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Abstract. In the analysis of methods of multicriteria optimization. The detailed 

implementation of the parallel algorithm of the simulated annealing method is 

reproduced by the example of the extension of a large-scale travelling salesman 

problems. For this purpose are used such properties as multithreading and mul-

ticore of modern computer systems. An application software system was devel-

oped. We conducted a number of experimental studies. Adhering to the results 

that indicate that more computational process optimization is available that is at 

the optimal gap of the multicriteria optimization problem, the large rate for 

probable variations are parallel threads and computer cores. 

Keywords: Travelling Salesman Problem, Parallel Algorithm, Multithreading, 

Multicore, Efficiency Factor. 

1 Introduction 

In the process of designing intelligent control systems, there is often the task of de-

termining the best values for the parameters or structure of objects [1, 2]. This task is 

called optimization. Today, optimization problems and decision-making problems are 

modeled and solved in various fields of engineering [3-7]. The skills of mathematical 

justification for decision making include the skills of mathematical modeling of opti-

mization problems, the choice of adequate mathematical support (method, algorithm, 

software system) with the necessary justification, the analysis of the obtained results 

and their interpretation in terms of the subject area. 

For example, the task of the travelling salesman problem is widely used in comput-

er-aided design, transportation systems, PCB (printed circuit boards) manufacturing, 

protein structure studies, X-ray crystallography, and other fields. An important feature 
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of these problems is their large dimension and the inability to obtain real-time solu-

tions [8, 9]. 

Purpose and task. The purpose of this work is to parallel the simulated annealing 

method and to develop software for large-scale multicriteria optimization. To achieve 

this goal, you must solve the following problems: 

─ To analyze the existing methods of multicriteria optimization and to outline the 

advantages of using the simulated annealing method; 

─ Develop an application software system to parallelize large-scale problem solving, 

based on the simulated annealing method; 

─ Without reducing the generality, as an example of solving a travelling salesman 

problem, to evaluate the effectiveness of the proposed algorithm of parallel calcu-

lations in terms of quality and timing of the task based on the experimental studies 

and comparative analysis of the results obtained. 

The object of study – Is the process of paralleling the annealing method when 

solving large-scale multicriteria optimization problems. 

The subject of the study – Is methods, algorithms and software for solving large-

scale multicriteria optimization problems. 

Research methods. The simulated annealing method to solve large-scale mul-

ticriteria optimization problems was analyzed in this work. For the parallelization, it 

is suggested to use the many thread properties and Java programming tools. Algo-

rithm theory, object-oriented programming methods were used in the development of 

the software. 

2 Related Works 

The optimization problem as a whole is reduced to finding the extremum (minimum 

or maximum) of the objective function with given constraints [10]. Its mathematical 

formulation is as follows: 

The values of the vector variables must be defined: 1 2( , ,..., )mx x x x , which sat-

isfy the limitation of appearance 1 2( , ,..., )i m ig x x x b  , for every 1, ...,i k  and at 

which the maximum or minimum of the objective function is reached

1 2( ) ( , ,..., ) :mf x x x x 1 2( ) ( , ,..., ) (max, min)mf x x x x  . The final solution to the 

problem is a pair that consists of the optimal solution and the optimal value of the 

objective function. 

The methods of mathematical programming give a great variety of algorithms for 

solving this problem [11, 12]. In general, search algorithms implement methods of 

descent to the extremum, in which the values of the objective function are consistent-

ly improved until reaching the extremum. Depending on the possibility of algorithm 

of finding a local or global extremum, they are divided into local and global search 

algorithms. 

Local extremum search algorithms are designed to determine one of the local ex-

trema on the set of endless solutions in which the objective function takes the maxi-



 

mum or minimum value. In their construction, both deterministic descent in the ex-

tremum and random search can be used. The deterministic methods distinguish be-

tween zero-order and gradient (1st and 2nd order) methods. The first ones are based 

on calculations only of the values of the optimized function. The second use partial 

derivatives of the second order. Methods of stochastic programming or neural net-

works are used to find extremum in cases where the type of optimized function is not 

fully known or its structure is too complex. The effectiveness of the optimal search 

procedure - the ability to find the solution and the convergence to the solution on the 

speed depend on the type of function and the method applied to it. 

Of the direct methods of multicriteria optimization in the search for local extre-

mum the most famous are [13-15]: 

─ coordinate descent – alternate parameter optimization along axes by one of the 

known one-dimensional methods; 

─ spiral coordinate descent; 

─ rotating coordinates (Rosenbrock method); 

─ simplex search; 

─ Hook-Jeeves sample search and more. 

The task of finding the global extremum of a function on a valid set X  is to find 

the point x X  , for which is executed: ( ) ( ), ( ) ( )f x f x f x f x    for each .x X  

Limitations related to computational error and other factors often do not allow finding 

the exact solution to the problem. In this case, there is a search for an approximate 

solution, that is, the point of many   optimal solutions

 : ( ) ( )X x X f x f x      . Finding the exact solution can be considered as a 

case of searching for a close solution with 0  . 

The global extremum search algorithms are divided into deterministic, statistical 

and combined [16]. Often, the task of global optimization is reduced to the task of 

finding local extrema and finding among them the global optimum, thus, using the 

methods of finding local extrema. 

Determined methods for finding a global solution include the Gomori algorithm or 

the cutting-plane method. The latter is an alternative basis for the construction of both 

accurate and approximate algorithms for solving integer programming problems. 

Currently, their high efficiency in combination with the branch and bound meth-

od [17] is proven. Such hybrid computing schemes are commonly referred to as 

branch and clipping method. All of these methods implement a common computa-

tional strategy that consists in solving the sequence of relaxed linear programming 

sub-tasks. In the clipping method, relaxed subtasks gradually improve the approxima-

tion of a given integer problem, reducing the neighborhood of the optimal solution. 

In severe cases, optimality may not be obtained or proved by an acceptable number 

of steps, however, even in this case, the clipping methods allow us to find an approx-

imate integer solution with a given error (in the previously known neighborhood of 

the optimal solution). 

Cutting-plane method algorithms can be effectively used to solve both partial inte-

ger programming problems, including the traveling salesman problem, the maximum 



cut problem, the knapsack problem, and the overall integer linear programming prob-

lem. 

Compared to branch and bound methods, cutting-plane methods are more techno-

logical in programming because they do not require extra amount of RAM to store the 

decision tree, but at the same time less versatile because they are not able to work 

with relaxed subtasks that are convex programming tasks. The first cutting-plane 

algorithm was proposed by R.E. Gomori in 1958. Currently, these methods are effec-

tively used to solve various tasks, including the travelling salesman problem. 

Recent studies [17] have also shown that the cuts proposed by Gomori are quite ac-

tual at present. The advantage of this method is that any linearity in the original 

statement of the problem remains. This algorithm is quite effective for solving a cer-

tain class of problems – geometric programming. Its main disadvantage is the re-

quirement of the convexity of the valid area and the increasing dimension of the linear 

programming problem from iteration to iteration. 

Genetic algorithms are a class of optimization methods based on imitations of pro-

cesses occurring in nature, in particular natural selection – a concept voiced from the 

evolutionary theory of Charles Darwin [16]. In accordance with Darwin's theory in 

the natural environment, preference for survival and reproduction is given to individ-

uals most adapted to the conditions of a particular habitat. The main material for natu-

ral selection is natural gene mutations and their combinations obtained by reproduc-

tion. In the course of natural selection, individuals with the greatest fitness function – 

a numerical characteristic that is determined according to a specific task - survive. 

The most fit individuals get the opportunity to cross (crossover) and give offspring. 

The resulting population is then affected by random mutations. 

Reformulate the optimization problem as the problem of finding the maximum of a 

function 1 2( , ,..., )nf x x x , called the fitness function. It is necessary that

1 2( , ,..., ) 0nf x x x   in a limited area of definition, continuity and differentiation are 

absolutely not required. Each parameter of the fitness function is encoded by a row of 

bits. The individual will be called a row, which is a concatenation of rows of an or-

dered set of parameters. 

The versatility of genetic algorithms is that only parameters such as adaptability 

and decision coding depend on a particular task. The rest of the steps for all tasks are 

the same. With the function of fitness among all individuals, the population distin-

guishes: 

─ the most adapted, which get the opportunity to cross and give offspring; 

─ the worst (bad decisions) that are removed from the population. 

In addition to the global extremum search methods described above, there is also 

the method of simulated annealing that was selected in the article for further research. 

The algorithm of simulated annealing is based on the simulation of a physical pro-

cess that occurs during crystallization of a substance from a liquid state into a solid, 

including when annealing of metal. The final state after crystallization corresponds to 

the minimum energy of the lattice configuration. 

Before applying any optimization algorithm, the data on which the model will be 



 

formed are selected according to certain requirements, namely: 

1. Volume and representativeness, that is, the data should be as fresh as possible, and 

the sample should be large depending on the number of parameters being opti-

mized. 

2. The minimum of rules and parameters, because with the increase of parameters 

that are optimized, the probability of fitting the model to historical data increases, 

rather than reflecting the real patterns of market behavior. 

3. The sample should be divided into two parts. One part of the data to create a mod-

el, the other – to test the created model. 

3 Setting the Тask 

Without reducing the generality, let us look at the main aspects of parallelizing the 

annealing simulation method, as an example of solving a traveling salesman problem. 

It is known that the traveling salesman problem has a wide application [8]. However, 

an important feature of these tasks is their large dimension, sometimes over one mil-

lion points. The traveling salesman problem belongs to the class NP because it has 

factorial computational complexity. This, in turn, does not allow accurate resolutions 

to be made for large dimension problems in an acceptable time. Therefore, there is a 

need to analyze the possibility of parallelizing the solution of the problem and devel-

oping an appropriate application software system [19]. An algorithm based on an 

annealing simulation method and a property such as multithreading [20] are proposed. 

The traveling salesman problem can be represented as a model on a graph, that is, 

using vertices and edges between them. Thus, the vertices of the graph correspond to 

the cities and the edges ( , )i j  between vertices i  i j  - ways of communication be-

tween these cities. To each rib ( , )i j  it is possible to set the criterion of profitability 

of the route , 0i jC  , which can be understood as, for example, distance between cit-

ies, time or cost of travel. Thus, the solution to the traveling salesman problem is to 

find the Hamilton cycle of the minimum weight cycle in a fully weighted graph. 

4 Research Methods and Tools 

4.1. An annealing simulation method 

The following describes the algorithm of the annealing method. This algorithm is 

proposed in the paper to be used in solving large-scale multicriteria optimization 

problems. 

The main elements of the annealing method are: 

1. A limited set S . 

2. A valid target function J , that is defined at the set S . Let us mark ,S S  , 

the set of global minimum of the function J . 

3. For each ,i S , call the set ( ) { }S i S i   as the set of adjacent nodes of i . 



4. For each i  set of positive coefficients , ( )ijq j S i , such that 
( )

1.ij

j S i

q


 . 

Suppose that ( )j S i  if and only if ( ).i S i . 

5. Non-growing function : (0, ),T N    called the freezing schedule and 

( )T t   temperature of the moment .t . 

6. Initial conditions (0) .x S . 

The algorithm is based on a discrete-time inhomogeneous Markov chain ( ),x t , whose 

development is as follows: 

1. If the current state ( )x t , equivalent to i , select the next node j  for i  ran-

domly, the probability of choosing an individual ( )j S i  is ijq . 

2. Then the next state ( 1)x t   is defined as follows: 

2.1. If ( ) ( ),J j J i  then ( 1) .x t j  . 

2.2. If ( ) ( ),J j J i  then ( 1)x t j   with the probability of 

 exp ( ( ) ( ) / ( ) ,J j J i T t   else ( 1) .x t i   

Formally, 
1

( 1) ( ) exp max ( ) ( ) ,
( )

ijP x t j x t i q J j J i
T t

 
          

 
 if 

,j i ( ).j S i  

If ,j i ( ),j S i  then ( 1) ( ) 0.P x t j x t i        

You can justify the described method by considering the inhomogeneous Markov 

chain ( ),Tx t  for which temperature ( )T t  is kept constant level of .T Suppose that the 

Markov chain is irreducible and aperiodic and ij jiq q  for every , .i j  Then ( )Tx t  - 

is a Markov reversible chain with its invariant probability of distribution

1 ( )
( ) exp , ,T

T

J i
i i S

Z T


 
   

 
 where TZ  - is the normalizing constant. At 0,T   

probability distribution T  concentrates on the plural S   the global minimum. The 

conditions of convergence of the algorithm are formulated by Hayek [21]. 

4.2. Multithreading in Java 

Java implements integrated multithreaded programming support. A multithreaded 

program contains two or more parts that can be executed simultaneously. 

Each part of such a program is called a thread, and each thread specifies a separate 

execution path. In other words, multithreading is a specialized form of multitasking. 

In a multitasking environment, the smallest element of managed code is thread. 

This means that one program can perform two or more tasks simultaneously. For 

example, a text editor can format text at the same time as it is printed, as long as the 

two actions are performed by two separate threads. 

Multithreading allows you to write effective programs that make the most of the 

available power of the processor of the system. Another advantage of multithreading 

is that it minimizes downtime. This is especially important for interactive Java-based 



 

networking environments, as they have idle time and downtime. 

For example, the speed of data transmission over a network is much lower than the 

speed at which a computer can process it. Even reading and writing local file system 

resources is much slower than the processing speed of the processor. And, of course, 

the user enters the keyboard much slower than the computer can process. 

In single-threaded environments, your application is forced to wait for such tasks 

to complete before moving on to the next one, even if the program is idle most of the 

time, waiting for input. Multithreading helps reduce downtime because other threads 

can run while one waits. 

Java assigns to each thread a priority that determines the behavior of that thread 

relative to others. Thread priorities are given by integers that determine the relative 

priority of one thread over the other. 

The priority value itself is irrelevant – the higher priority of thread is not executed 

faster than the lower priority when it is the only executable thread at this time. 

Instead, the thread priority is used to make the decision when switching from one 

running thread to another. This is called context switching. The rules that determine 

when context switching should take place are quite simple. 

The thread may voluntarily give way to management. To do this, you can either 

explicitly concede the execution queue, suspend the thread, or block the I/O wait 

time. In this scenario, all other threads are checked, and the CPU resources are trans-

ferred to the thread with the highest priority ready to execute. 

The thread may be interrupted by another, more priority thread. 

In this case, the low priority thread, which is not occupied by the processor, is 

simply terminated by the high priority thread, no matter what it does. 

5 Results 

The main steps of the program: 

─ Set the initial temperature and random initial solution; 

─ We get into a cycle that is active until the condition is reached. 

─ Now we choose a neighbor making small changes in the decision. 

─ We then decide whether a new decision is worth considering. 

─ We reduce the temperature and make a new iteration of the cycle. 

Initialization of the temperature 

For better optimization when initiating a temperature variable, you should choose a 

temperature that will initially allow practically any movement against the current 

solution. This gives the algorithm a better idea of exploring the entire search space 

before cooling and settling in a more focused area. 

Visualization of the problem and its results 

For a better understanding of the algorithm, we decided to visualize the results. In 

Fig. 1 is shown the initial map of the cities to be crawled. 



 
Fig. 1. Initial City Map (Quantity: 20) 

In Fig. 2 is shown the operation of the algorithm for the number of cities: 20 and 

cooling rate 0.1. And in Fig. 3 at the same number of cities and cooling rate – 0.0001. 

 
Fig. 2. Сoolingspeed – 0.1(20)               Fig. 3. Сoolingspeed – 0.0001(20) 

In Fig. 4 is shown the operation of the algorithm at a coolingrate of 0.1 and 

the number of cities: 100. And in Fig. 5 – at a coolingrate of 0.0001 and the number 

of cities: 100. 



 

 

Fig. 4. Сoolingspeed – 0.1(100) 

 
 

Fig. 5. Сoolingspeed – 0.00001(100) 

From the results of testing the algorithm at different cooling rates, we can conclude 

that the lower the cooling temperature, the better the algorithm works to find a solu-

tion to the travelling salesman problem. 

For the sake of clarity and objective assessment of parallelization performance, 

tests were conducted on different cities and PCs with different amount of cores. 

In the Tabl. 1 is shows the results of calculations performed on two-core PC with-

out parallelization. 



Tabl. 1. Solution time of theTSP without parallel on the 2-core, s 

 
In the Tabl. 2 is shown the results of the calculations performed on two par-

allel nuclear PCs. 

Tabl. 2. Solution time of theTSP with 2-core parallel, s 

 
In the Tabl. 3 is shown the results of the calculations performed on four-core non-

parallel PCs. 
Tabl. 3. Solution time of theTSP without parallel on the 4-core, s 

 
In Fig. 6 the dependence of the program execution time on the number of flows on 

two and four nuclear architectures with/without the use of parallel simulated anneal-

ing method for the number of cities – 20 is presented. 

 
Fig. 6. Graph of algorithm results for the number of cities: 20 



 

Here 1 – is dependency without parallelization on a dual-core processor; 2 – with-

out parallelization on quad-core; 3 – with parallelization on a dual-core processor; 4 – 

with a quad-core parallel. These designations are preserved when the following de-

pendencies are displayed (see Fig. 7-8). 

 
Fig. 7. Graph of algorithm results for the number of cities: 100 

In Fig. 7 the dependence of the program execution time on the number of threads 

on two- and four-core architectures with/without the use of parallel simulated anneal-

ing method for the number of cities – 100 is presented. 

 
Fig. 8. Graph of algorithm results for the number of cities: 600 

In Fig. 8 shows the dependence of the program execution time on the number of 

threads on two- and four-core architectures with/without the use of parallel simulated 

annealing method for the number of cities – 600. 

In the process carrying out numerical experiments, it was found that for a small 

number of cities, the execution time of the program at parallel is almost indistinguish-

able from the execution time of the program in a single thread. But the larger the 

number of cities, the better results at parallelization. Also, the program works more 

efficiently with more cores of PC. 



6 Conclusion 

In order to organize efficient calculations suitable for large-dimensional problems, 

in this work was proposed a parallel algorithm for finding the global extremum – a 

method of simulated annealing. An application software system has been developed 

to give the opportunity to solve a large-scale traveling salesman problem. The pro-

gram is written in Java using a property such as multithreading. On the basis of a 

number of numerical experiments, the advantages of the proposed approach were 

analyzed: graphs of dependencies of the implementation time of the sequential and 

parallel algorithm depending on the dimension of the processed data and the multi-

core architecture of the corresponding computing system were constructed. On the 

basis of coefficients of efficiency and acceleration the prospects of further optimiza-

tion of the computational process due to the modern development of multi-core sys-

tems are investigated. 
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