
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons Li-

cense Attribution 4.0 International (CC BY 4.0). COAPSN-2020: International Workshop on

Control, Optimisation and Analytical Processing of Social Networks

Parallelization of the Method of Simulated Annealing

when Solving Multicriteria Optimization Problems

Lesia Mochurad
 1[0000-0002-4957-1512]

, Nataliya Boyko
1[0000-0002-6962-9363]

,

Vasyl Sheketa
2[0000-0002-1318-4895]

1 Department of Artificial Intelligent Systems, Lviv Polytechnic National University,

12 S. Bandery str., Lviv, 79000, Ukraine
2 Ivano-Frankivsk National Technical University of Oil and Gas

lesia.i.mochurad@lpnu.ua, nataliya.i.boyko@lpnu.ua,

vasylsheketa@gmail.com

Abstract. In the analysis of methods of multicriteria optimization. The detailed

implementation of the parallel algorithm of the simulated annealing method is

reproduced by the example of the extension of a large-scale travelling salesman

problems. For this purpose are used such properties as multithreading and mul-

ticore of modern computer systems. An application software system was devel-

oped. We conducted a number of experimental studies. Adhering to the results

that indicate that more computational process optimization is available that is at

the optimal gap of the multicriteria optimization problem, the large rate for

probable variations are parallel threads and computer cores.

Keywords: Travelling Salesman Problem, Parallel Algorithm, Multithreading,

Multicore, Efficiency Factor.

1 Introduction

In the process of designing intelligent control systems, there is often the task of de-

termining the best values for the parameters or structure of objects [1, 2]. This task is

called optimization. Today, optimization problems and decision-making problems are

modeled and solved in various fields of engineering [3-7]. The skills of mathematical

justification for decision making include the skills of mathematical modeling of opti-

mization problems, the choice of adequate mathematical support (method, algorithm,

software system) with the necessary justification, the analysis of the obtained results

and their interpretation in terms of the subject area.

For example, the task of the travelling salesman problem is widely used in comput-

er-aided design, transportation systems, PCB (printed circuit boards) manufacturing,

protein structure studies, X-ray crystallography, and other fields. An important feature

https://www.scopus.com/redirect.uri?url=http://www.orcid.org/0000-0002-3058-6650&authorId=35093092400&origin=AuthorProfile&orcId=0000-0002-3058-6650&category=orcidLink
mailto:lesia.i.mochurad@lpnu.ua
mailto:nataliya.i.boyko@lpnu.ua
mailto:vasylsheketa@gmail.com

of these problems is their large dimension and the inability to obtain real-time solu-

tions [8, 9].

Purpose and task. The purpose of this work is to parallel the simulated annealing

method and to develop software for large-scale multicriteria optimization. To achieve

this goal, you must solve the following problems:

─ To analyze the existing methods of multicriteria optimization and to outline the

advantages of using the simulated annealing method;

─ Develop an application software system to parallelize large-scale problem solving,

based on the simulated annealing method;

─ Without reducing the generality, as an example of solving a travelling salesman

problem, to evaluate the effectiveness of the proposed algorithm of parallel calcu-

lations in terms of quality and timing of the task based on the experimental studies

and comparative analysis of the results obtained.

The object of study – Is the process of paralleling the annealing method when

solving large-scale multicriteria optimization problems.

The subject of the study – Is methods, algorithms and software for solving large-

scale multicriteria optimization problems.

Research methods. The simulated annealing method to solve large-scale mul-

ticriteria optimization problems was analyzed in this work. For the parallelization, it

is suggested to use the many thread properties and Java programming tools. Algo-

rithm theory, object-oriented programming methods were used in the development of

the software.

2 Related Works

The optimization problem as a whole is reduced to finding the extremum (minimum

or maximum) of the objective function with given constraints [10]. Its mathematical

formulation is as follows:

The values of the vector variables must be defined: 1 2(, ,...,)mx x x x , which sat-

isfy the limitation of appearance 1 2(, ,...,)i m ig x x x b  , for every 1, ...,i k and at

which the maximum or minimum of the objective function is reached

1 2() (, ,...,) :mf x x x x 1 2() (, ,...,) (max, min)mf x x x x  . The final solution to the

problem is a pair that consists of the optimal solution and the optimal value of the

objective function.

The methods of mathematical programming give a great variety of algorithms for

solving this problem [11, 12]. In general, search algorithms implement methods of

descent to the extremum, in which the values of the objective function are consistent-

ly improved until reaching the extremum. Depending on the possibility of algorithm

of finding a local or global extremum, they are divided into local and global search

algorithms.

Local extremum search algorithms are designed to determine one of the local ex-

trema on the set of endless solutions in which the objective function takes the maxi-

mum or minimum value. In their construction, both deterministic descent in the ex-

tremum and random search can be used. The deterministic methods distinguish be-

tween zero-order and gradient (1st and 2nd order) methods. The first ones are based

on calculations only of the values of the optimized function. The second use partial

derivatives of the second order. Methods of stochastic programming or neural net-

works are used to find extremum in cases where the type of optimized function is not

fully known or its structure is too complex. The effectiveness of the optimal search

procedure - the ability to find the solution and the convergence to the solution on the

speed depend on the type of function and the method applied to it.

Of the direct methods of multicriteria optimization in the search for local extre-

mum the most famous are [13-15]:

─ coordinate descent – alternate parameter optimization along axes by one of the

known one-dimensional methods;

─ spiral coordinate descent;

─ rotating coordinates (Rosenbrock method);

─ simplex search;

─ Hook-Jeeves sample search and more.

The task of finding the global extremum of a function on a valid set X is to find

the point x X  , for which is executed: () (), () ()f x f x f x f x   for each .x X

Limitations related to computational error and other factors often do not allow finding

the exact solution to the problem. In this case, there is a search for an approximate

solution, that is, the point of many   optimal solutions

 : () ()X x X f x f x      . Finding the exact solution can be considered as a

case of searching for a close solution with 0  .

The global extremum search algorithms are divided into deterministic, statistical

and combined [16]. Often, the task of global optimization is reduced to the task of

finding local extrema and finding among them the global optimum, thus, using the

methods of finding local extrema.

Determined methods for finding a global solution include the Gomori algorithm or

the cutting-plane method. The latter is an alternative basis for the construction of both

accurate and approximate algorithms for solving integer programming problems.

Currently, their high efficiency in combination with the branch and bound meth-

od [17] is proven. Such hybrid computing schemes are commonly referred to as

branch and clipping method. All of these methods implement a common computa-

tional strategy that consists in solving the sequence of relaxed linear programming

sub-tasks. In the clipping method, relaxed subtasks gradually improve the approxima-

tion of a given integer problem, reducing the neighborhood of the optimal solution.

In severe cases, optimality may not be obtained or proved by an acceptable number

of steps, however, even in this case, the clipping methods allow us to find an approx-

imate integer solution with a given error (in the previously known neighborhood of

the optimal solution).

Cutting-plane method algorithms can be effectively used to solve both partial inte-

ger programming problems, including the traveling salesman problem, the maximum

cut problem, the knapsack problem, and the overall integer linear programming prob-

lem.

Compared to branch and bound methods, cutting-plane methods are more techno-

logical in programming because they do not require extra amount of RAM to store the

decision tree, but at the same time less versatile because they are not able to work

with relaxed subtasks that are convex programming tasks. The first cutting-plane

algorithm was proposed by R.E. Gomori in 1958. Currently, these methods are effec-

tively used to solve various tasks, including the travelling salesman problem.

Recent studies [17] have also shown that the cuts proposed by Gomori are quite ac-

tual at present. The advantage of this method is that any linearity in the original

statement of the problem remains. This algorithm is quite effective for solving a cer-

tain class of problems – geometric programming. Its main disadvantage is the re-

quirement of the convexity of the valid area and the increasing dimension of the linear

programming problem from iteration to iteration.

Genetic algorithms are a class of optimization methods based on imitations of pro-

cesses occurring in nature, in particular natural selection – a concept voiced from the

evolutionary theory of Charles Darwin [16]. In accordance with Darwin's theory in

the natural environment, preference for survival and reproduction is given to individ-

uals most adapted to the conditions of a particular habitat. The main material for natu-

ral selection is natural gene mutations and their combinations obtained by reproduc-

tion. In the course of natural selection, individuals with the greatest fitness function –

a numerical characteristic that is determined according to a specific task - survive.

The most fit individuals get the opportunity to cross (crossover) and give offspring.

The resulting population is then affected by random mutations.

Reformulate the optimization problem as the problem of finding the maximum of a

function 1 2(, ,...,)nf x x x , called the fitness function. It is necessary that

1 2(, ,...,) 0nf x x x  in a limited area of definition, continuity and differentiation are

absolutely not required. Each parameter of the fitness function is encoded by a row of

bits. The individual will be called a row, which is a concatenation of rows of an or-

dered set of parameters.

The versatility of genetic algorithms is that only parameters such as adaptability

and decision coding depend on a particular task. The rest of the steps for all tasks are

the same. With the function of fitness among all individuals, the population distin-

guishes:

─ the most adapted, which get the opportunity to cross and give offspring;

─ the worst (bad decisions) that are removed from the population.

In addition to the global extremum search methods described above, there is also

the method of simulated annealing that was selected in the article for further research.

The algorithm of simulated annealing is based on the simulation of a physical pro-

cess that occurs during crystallization of a substance from a liquid state into a solid,

including when annealing of metal. The final state after crystallization corresponds to

the minimum energy of the lattice configuration.

Before applying any optimization algorithm, the data on which the model will be

formed are selected according to certain requirements, namely:

1. Volume and representativeness, that is, the data should be as fresh as possible, and

the sample should be large depending on the number of parameters being opti-

mized.

2. The minimum of rules and parameters, because with the increase of parameters

that are optimized, the probability of fitting the model to historical data increases,

rather than reflecting the real patterns of market behavior.

3. The sample should be divided into two parts. One part of the data to create a mod-

el, the other – to test the created model.

3 Setting the Тask

Without reducing the generality, let us look at the main aspects of parallelizing the

annealing simulation method, as an example of solving a traveling salesman problem.

It is known that the traveling salesman problem has a wide application [8]. However,

an important feature of these tasks is their large dimension, sometimes over one mil-

lion points. The traveling salesman problem belongs to the class NP because it has

factorial computational complexity. This, in turn, does not allow accurate resolutions

to be made for large dimension problems in an acceptable time. Therefore, there is a

need to analyze the possibility of parallelizing the solution of the problem and devel-

oping an appropriate application software system [19]. An algorithm based on an

annealing simulation method and a property such as multithreading [20] are proposed.

The traveling salesman problem can be represented as a model on a graph, that is,

using vertices and edges between them. Thus, the vertices of the graph correspond to

the cities and the edges (,)i j between vertices i i j - ways of communication be-

tween these cities. To each rib (,)i j it is possible to set the criterion of profitability

of the route , 0i jC  , which can be understood as, for example, distance between cit-

ies, time or cost of travel. Thus, the solution to the traveling salesman problem is to

find the Hamilton cycle of the minimum weight cycle in a fully weighted graph.

4 Research Methods and Tools

4.1. An annealing simulation method

The following describes the algorithm of the annealing method. This algorithm is

proposed in the paper to be used in solving large-scale multicriteria optimization

problems.

The main elements of the annealing method are:

1. A limited set S .

2. A valid target function J , that is defined at the set S . Let us mark ,S S  ,

the set of global minimum of the function J .

3. For each ,i S , call the set () { }S i S i  as the set of adjacent nodes of i .

4. For each i set of positive coefficients , ()ijq j S i , such that
()

1.ij

j S i

q


 .

Suppose that ()j S i if and only if ().i S i .

5. Non-growing function : (0,),T N   called the freezing schedule and

()T t  temperature of the moment .t .

6. Initial conditions (0) .x S .

The algorithm is based on a discrete-time inhomogeneous Markov chain (),x t , whose

development is as follows:

1. If the current state ()x t , equivalent to i , select the next node j for i ran-

domly, the probability of choosing an individual ()j S i is ijq .

2. Then the next state (1)x t  is defined as follows:

2.1. If () (),J j J i then (1) .x t j  .

2.2. If () (),J j J i then (1)x t j  with the probability of

 exp (() () / () ,J j J i T t  else (1) .x t i 

Formally,
1

(1) () exp max () () ,
()

ijP x t j x t i q J j J i
T t

 
          

 
 if

,j i ().j S i

If ,j i (),j S i then (1) () 0.P x t j x t i      

You can justify the described method by considering the inhomogeneous Markov

chain (),Tx t for which temperature ()T t is kept constant level of .T Suppose that the

Markov chain is irreducible and aperiodic and ij jiq q for every , .i j Then ()Tx t -

is a Markov reversible chain with its invariant probability of distribution

1 ()
() exp , ,T

T

J i
i i S

Z T


 
   

 
 where TZ - is the normalizing constant. At 0,T 

probability distribution T concentrates on the plural S  the global minimum. The

conditions of convergence of the algorithm are formulated by Hayek [21].

4.2. Multithreading in Java

Java implements integrated multithreaded programming support. A multithreaded

program contains two or more parts that can be executed simultaneously.

Each part of such a program is called a thread, and each thread specifies a separate

execution path. In other words, multithreading is a specialized form of multitasking.

In a multitasking environment, the smallest element of managed code is thread.

This means that one program can perform two or more tasks simultaneously. For

example, a text editor can format text at the same time as it is printed, as long as the

two actions are performed by two separate threads.

Multithreading allows you to write effective programs that make the most of the

available power of the processor of the system. Another advantage of multithreading

is that it minimizes downtime. This is especially important for interactive Java-based

networking environments, as they have idle time and downtime.

For example, the speed of data transmission over a network is much lower than the

speed at which a computer can process it. Even reading and writing local file system

resources is much slower than the processing speed of the processor. And, of course,

the user enters the keyboard much slower than the computer can process.

In single-threaded environments, your application is forced to wait for such tasks

to complete before moving on to the next one, even if the program is idle most of the

time, waiting for input. Multithreading helps reduce downtime because other threads

can run while one waits.

Java assigns to each thread a priority that determines the behavior of that thread

relative to others. Thread priorities are given by integers that determine the relative

priority of one thread over the other.

The priority value itself is irrelevant – the higher priority of thread is not executed

faster than the lower priority when it is the only executable thread at this time.

Instead, the thread priority is used to make the decision when switching from one

running thread to another. This is called context switching. The rules that determine

when context switching should take place are quite simple.

The thread may voluntarily give way to management. To do this, you can either

explicitly concede the execution queue, suspend the thread, or block the I/O wait

time. In this scenario, all other threads are checked, and the CPU resources are trans-

ferred to the thread with the highest priority ready to execute.

The thread may be interrupted by another, more priority thread.

In this case, the low priority thread, which is not occupied by the processor, is

simply terminated by the high priority thread, no matter what it does.

5 Results

The main steps of the program:

─ Set the initial temperature and random initial solution;

─ We get into a cycle that is active until the condition is reached.

─ Now we choose a neighbor making small changes in the decision.

─ We then decide whether a new decision is worth considering.

─ We reduce the temperature and make a new iteration of the cycle.

Initialization of the temperature

For better optimization when initiating a temperature variable, you should choose a

temperature that will initially allow practically any movement against the current

solution. This gives the algorithm a better idea of exploring the entire search space

before cooling and settling in a more focused area.

Visualization of the problem and its results

For a better understanding of the algorithm, we decided to visualize the results. In

Fig. 1 is shown the initial map of the cities to be crawled.

Fig. 1. Initial City Map (Quantity: 20)

In Fig. 2 is shown the operation of the algorithm for the number of cities: 20 and

cooling rate 0.1. And in Fig. 3 at the same number of cities and cooling rate – 0.0001.

Fig. 2. Сoolingspeed – 0.1(20) Fig. 3. Сoolingspeed – 0.0001(20)

In Fig. 4 is shown the operation of the algorithm at a coolingrate of 0.1 and

the number of cities: 100. And in Fig. 5 – at a coolingrate of 0.0001 and the number

of cities: 100.

Fig. 4. Сoolingspeed – 0.1(100)

Fig. 5. Сoolingspeed – 0.00001(100)

From the results of testing the algorithm at different cooling rates, we can conclude

that the lower the cooling temperature, the better the algorithm works to find a solu-

tion to the travelling salesman problem.

For the sake of clarity and objective assessment of parallelization performance,

tests were conducted on different cities and PCs with different amount of cores.

In the Tabl. 1 is shows the results of calculations performed on two-core PC with-

out parallelization.

Tabl. 1. Solution time of theTSP without parallel on the 2-core, s

In the Tabl. 2 is shown the results of the calculations performed on two par-

allel nuclear PCs.

Tabl. 2. Solution time of theTSP with 2-core parallel, s

In the Tabl. 3 is shown the results of the calculations performed on four-core non-

parallel PCs.
Tabl. 3. Solution time of theTSP without parallel on the 4-core, s

In Fig. 6 the dependence of the program execution time on the number of flows on

two and four nuclear architectures with/without the use of parallel simulated anneal-

ing method for the number of cities – 20 is presented.

Fig. 6. Graph of algorithm results for the number of cities: 20

Here 1 – is dependency without parallelization on a dual-core processor; 2 – with-

out parallelization on quad-core; 3 – with parallelization on a dual-core processor; 4 –

with a quad-core parallel. These designations are preserved when the following de-

pendencies are displayed (see Fig. 7-8).

Fig. 7. Graph of algorithm results for the number of cities: 100

In Fig. 7 the dependence of the program execution time on the number of threads

on two- and four-core architectures with/without the use of parallel simulated anneal-

ing method for the number of cities – 100 is presented.

Fig. 8. Graph of algorithm results for the number of cities: 600

In Fig. 8 shows the dependence of the program execution time on the number of

threads on two- and four-core architectures with/without the use of parallel simulated

annealing method for the number of cities – 600.

In the process carrying out numerical experiments, it was found that for a small

number of cities, the execution time of the program at parallel is almost indistinguish-

able from the execution time of the program in a single thread. But the larger the

number of cities, the better results at parallelization. Also, the program works more

efficiently with more cores of PC.

6 Conclusion

In order to organize efficient calculations suitable for large-dimensional problems,

in this work was proposed a parallel algorithm for finding the global extremum – a

method of simulated annealing. An application software system has been developed

to give the opportunity to solve a large-scale traveling salesman problem. The pro-

gram is written in Java using a property such as multithreading. On the basis of a

number of numerical experiments, the advantages of the proposed approach were

analyzed: graphs of dependencies of the implementation time of the sequential and

parallel algorithm depending on the dimension of the processed data and the multi-

core architecture of the corresponding computing system were constructed. On the

basis of coefficients of efficiency and acceleration the prospects of further optimiza-

tion of the computational process due to the modern development of multi-core sys-

tems are investigated.

References

1. Baklan, I.V., Bidiuk, P.I., Nesterenko O.V.: Designing Intelligent Decision Making

Systems, K. NAU. 196 p. (2010).

2. Gozhiy, A.P.: Basic Aspects of Application of Information Technologies in Scenario

Planning Problems. Scientific Works of the ChDU of Petro Mohyla: Mykolaiv,

series: Computer Technologies, № 148, T.160, 158-167 (2012).

3. Trius, Y.V., Manko, M.O.: Web-oriented consulting expert system on optimization

methods. Bulletin of the Cherkasy University. Series: Applied Mathematics.

Computer Science, № 18. 99-114 (2014).

4. Litvin, V.V.: Problems of optimizing the structure and content of ontologies and

methods for solving them. Visn. Nat. University of Lviv Polytechnic. “Information

systems and networks”, № 715. 189–200 (2011).

5. Prokudin, G.S., Belous, S.O.: One of the approaches to solving the network transport

problem. Traffic safety at the crossroads of Ukraine, K.: OOO "Magazine" Rainbow",

№. 1, 2 (15). 52-56 (2003).

6. Syerov, Y., Shakhovska, N., Fedushko, S.: Method of the Data Adequacy

Determination of Personal Medical Profiles. Proceedings of the International

Conference of Artificial Intelligence, Medical Engineering, Education (AIMEE2018).

Advances in Artificial Systems for Medicine and Education II. Volume 902, 2019.

pp. 333-343. https://doi.org/10.1007/978-3-030-12082-5_31

7. Mastykash, O., Peleshchyshyn, A., Fedushko, S., Trach O. and Syerov, Y.: Internet

Social Environmental Platforms Data Representation, 13th International Scientific

and Technical Conference on Computer Sciences and Information Technologies

(CSIT), Lviv, Ukraine, pp. 199-202. (2018) doi: 10.1109/STC-CSIT.2018.8526586

8. Bazylevyсh, R., Kutelmakh, R., Kuz, B.: Methods of clustering of a set of points in a

salesman problem with constraints. Visnyk of Lviv National University, № 672:

Computer Science and Information Technology. 207-212 (2010).

9. Bazylevyсh, R., Kutelmakh, R., Prasad, B., Bazylevyсh, L.: Deсomposition and

sсanning optimization algorithms for TSP. Proсeeding of the International Сonfer-

enсe on Theoretiсal and Mathematiсal Foundations of Сomputer Sсienсe, Orlando,

USA. 110-116 (2008).

10. Vitlinsky, V.V., Tereshchenko, T.O., Savina, S.S.: Economic-mathematical methods

https://doi.org/10.1007/978-3-030-12082-5_31

and models: optimization: textbook, K.: KNEU. 303 p. (2016).

11. Samoilenko, M.I., Skokov, B.G.: Operations Research (Mathematical Programming.

Queuing Theory): Educ. Manual, Kharkiv: HNAMG. 176 p. (2005).

12. Dunaevskaya, O.I., Akhiezer, E.B.: Essence of mathematical methods and models for

solving economic problems. International conferences: Research and optimization of

economic processes "Optimum": Kharkov. 128 – 134 (2014).

13. Klimov, A.S.: Numerical methods for solving the problem of optimal design of

complex technical systems. Vis. Nat. aviation. un-ty, № 1. 133-139 (2006).

14. Zakharova, E.M., Minashina, I.K.: A review of multidimensional optimization

methods. Information processes, T. 14, № 3. 256-274 (2014).

15. Sorin Mihai Grad: Vector Optimization and Monotone Operators via Convex Duality.

Recent Advances (Springer). 269 p. (2014).

16. Larionov, Y.I., Levikin, V.M., Khazhmuradov, M.A.: Research of operations in

information systems. Kharkov: SMIT Company. 364 p. (2005).

17. Solovyova, T. A., Khristoforova, E.I.: The Gomori method for solving integer

programming problems. Youth and Science: Proceedings of the VIII All-Russian

Scientific and Technical Conference of Students, Post-Graduate Students and Young

Scientists, dedicated to 155-the anniversary of the birth of K. E. Tsiolkovsky

[Electronic resource], Krasnoyarsk: Siberian Federal University. Access mode:

http://conf.sfu-kras.ru/sites/mn2012/section11.html (2012).

18. Boyko, N., Shakhovska, K.: Information system of catering selection by using

clustering analysis : 2018 IEEE Ukraine Student, Young Professional and Women in

Engineering Congress (UKRSYW), October 2 – 6, Kyiv, Ukraine, pp.7-13 (2018).

19. Mochurad, L., Boyko, N.: Solving Systems of Nonlinear Equations on Multi-core

Processors. DOI: 10.1007/978-3-030-33695-0_8, 17 p. (2020).

20. Schildt, Herbert: Java. The Complete Guide, 8-th ed. M .: ID Williams LLC. 1104 p.

(2012).

21. Bertsimas, D., Tsitsiklis, J.: Simulated Annealing. Statistical Science, Vol. 8, № 1.

10-15 (1993).

22. Mochurad, L., Shakhovska, Kh., Montenegro, S.: Parallel Solving of Fredholm

Integral Equations of the First Kind by Tikhonov Regularization Method Using

OpenMP Technology. Advances in Intelligent Systems and Computing IV.

DOI: 10.1007/978-3-030-33695-0_3, 11 p. (2020).

http://conf.sfu-kras.ru/sites/mn2012/section11.html
https://www.researchgate.net/profile/Lesia_Mochurad?_sg%5B0%5D=XgyYEILmnidf5q5l1o12lDYqEmGj1oKsfbAMxhL2BTcQ2W7BForPRL9gSzcyBGvC3eV7l1s.mTylsYuKdDGg_9E2xfn3qjlkBA7MMBwX1AT5mnJz2oQejZlMl3kX8SlU-QiRz-lacn2FjwfcSEq5cSmxU-U9LQ&_sg%5B1%5D=TLamMkdvj7vEbUiyppNAfKzPQcoCsYTDIxrWbmeHogST6lHQwnzmptzP-EqefWJEjy9ixjaqKV9RusZu.UOTxDTWfhLPMliBwg0UpPpRoCHYJPfDG6U-hcNQACSsLDokgvjsPAPfa425hUJNsuAPvgpOGeQbMUcH31VfWJw
https://www.researchgate.net/profile/Nataliya_Boyko?_sg%5B0%5D=XgyYEILmnidf5q5l1o12lDYqEmGj1oKsfbAMxhL2BTcQ2W7BForPRL9gSzcyBGvC3eV7l1s.mTylsYuKdDGg_9E2xfn3qjlkBA7MMBwX1AT5mnJz2oQejZlMl3kX8SlU-QiRz-lacn2FjwfcSEq5cSmxU-U9LQ&_sg%5B1%5D=TLamMkdvj7vEbUiyppNAfKzPQcoCsYTDIxrWbmeHogST6lHQwnzmptzP-EqefWJEjy9ixjaqKV9RusZu.UOTxDTWfhLPMliBwg0UpPpRoCHYJPfDG6U-hcNQACSsLDokgvjsPAPfa425hUJNsuAPvgpOGeQbMUcH31VfWJw
https://www.researchgate.net/profile/Lesia_Mochurad?_sg%5B0%5D=9mnDL2R-9jm8beaOeJrkRhTCJUgNFOJQmPPIQcFbuc6gxWpYNfn-W5MhKMTQfyj1V-wInfo.PituZ1CELcBp_9mMmiRdMgkt_kHnBTeUYCANzmMSRL5Ha9iTCIoBwCfFO7JXoX6fMMOGkCPeG7NoQAWhflw00g&_sg%5B1%5D=ECUeOWhOOhBvAju_NTi3Aspjqhu5rf0nKpiBjTalA2LwRiq1vSoHyfbB67m143SaP7BTdMEGmAoKm8YU.hqPeAacBm87aqlG4S8TnmmyqV1j0j3XhqAX4E4TH88D9Pl3A_wv7uHlh8P0sil1qNHHFLwMImK8vDpBeZ8IL2A

