
A Reference Architecture for Smart Building
Digital Twin
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Abstract. This paper proposes a software architecture for creating and
managing unambiguous descriptions of a Smart Building, allowing its
Digital Twin to be deployed. These descriptions include static semantic
structural description and dynamic time-series sensors data. Moreover,
it is designed to be able to include data from various simulation tools,
represented in the same way as sensors data. Thus, relying on these de-
scriptions allow easy implementations of both monitoring and interaction
tools that can the be interfaced with the Smart Building. Before the re-
cent emergence of Smart Buildings, there was very few advantages in
applying this concept to the field of construction and building manage-
ment. Non-connected buildings don’t produce real-time data, and can’t
be monitored nor operated from computer systems. But now that more
and more buildings include IoT devices that allow them to expose data
and services, the benefits of creating a Digital Twin to interact with
the building, without interrogating the object itself, only by querying
its Digital Twin, appears obvious. It then becomes crucial to be able to
expose both a static description of the building’s components (includ-
ing IoT devices structural and functional description) and dynamic data
that represent the evolution of the building’s states over time.

Keywords: Sensor data management · Smart Building · BIM ontology
· IoT · Digital Twin

1 Introduction

Buildings have many diverse components such as building blocks, electricity
network, water pipes. . . The need to optimize a building’s function, from the
minimization of energy consumption while maintaining comfort, to preventive or
predictive maintenance, led to considering the entire lifecycle management of the
building. When considering a non-connected building, the lifecycle management
can only rely on data that are maintained by human actions, which offers very
few opportunities of innovating solutions. But buildings now become more and
more equipped with IoT devices, leading to the appearance of buildings meant
to be fully automatized known as Smart Building. Subsequently, the industry
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now shows a growing interest in deploying Digital Twins of Smart Buildings. The
Digital Twin of a physical system is a notion that first appeared in the early
2000s [5]. The term became widespread at the beginning of the years 2010, and
it is one of the topics for which different industrial sectors show a strong interest.
It is also considered by public authorities as a lever for improving governance
[1]. Among the different industrial sectors that could benefit from such tool, the
fields of construction and civil engineering are the ones that academic research
has considered the least so far.

Several definitions has been proposed for a Digital Twin, not specifically
applied to Smart Buildings. The first one comes from Grieves and Vickers who
proposed the following definition [2]: “The digital twin is a set of virtual informa-
tion constructs that fully describes a potential or actual physical manufactured
product from the micro atomic level to the macro geometrical level”. Glaessgen
and Stargel [3] consider a Digital Twin to be “an integrated Multiphysics, multi-
scale, probabilistic simulation of an as-built vehicle or system that uses the best
available structural models, sensor updates, fleet history, etc., to mirror the life
of its corresponding flying twin”. More recently, Liu et al. [4] state that “The
digital twin is actually a living model of the physical asset or system, which con-
tinually adapts to operational changes based on the collected online data and
information, and can forecast the future of the corresponding physical counter-
part”. All these definitions consider a Digital Twin as a set of data that describe
the state of a system, and its evolution over time. Those data may correspond
to the real state of the system, but they can also be related to a hypothetical
state, which could be for example the result of simulations that use data from
the Digital Twin, and produce data that are integrated in return, thus allow-
ing to predict its future state. This description includes static data, such as the
physical structure of the system, but also temporal aspects, such as the evolution
of this physical structure, and the data describing the dynamic state of the sys-
tem (temperatures, occupancy. . . ) When applied to Smart Buildings, the static
data is the structure of the building, whether structural (building blocks, fluids
and energy networks. . . ) or functional (IoT software, space partitioning. . . ). The
temporal data is of two types: the evolution of the static description over time,
and the data corresponding to the sensors and actuators that are deployed in
the building.

Much work has been done on the static representation of a building. In 1987,
a Building Information Modeling (BIM) has been proposed to facilitate collab-
orative work in both construction and evolution building’s phases. Nowadays
many industrial BIM software exist like ArchiCAD, Tekla or Revit [15]. In or-
der to facilitate the interoperability between these various software and their
data sources, an industrial exchange format, named IFC (Industry Foundation
Classes) has been proposed [16]. Its schema representation is tree-based structure
specified in the EXPRESS language [17]. The entities described in an EXPRESS
file are instantiated by an IFC file. The IFC standard is continuously evolving,
many versions are available. Some are obsolete and some others concern future
releases not yet supported by the industry. Nowadays each BIM software can
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export data in IFC standard. IFC4, the last version, is quite loosely supported
by most of the industry softwares.

In the literature, we now find more and more research work that focus on
BIM ontologies. Indeed it is known that ontologies facilitate the interoperability
between many applications. For instance, Berstein and Young in [19], were the
first to used a limited BIM ontology in order to estimate the construction cost of
a Smart Building. Later, Liu and Jiang in [6], also used another BIM ontology
and gave a more reliable cost estimation. More recently, Pauwels and Terkaj
in [8] introduced the ifcOWL ontology which is the OWL format of IFC and
became a buildingSMART standard. However the BIM industry is not yet ready
to support the complexity of IoT and in particular the richness of the most
prominent domain ontologies promoted by the W3C, such as the SOSA and
SSN ontologies described in [9]. Dealing with many domain ontologies in the
same project requires to align them as explained in [10]. This task might not be
easy to achieve because existing BIM software, even if they supposedly support
the IFC4 standard, do not properly export the IoT information. Some use generic
IFC objects, making the alignment almost impossible.

In this paper, we show how BIM and IoT ontologies (and even additional
ontologies, like BOT) can be created and aligned, then used to automatically
create and update data flow from sensors and actuators to databases, providing
a full Digital Twin software architecture to manage both static and dynamic
description of a Smart Building. This software architecture is able to alleviate
the issue with BIM silo data and provide a global view of a Smart Building.
Such data are core components of the Digital Twin of the Smart Building, and
can then expose and integrate data both from real IoT devices and tools such
as digital simulation tools to BMS (Building Management System) or intelligent
control systems.

This paper is organized as follows. In Section 2, we present the reference
architecture we propose. In Section 3, its proof of concept is presented. Finally,
Section 4 concludes the paper.

2 Towards a Smart Building Digital Twin

In order to build a Smart Building Digital Twin, we propose a reference architec-
ture as depicted in Figure 1. This reference architecture aims to be independent
from tools and serves as a reflection tool to discuss the global approach and to
identify the different phases required for reaching our goal. These phases are
formally described below. In our proof of concept, we will describe how these
phases have been implemented.

(1) Building the TripleStore for RDF data
The first phase consists of building a TripleStore that doesn’t rely on indus-
trial tools but is based on various domain ontologies such as: (a) ifcOWL for the
infrastructure, (b) SSN (Semantic Sensor Network) and SOSA (Sensor, Observa-
tion, Sample, and Actuator) for IoT description. Additional standard ontologies
like BOT (Building Ontology Topology) for the topological representation of the



4 Chevallier et al.

Fig. 1. The Reference Architecture

building can be used to facilitate the querying when topological data is required
(such as fire simulation).

Existing BIM industrial software do not use domain ontology, they rather
use either their own proprietary format, or the industrial data exchange format
IFC that we presented previously. In order to follow the recent evolution towards
Smart Buildings, the industry prefers to define new releases that are not easily
integrated in the products and that bring a lot of inconsistencies and errors. In
particular the last IFC release does not support IoT in a proper way, it mainly
focuses on the physical object and does not take into account its behaviour.

As said before, Smart Buildings are complex and costly to build, they require
the expertise of many professionals who have been trained to use specific indus-
trial software. Thus these software cannot be replaced easily and it may take
years before the industry replaces its IFC standard by RDF. This is why some
adaptors (translators) need to be defined to fill the gap between the industry
and domain ontologies.

(2) Data Enrichment and Consistency
In [7, 10], the authors follow the same approach about these domain ontologies,
however they do not address how to align these different ontologies. We believe
that the way these ontologies should be aligned should be based on name identi-
fiers that are usually created in industrial BIM software to identify in an unique
way the various objects of the building. Instead of introducing yet another nam-
ing convention, we decided to keep these names that serve as link between the
various ontologies. For instance, before inserting a specific sensor into the build-
ing, one needs to manually define where it will be located in the building. Thus
someone needs to query the ifcowl dataset to retreive the object on which the
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sensor will be attached. In turn, when adding a sensor, one may need to add
cables, make a hole in the wall to fix it, thus updating the ifcowl ontology. It
is obvious that these links cannot be found automatically, but should be added
manually through a human intervention.

When many different experts participate to the creation of a Smart Building
Digital Twin through the means of domain ontologies, many problems can occur,
such as information that is incomplete, redundant, in contradiction or imperfect.
For example, each IoT object defined in SSN should be associated (linked) to its
physical object in the ifcOWL ontology, and vice versa. Moreover, one can export
IFC data and topology data (BOT) from existing industrial software, such as
Revit, but this will introduce some redundancy since IFC already contains some
topological information. However for SSN and SOSA data to be instantiated, it
requires IoT experts to define sensors and actuators in a proper way.

Once the Digital Twin is created and represented with many RDF triples, it
will continue to be updated. The update of the building’s description, which usu-
ally takes place in industrial software, should be made by means of the SPARQL
language, on the Digital Twin. For instance, when the work of many experts
is integrated in a BIM industrial software a list of inconsistencies can be pro-
duced and given back to the experts, it’s then up to them to correct them. In
some cases, industrial software already allow this, for instance physical collision
detection when merging several BIM files. Thus we believe that smart building
complex integrity constraints should be defined as rules on the TripleStore for
RDF data. This is still an open research problem as we do not know how difficult
it will be to express them on ontologies.

Moreover a Digital Twin does not only reflect one state of a Smart Building,
it should also cover the whole life cycle of the Smart Building. If supporting
complex integrity constraints allows incremental updates, it does not provide
versioning capability. To our knowledge, there does not really exist research
tools nor industrial software that support Smart Building versioning. However
it is crucial as the French law imposes a decennial building contract that needs
to be kept in order to prove some wrongdoing. Simulation tools need to produce
different hypothetical states (versions) of a Digital Twin in order to decide which
material should be better to use. Rasmussen in [11] proposed a method to manage
the model evolution.

Finally for the architecture to be complete, the TripleStore for RDF data
should support concurrent access and transactions. Some TripleStores like Al-
legroGraph (a proprietary TripleStore) or JenaTDB have ever their transaction
management system. Others, like Blazegraph do not support them.

(3) Data Flow Program Generation
Up to now, only one part of the Smart Building Digital Twin has been created.
In order to be complete, all the information produced by sensors which reflect
the state of a Smart Building over time should be integrated. Thanks to the SSN
and SOSA ontologies, the infrastructure of sensors network is fully described.
Thus they can be queried in SPARQL to retrieve the needed information. For
instance, a first query retrieves the device name and protocol. The second uses
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the protocol name to determine what protocol-specific information to retrieve.
In the case of Modbus, it is the register offset corresponding to the device.

Thus, following the step presented above, it is possible to automatically gen-
erate both the schema of the sensor database by using the device name and the
data flow program that is going to collect the sensors data and store them in
the appropriate tables. In order to do so, one needs to choose a database for
storing a huge amount of time series data coming from hundred of sensors. Once
the database is chosen, one needs to define the physical schema and in partic-
ular the data distribution. Finally, many workflows should be defined. For each
system of sensors there is a specific workflow associated, which is a graph. An
arc between two nodes represents the data flowing between the two tasks. Those
tasks include connecting to the device at regular intervals, retrieving data from
the device, processing it (for example converting from a format to another), as-
sociating it with the current timestamp, and inserting it into the right table in
the database.

(4) System at run time
Once the Data Flow Programs are deployed, data are collected in the sensors
database mainly as time-series. As said earlier, tables names are linked to con-
cepts in the IoT ontology. Thus in order to get data from a specific sensor,
the ontology must be queried first to find the sensor’s name, then the sensor
database must be queried to retrieve the data from this sensor. These links be-
tween the two databases need to be maintained in a consistent way, as sensors
can be removed or added in the Smart Building over time.

(5) Applications
Smart Buildings applications are developed to manage, to follow the evolution
or to have a real-time view of the building. In order to enable an adequate
performance of these applications, an easy access to data issued from sensors
and about the building’s infrastructure is required. Once built, the Digital Twin
contains all the data required by advanced applications.

3 Proof of concept

The implementation we present here is a part of the Digital Twin of the real
Smart Building. This building belongs to CESI [18] which is an engineer school
offering engineering courses in industry and services, construction and computer
sciences. CESI also conducts research in the domains of Smart Buildings and
Smart Cities. This building is located on the CESI campus in Nanterre, and is

220m2 surface, composed of four rooms and his own weather station. Various
sensors are placed in each room: thermostat, luminary sensors, temperature-
humidity sensors, motion sensors, window opening sensors. For windows, one sin-
gle system captures and sends window states (i.e. open or closed). Finally, there
is a continuous mandatory ventilation (CMV) system throughout the building.
The building is composed of 90 sensors in total.

(1) Building the TripleStore for RDF data
The CESI Smart Building BIM, containing the whole description of the building
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and including furniture, has been designed using the Autodesk Revit software
[15]. Even if Autodesk claims that Revit supports IFC4, the integration and
export of sensors information in IFC4 is not yet implemented. Furthermore, there
is no IFC4 parameter for describing functional information about IoT devices,
like URLs or device ID. Thus, IoT information had to be described separately,
and linked with structural data described in IFC. As the IFC4 standard is not
well-supported in Revit, the model is exported using IFC2x3.

Once the IFC file is obtained, it is translated into RDF in order to instantiate
the ifcOWL2X3 ontology (available in [13]). The RDF instances are obtained
using existing converters as proposed in [12]. One of those converters takes as
input the IFC file and produces as output the RDF file. Note that there also exists
another converter [12] that does the opposite,i.e. it converts RDF instances from
the ontology into IFC files. This can be useful to keep the compatibility with
many existing applications that only support IFC input file. In our prototype,
we did not focus on the BOT ontology, but there is a Revit-BOT-exporter plugin
proposed in [14], allowing to obtain RDF instances of BOT ontology about the
building. The size of the IFC file of the CESI Smart Building is 70 MB. Once
converted we obtain a RDF file of 702,1 MB, containing more than 9 millions
RDF triples. By way of comparison, the Navitas dataset [7] that corresponds

to a building of 38000m2 surface, generated more than 20 millions RDF triples.
Thus, traditional main memory ontology tools such as Jena or Protégé could not
be used, instead we used the Blazegraph TripleStore.

Fig. 2. Window System classes and corresponding JSON

Concerning IoT, two separate parts are identified: the structural one (such
as thermostat housing and his location on the wall), which is already contained
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in the IFC file and the functional one which is not and which corresponds to
protocols, data access such as URLs, logical ID, register offsets, links between
sensors and actuators. . . To add functional information into our prototype, we
used the information in technical documents, such as the name of the device, its
type and location, the protocol and the protocol-specific information. . . Those
files allow to define new classes and instantiate them. Thus the IoT is fully rep-
resented into several ontologies: SOSA/SSN for the functional part and ifcOWL
for its structural representation. As said earlier, we used naming conventions to
link the domain ontologies, which allow us to use SPARQL queries to associate
the functional part to its corresponding physical objects. In our case, the naming
convention is composed of : Room name + type of the reference object + number
of this object + an optional IoT object (for instance TeslaWindow3Sensor).

Let’s consider the example of the windows system for a specific room which is
called Tesla. Sensors are placed into each window but a unique system is collect-
ing windows state using the Modbus protocol. The Modbus class is defined as
a subclass of sosa:Procedure, with specific characteristics of this protocol. Then
a WindowsTeslaSystem instance of ssn:System is created, with an instance of
Modbus procedure as depicted in figure 2. We then add to all the windows
in the room the sosa:Sensor class, and attached them to the global system. In-
stances can have multiple classes, such as windows that are both ifcowl:Window,
sosa:Sensor and sosa:Actuator (as we can see in the figure 2) which allow us to
link the structural and functional part. As depicted in figure 2, we built a JSON
file with SPARQL queries about the Modbus protocol characteristics. This JSON
file is then injected into the NodeRed server that manages data flows. This part
is more detailed later. Note that in this current prototype we do not yet support
complex integrity constraints, nor versioning, as these are really dependant upon
the BlazeGraph TripleStore functionalities that we are using.

(2) Generating the Data Flow Program
One major contribution of our work is to automatize as much as possible the
sensors data acquisition. Indeed, a Smart Building is complex and can contain
hundred heterogeneous sensors and actuators, making the work of the manager
of the building cumbersome and repetitive if some changes occur such as adding
or removing sensors from the building. The idea we defend here consists in using
the description of the IoT objects found in our TripleStore to generate the schema
of the sensor database, as well as to write the different data flow programs for
acquiring all sensors time series data to be stored in the database.

In our prototype we decided to use the NoSQL CASSANDRA database that
can deal with large amount of data and also for its horizontal scalability. Any
time series database can be used, it must be adapted to the data and possible
treatments of the use case. Data issued from a same controller is gathered in
the same table. For instance, the various sensors data of the weather station
managed by one controller are all stored in one table. In the same manner, all
lights sensors of a single room are in another table. The partitioning is made
with a “year-month” key. For our scenario, if the 90 sensors sense every minute
it will produce approximately more than 47 millions tuples per year. This data is
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Fig. 3. Find the protocol(s) of the windows

Fig. 4. Windows data needed for Modbus Protocol

only stored in the CASSANDRA database and not in the triple store to alleviate
the TripleStore for RDF data (ref Figure 1).

Once the database schema is created, by querying the TripleStore for RDF
data and an IoT middleware, we are able to collect the real data and store
them in the database. In our prototype we use Node-RED. Node-RED is a
programming tool that allows the creation of workflows for connecting together
hardware devices, APIs and online services. Its advantages include many IoT
protocol connectors already implemented and usable, a readable flow description
file format based on JSON and a WebServices API that allows modifications of
the deployed workflows.

Let’s illustrate a little bit more how this works by considering the example of
a workflow that detects a window opening. The connection to the window uses
the IoT protocol name used by the window sensor, and some protocol-specific
data needed for the connection to this specific window (such as the sensor ID, or
a device register offset) obtained by querying the TripleStore for RDF data in
SPARQL (Figure 3). In this example, the ModbusTCP/IP protocol is identified.
The Modbus protocol needs the IP and port address of the server, and a the
register number specific to the window (since in the system that is installed,
all window states are retrieved in a unique frame), thus another query is issued
to retrieve the needed data as shown in the query (Figure 4). Note that this
second query is specific to the ModbusTCP/IP protocol, in the case of another
protocol it would be different. The second node is responsible for recurrent device
interrogation. The third node retrieves the current time and date for inserting
in the database. The three following nodes are used for data processing. The
last one generates a CQL query, used for inserting data into the CASSANDRA



10 Chevallier et al.

database. In this query, the table in which the data is inserted is determined
using the window name that is obtained by querying our TripleStore.

(3) Simulations
A Smart Building Digital Twin aims to analyze and predict the building’s be-
haviour during its life cycle with some multi-domain simulations. Many applica-
tions, such as predictive maintenance for example, needs the structural descrip-
tion of the building, that contains the list of each object subject to maintenance,
but also need to know the use time of each of these objects, in order to predict
their failure probability over time. Another example is the Intelligent Control
System, that in order to manage simultaneously and consistently thermal and
light comfort, must have access to the list of all windows and lamps, but also
to the current temperature and natural light. In case of low light, the system
can determine whether it’s better to open blinds or to turn on the lights. In our
prototype, we focused on the environmental part which is a valid application of
a multi-domain simulation: structural description, dynamic time-series sensors
and meteorological data are necessary. Many other simulation applications can
be added to have a full representation, they will all have the same principle and
need the same data.

For predicting the evolution of temperature of the buildings rooms we used
OpenModelica software and a simulator changing actuators state (like radiator
heating or not) as shown in figure 5. OpenModelica tool automatically builds
a multi-domain digital simulation model, using the structural description of a
building (including its geometry and the building material), and the historical
thermal and meteorological data (acquired from the building’s sensors). We built
a Modelica model by querying ifcOWL instances to obtain structural characteris-
tics of a room (as walls location, thickness, material used, ...). We detected some
incompatibilities (spaces not closed, ...) in our first model then we built a list of
the constraints that must be respected to have a coherent BIM representation
accepted by OpenModelica software.

Fig. 5. Simulation

To start a simulation, several input are needed: meteorological data which
are historical or predictive data not included in our prototype but more issued
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from different sources in one part. In a second part, a subdomain of the ifcowl
which are relevant for simulation (rooms, walls, windows, . . . ), and IoT data.
More information are necessary for simulation, such as operating mode of the
heat pump or heating trip temperature which are not include in the dataset
because they are not defined in SOSA/SSN ontology. They could be added in
extensions of those ontologies for example. Finally, during simulation not all
sensors are analyzed, that is why some data are replaced by real ones which
are stored into the CASSANDRA database (explained in section 3). Then the
simulation pilot starts the simulation. Depending on the temperature evolution
of the room, actuators states change due to thermostat rule by the dedicated
simulator. This change is also modified in the state of actuator in the input of
OpenModelica as shown in figure 5. Resulting data are stored into new tables in
the Cassandra Database. Those tables store some parameters of the simulation
configuration (such as representation and input datasets).

4 Conclusion

In this paper, we have presented a reference architecture for creating and man-
aging a Digital Twin that provides a global view of a Smart Building (i.e. struc-
tural/static and temporal/dynamic data). Thus it will facilitate the development
of various applications that were not possible before due to the numerous silo
data. By offering a TripleStore with its multi-domain ontologies promoted by
the W3C, and its associated sensor database both built in good intelligence
and consistency, it is now possible to tackle more advanced functionalities and
applications.

We proved with our prototype based on a real Smart Building that it is a
very promising way to follow. It enables us to develop a multi-domain digital
simulation tool that is going to be used to train and educate future engineers
in the domain of Smart Building. Although for our approach to be complete
and fully effective, some perspective issues such as complex integrity constraints
and versioning, should be addressed by the research community. We also hope
that the industry will benefit from this work and will make some efforts in that
direction.
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