT models tend to generalize better for
the diverse set of NLP tasks [5], we use this capability in our transfer learning

Title Suppressed Due to Excessive Length 3

approach. Sentence-level representations obtained from the BERT model can
also be fine-tuned on the unlabeled dataset to better generalize on unseen data
for our task.

BERT has its origins in Semi-supervised Sequence Learning [8], Genera-
tive Pre-Training [13], ELMo [6], and ULMFit [7]. Unlike previous models,
though, BERT is a deeply bidirectional, unsupervised language representation,
pre-trained using only a plain text corpus [2]. This makes it particularly suit-
able for our task, as it allows us to input training text as-is, without imposing
predefined and possibly biased features or setting hyper-parameters that would
require further analysis.

Context-free models such as word2vec [11] and GloVe [12] generate a specific
word embedding representation for each word in the vocabulary. That is, the
same word used in different contexts have the same word-representation. While,
the BERT model accounts for context of a sentence using the words both pre-
ceding and following. BERT has achieved state-of-the-art performance on eleven
NLP tasks [2].

We present two classification models. The first model is a BERT model for se-
quence classification fine-tuned on the unlabeled text corpus. The second model
is a CNN model where we use BERT word embedding instead of a typical em-
bedding layer for words. We use the CNN model to visualize which parts of the
sentences are contributing to the classification.

3.1 Model 1: BERT model with fine-tuning

BERT-base model has 12 layers with a hidden size of 768 and 12 self-attention
heads. This model is pre-trained on BooksCorpus (800M words) [10] and English
Wikipedia (2,500M words). We fine-tune the BERT model using a Masked Lan-
guage Model (LM) and the post and comment data provided as the unlabeled
dataset.

For fine-tuning using Masked LM, we prepare a text corpus with all the
posts and comments and feed it to the model. The model masks 15% of the
words in each sentence and tries to predict them using the other 85% words
in the sentence. Thus we fine-tune the language model to predict the words in
the corpus accurately in the context of surrounding words. For this task, we use
a learning rate of 5e-5, weight decay of 0, Adam epsilon of 1e-8 and gradient
clipping at 1.0. We train the Masked LM for 1 epoch.

Sentence tokenization We add [CLS] and [SEP] tokens at the start and end
of every sentence. These token are used in the BERT model to indicate the start
and end of a sequence. We then generate word indices for all the tokens in the
sentence using a BERT tokenizer.

Sentence padding The sentences in the training data and test data have
an average length of 17 words and maximum length of 171 words. We pad all
sentences to 200 words in length to avoid truncating the tokenized sentences.

4 F. Author et al.

Fig. 1. Sentence classification using Bidirectional Transformers [2].

Sentence classification For sentence classification, we add a linear layer on
top of the pooled output of [CLS] token. We then apply softmax on the output
of the linear layer to obtain the classification probability for the label.

parameter value

optimizer Adam
lr 1e-5

weight decay 0
pre-trained model bert-base-uncased

batch size 32
epochs 2

Table 2. Training parameters for Model 1.

Training parameters are set according to Table 2 We measure the cross-
entropy loss for each mini-batch and back-propagate the loss.

3.2 Model 2: CNN with BERT embedding

As an alternative model, we deploy the CNN model presented in [9] for text
classification. The intuition behind this model is to process window of words in
the contextual representation of sentences and aggregate the decision from all
the windows. For this purpose we represent the sentence in a matrix and design
convolution kernels of different sizes, each size corresponding to a window size
of words in the sentence.

We tokenize the sentences in a similar fashion as we did with BERT model.
If the tokenized sentence has n tokens where (n < 200), we pad the tokens

Title Suppressed Due to Excessive Length 5

Fig. 2. Sample sentences for Emotional Disclosure. The word windows, e.g., “I was
happy” and “I was left in awe” activate for the classification of Emotional Disclosure.

with zero tokens to get standardised length of N = 200 tokens. We then obtain
word representations of the N tokens from BERT-base pre-trained/fine-tuned
model. The BERT-base model has a hidden length of H = 768. Thus we take
the representation of a sentence as an N ×H matrix.

Fig. 3. CNN model with Bert embedding, modified from [9].

parameter value

optimizer Adam
lr 1e-3

weight decay 0
batch size 32

epochs 30

Table 3. Training parameters for Model 2.

We set 4 types of convolution kernels of filter size 2 through 5 and filter width
equal to the length of word representations, H. Suppose a kernel wh with filter
size of h is used for convolution on the sentence A on the window of ith token
to (i + h− 1)th token, we obtain kernel output ohi as ohi = wh · A[i : i + h− 1]
where oh is the convolution output of kernel wh on sentence A. We add a bias
term bh and activation function f to each ohi, then we have chi = f(ohi + bh)

In this way, for each kernel, we obtain an N × 1 output chi after a padded
convolution and activation. The output chi is an indicator for the weight of the

6 F. Author et al.

window i of length h for the classification task. The output of the convolution
layer can also be visualized as a heat-map for the sentence classification task.

To maximize learning, we use 12 kernels: 3 of each kernel type. We apply
max-pooling on each of the convolution output to obtain 4 outputs for each of
the kernels. Finally, a linear layer is applied on the outputs for classification. Loss
is measured using cross entropy loss function and back-propagated for training.
We use an Adam optimizer with learning rate of 1e-3, a batch size of 32 and
training for 30 epochs and we choose the model with best validation f1-score.

Visualization of activations We visualize activations in the CNN network
during classification. Given a sentence A, we pass the input as a single element
batch to the model and extract activations from ch for each window size h. In
Figure 6, we plot the heat map for each word. For a window size h, for a word Ai,
we measure the heat map as the sum of activations of all the windows in which
the word Ai is included. We then normalize the heat maps across the sentence
to plot activations with respect to windows size h.

Fig. 4. Activations in the CNN model for Emotional Disclosure. h = 2 for first two
sentences and h = 4 for the third sentence. The fourth sentence does not contain
emotional disclosure and has low activation values.

Fig. 5. Activations in CNN model for Emotional Support. h = 2 for both sentences.

Fig. 6. Activations in CNN model for Information Disclosure. h = 2, 3 and 4 respec-
tively for the sentences.

4 Results

We measure accuracy against our labeled dataset using standard accuracy met-
rics, i.e. precision, recall, F1-score and AuROC.

Title Suppressed Due to Excessive Length 7

To avoid false high accuracy on the imbalanced dataset, we measure precision
and recall of only true values for the labels. AuROC measures how well the model
is able to distinguish the true labels from false labels.
Model 1 results Results for our BERT model are reported in Table 4. As
shown, BERT provides a mean F1-score of 0.525 with mean precision 0.45 and
mean recall 0.655. Emotional Disclosure, Information Disclosure and Support
labels had no data imbalance problem, thus accounting for reasonable precision.
The model performs well on these three labels with a mean F1-score of 0.60.

However, General Support, Information Support and Emotional Support la-
bels have high data imbalance with approximately 10% true labels. Low precision
for these labels indicate high false positive rate. The model performs very poorly
on General Support. This is expectable, given the difficulty in distinguishing
catch phrases and quotes from usual text. Performing weighted sampling based
on the labels increased the recall but considerably decreased the precision.

Label Precision Recall F1-score AuROC

Emo Disclosure 0.48 0.68 0.57 0.74
Info Disclosure 0.60 0.64 0.62 0.74

Support 0.55 0.78 0.61 0.82
General Support 0.26 0.42 0.32 0.73

Info Support 0.39 0.72 0.49 0.84
Emo Support 0.44 0.69 0.54 0.85

Table 4. BERT fine-tuned model: average scores on 10-fold cross validation.

Model 2 results The CNN model provides a mean F1-score of 0.485 with pre-
cision 0.417 and recall 0.592. Emotional Disclosure, Information Disclosure and
Support labels had no data imbalance problem, thus accounting for reasonable
precision. The model performs well on these three labels with a mean F1-score
of 0.58.

Label Precision Recall F1-score AuROC

Emo Disclosure 0.43 0.67 0.53 0.69
Info Disclosure 0.56 0.67 0.61 0.72

Support 0.57 0.70 0.62 0.83
General Support 0.20 0.39 0.26 0.75

Info Support 0.38 0.56 0.45 0.83
Emo Support 0.36 0.56 0.44 0.83

Table 5. CNN model with BERT embedding: average scores on 10-fold cross validation.

Comparing the two models, BERT performs better as we fine-tune the model
while performing the classification task itself. In contrast, the CNN model takes
as input static word embeddings from BERT. We do not propagate loss from
the BERT model; we only train the CNN.

5 Conclusion

In this work, we have shown that the use of contextual embedding performs
well on complex sentence classification tasks. We have also tested an alternative

8 F. Author et al.

model with a CNN classification layer. We found the contextual embedding per-
formed with comparable accuracy, despite lack of fine-tuning. We have presented
visualizations of the convolution activations for the classification task.

Currently we use the BERT-base pre-trained model with only 12 layers. How-
ever, there are other variations of BERT models with additional parameters. In
future work, we plan to vigorously validate model parameters such as number
of layers and add text pre-processing, e.g., stemming, to further clean the data.
We suspect that fine-tuning with pre-processed text data would improve gener-
alization on test data.

We also plan to dissect bi-directional transformers like BERT and XLNet
to enhance contextual word representations for tasks specific to disclosure and
support classification in spoken dialogue systems. Finally, we would like to model
effects of peer influence on self-disclosure.

References

1. Zhilin Yang, Ruslan Salakhutdinov and William W. Cohen. Transfer Learning for
Sequence Tagging with Hierarchical Recurrent Networks, 2017; arXiv:1703.06345.

2. Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding, 2018;
arXiv:1810.04805.

3. Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario
and Sutskever, Ilya: Language Models are Unsupervised Multitask Learners (2019)

4. Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz and Jamie
Brew. HuggingFace’s Transformers: State-of-the-art Natural Language Processing,
2019; arXiv:1910.03771.

5. Yaru Hao, Li Dong, Furu Wei and Ke Xu. Visualizing and Understanding the
Effectiveness of BERT, 2019; arXiv:1908.05620.

6. Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee and Luke Zettlemoyer. Deep contextualized word representations, 2018;
arXiv:1802.05365.

7. Jeremy Howard and Sebastian Ruder. Universal Language Model Fine-tuning for
Text Classification, 2018; arXiv:1801.06146.

8. Andrew M. Dai and Quoc V. Le. Semi-supervised Sequence Learning, 2015;
arXiv:1511.01432.

9. Ye Zhang and Byron Wallace. A Sensitivity Analysis of (and Practitioners’ Guide to)
Convolutional Neural Networks for Sentence Classification, 2015; arXiv:1510.03820.

10. Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urta-
sun, Antonio Torralba and Sanja Fidler. Aligning Books and Movies: Towards
Story-like Visual Explanations by Watching Movies and Reading Books, 2015;
arXiv:1506.06724.

11. Tomas Mikolov, Kai Chen, Greg Corrado and Jeffrey Dean. Efficient Estimation
of Word Representations in Vector Space, 2013; arXiv:1301.3781.

12. Sakakibara, Y. (1992). Efficient Learning of Context-Free Grammars from Positive
Structural Examples. Inf. Comput., 97, 23-60.

13. Alec Radford: Improving Language Understanding by Generative Pre-Training
(2018)

