
Definition of Visual Language Editors Using Declarative
Languages

Torbjörn Lundkvist

TUCS Turku Centre for Computer Science
SoSE Graduate School on Software Systems and Engineering

Department of Information Technologies,
Åbo Akademi University

Joukahaisenkatu 3–5 A, FIN-20520 Turku, Finland
e-mail:torbjorn.lundkvist@abo.fi

1 Introduction

Developing large software systems is a complex process that involves the integration of
many different artifacts. Managing all these software artifacts and their complex rela-
tionships is a difficult task to carry out and requires sophisticated tool support. Still, to
be able to understand all the aspects of a software system, there is a need to represent
and visualize the software system at different scales and levels of detail. Creating mean-
ingful visualizations of large amounts of data is a central problem in software modeling.
A software model can be used to describe different aspects of a software system, such
as the structural and behavioral aspects. A modeling language is a language that defines
the concepts that can be used to describe a particular part of a software system. This
requires tools for defining, representing and manipulating visual languages.

The Unified Modeling Language (UML) [15] has become the de facto language for
software modeling in the software industry. UML is a general-purpose modeling lan-
guage that can be used for describing a wide variety of application domains. Domain-
specific languages are modeling languages targeted at a specific domain. A domain-
specific modeling language can be designed to improve the understanding and descrip-
tion of a specific application domain.

In technologies such as Model Driven Engineering (MDE) [8], models rather than
actual source code are the primary artifacts of a software system. A software system
developed using an MDE approach may consist of several models describing the struc-
ture and behavior of the software system, written in several languages, including both
general-purpose and domain-specific modeling languages. In order to successfully re-
alize an MDE process, specialized methods and tools for manipulating, analyzing and
transforming models and diagrams constructed using several domain specific modeling
languages, with complex dependencies and relationships, are required.

In my dissertation research I aim to study techniques that reduce the effort of design-
ing customized interactive visual editors with support for MDE processes. This research
aims to show that this can be achieved with an editor architecture constructed based on
loosely coupled general components that are configurable for a specific language by
using a set of declarative languages.



2 Background and Related Work

The problem of providing tool support for customized visual languages is a well stud-
ied problem and there exists many different approaches and architectures, which allow
the definition of new visual languages. Examples of these are architectures are Dia-
Gen [9], AToM3 [5] and GenGed [3] that are based on graph grammars. Among the
commercial environments there are MetaEdit+ [7] and the Microsoft DSL Tools [4],
and community-based Eclipse Graphical Modeling Framework [6].

One of the main problems with some of the existing tools is that there is not a
clear separation between the abstract and concrete syntax. We consider this separation
important since it allows multiple representations of the same abstract elements in dif-
ferent diagram types. In addition, we think that the definition of modeling languages
and diagrams are tool independent artifacts that should be defined based on common
standards, to ensure interoperability between modeling tools. The graph grammar based
approaches use a declarative approach for defining transformations used in interactive
editors. One of the most important benefits of this approach is that transformation def-
initions are independent of the underlying implementation, and could therefore be ex-
changed between different tools. We would like to extend the use of declarative ap-
proaches to define an editor architecture configurable using only definitions in declara-
tive languages.

3 Research Problem

The aim of this research work is to investigate how to reduce the effort of designing
visual interactive editors that can be customized for several domain-specific visual lan-
guages. In the context of this research work, a high level of reuse of configurable general
editor components is considered to reduce the effort of designing editors for domain-
specific environments. This research work aims to show that this can be achieved by
defining a general language independent editor architecture that is configured to a spe-
cific language notation by the use of declarative languages. A declarative language can
be used to describe what a system should be like, not how to implement it. We believe
this brings many benefits, as the information expressed in a declarative language can be
reused by many different components in a tool.

The focus of this research work is finding methods that allow the definition of a vi-
sual language editor based on declarative languages. This problem can be decomposed
into several related areas, including the definition of languages and visual notations,
how to edit and manipulate structures expressed in these languages, and the definition
of query and model transformation languages.

4 Expected Results and Research Method

This research work will address some of the issues related to the development of con-
figurable interactive editors for visual languages. Such editors are essential in an MDE
process, as there is a need to rigorously define new modeling languages that have an
abstract and a visual notation in the form of diagrams, to support both human users and



computer programs, such as various model analyzers and model transformation tools.
Such tools need to be based on standards, to ensure interoperability and long-term sup-
port.

In this research project we already started to tackle the problem of defining dia-
grams based on the abstract syntax, based on the OMG [13] standards for diagram
interchange [16] and modeling language definition [17]. We expect that this work is
significant since such a mechanism targeted at the OMG standards have been lacking,
and is required in order to create diagrams that can be interchanged between modeling
tools. In addition, our preliminary results, discussed in more detail in Section 5, show
that this diagram definition mechanism can be used to automate the reconciliation of
diagrams based on changes in the abstract models. Future research based on this work
will include investigating how these diagram definintions can be reused or extended to
be used in other components of an interactive editor for visual languages. Examples
of such possible extensions are the inclusion of layouter constraints and renderer def-
initions. Since diagrams are important means for human users to manipulate models,
diagram definitions could also include rules that declare the behavior and interactions
of a diagram editor.

In our research, we like to base the representation and manipulation of models pri-
marily on graphs and graph transformation, since this gives a solid foundation for de-
signing model query and transformation components in a modeling tool. Model query
is a fundamental element for model transformation components. We believe that such
components should be generic and reusable for several languages and several purposes,
to define large sequences of transformations in a MDE process and small transforma-
tions that are executed interactively on the abstract model data in a diagram editor. In
this research work we are also studying the definition of declarative query and model
transformation languages. We have in previous research addressed the need for a star
operator [11] in query languages for describing recursive or hierarchical structures in
query patterns. In our future work we plan to investigate the need for other graph match-
ing operators and how to use the star operator in a model transformation language.

As an important result of this research work, we aim to define an architecture for
defining interactive editors for visual languages that are configured using declarative
languages. This architecture will be based on standards, which we believe will help in
ensuring interoperability between tools. Although this architecture is targeted towards
domain-specific languages, we believe the presented approach can also successfully be
applied to general-purpose languages as well. There are plans for publishing a deeper
analysis of this architecture and how it can be used to define a customized editor envi-
ronment based on declarative languages.

This research work will be carried out using a practical approach based on a the-
oretical foundation to address the issues raised in this research plan. This means that
proposed solutions will also be evaluated using a reference implementation in a model-
ing tool.



5 Preliminary Results and Evaluation

In this section we will present and discuss some of the preliminary results that are
related to this research project.

The Object Management Group (OMG) [13] maintains a series of modeling stan-
dards such as the UML. The abstract syntax of a modeling language can be defined us-
ing the Meta Object Facility (MOF) [17]. To represent and interchange diagrams, OMG
provides the UML 2.0 Diagram Interchange (DI) [16]. However, the OMG standards
do not specify the relation between the abstract and concrete syntax. This information
is needed to be able to construct new diagrams in the DI standard and to ensure interop-
erability between different modeling tools. The OMG has recently published a request
for proposals for a model view to diagram language [14].

To address this issue, we have introduced the Diagram Interchange Mapping Lan-
guage (DIML) [1]. DIML is a language that defines the relation between the abstract
syntax of a modeling language to the concrete syntax as DI Diagrams as a set of map-
pings. A DIML mapping declares which diagrams are possible to construct based on the
abstract models. In [12], DIML mappings for a subset of UML 1.4 can be found. Per-
haps the most important application of DIML is a diagram reconciliation component.
Diagram reconciliation is based on the idea that after a model transformation com-
ponent has been executed and modified the abstract models, an independent diagram
reconciliation component analyzes the changes made in the abstract model, and calcu-
lates which parts of the existing diagrams have been invalidated by the changes and
needs to be updated. Using this technique, it is possible to decouple transformations
made on abstract models from the necessary updates on diagrams, simplifying model
transformation rules that need to preserve the consistency of existing diagrams.

Query languages are used to find parts of a model that fulfill some given constraint,
and are important when defining model transformation languages. In [11], we present
an approach for matching recursive or hierarchical structures based on an extension
of subgraph isomorphism, by introducing the concept of a star operator in a query
language. The star operator resembles the Kleene star operator and allows a part of
a pattern to match repeatedly zero or more times to a target graph. We are currently
investigating the definition of a model transformation language based on this query
language, and we believe that the star operator increases the expressiveness of model
transformation definitions.

In [10], we present a tool environment for defining peripherals for mobile phones
called MICAS. This environment was built as a customization of the Coral Modeling
Framework [2], including a domain-specific modeling language with a concrete syntax
defined with DIML, a constraint evaluation component to detect potential violations of
well-formedness rules, a model transformation engine to perform PIM to PSM transfor-
mations and a component for generating code for a simulation environment. We believe
the MICAS tool is an important study as it highlights the need for domain-specific edi-
tors that support MDE processes.

The work presented in this research plan is currently in its second year out of a four
year period. We believe that as a result of this research project we will find methods
for defining the most essential components of an editor for visual languages entirely
using artifacts defined using declarative languages. We have presented some prelimi-



nary results at international conferences and in international journals and we plan to
continue publishing results of this research for rigorous review. The ideas described in
the preliminary results have been implemented within the Coral Modeling Framework,
available at http://mde.abo.fi.

References
1. Marcus Alanen, Torbjörn Lundkvist, and Ivan Porres. Creating and Reconciling Diagrams

After Executing Model Transformations. Accepted for publication in Elsevier journal Sci-
ence of Computer Programming, 2007.

2. Marcus Alanen and Ivan Porres. The Coral Modelling Framework. In Johan Lilius
Kai Koskimies, Ludwik Kuzniarz and Ivan Porres, editors, Proceedings of the 2nd Nordic
Workshop on the Unified Modeling Language NWUML 2004, number 35 in TUCS General
Publications. TUCS Turku Centre for Computer Science, Jul 2004.

3. R. Bardohl, H. Ehrig, J. de Lara, and G. Taentzer. Integrating Meta Modelling with Graph
Transformation for Efficient Visual Language Definition and Model Manipulation. In
Springer, editor, Proceedings of the Fundamental Aspects of Software Engineering (FASE),
pages 214–228, 2004.

4. Microsoft Corporation. Microsoft Domain-Specific Language Tools. Available at
http://msdn.microsoft.com/vstudio/DSLTools/.

5. Juan de Lara Jaramillo, Hans Vangheluwe, and Manuel Alfonseca Moreno. Using Meta-
Modelling and Graph Grammars to Create Modelling Environments. Electronic Notes in
Theoretical Computer Science, 72(3), 2003.

6. The Eclipse Graphical Modeling Framework website. http://www.eclipse.org/gmf.
7. Steven Kelly. Comparison of Eclipse EMF/GEF and MetaEdit+ for DSM. In 19th Annual

ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications,
Workshop on Best Practices for Model Driven Software Development, October 2004.

8. Stuart Kent. Model Driven Engineering. In Proc. of IFM International Formal Methods
2002, volume 2335 of LNCS. Springer-Verlag, 2002.

9. Oliver Köth and Mark Minas. Structure, Abstraction, and Direct Manipulation in Diagram
Editors. LNCS, 2317:290–304, 2002.

10. Johan Lilius, Tomas Lillqvist, Torbjörn Lundkvist, Ian Oliver, Ivan Porres, Kim Sandström,
Glenn Sveholm, and Asim Pervez Zaka. An Architecture Exploration Environment for Sys-
tem on Chip Design. Nordic Journal of Computing, 12(4):361–378, 2005.

11. Johan Lindqvist, Torbjörn Lundkvist, and Ivan Porres. A Query Language With the Star
Operator. In Proceedings of the 6th International Workshop on Graph Transformation and
Visual Modeling Techniques (GT-VMT 2007), volume 6(2007) of Electronic Communica-
tions of the EASST, Braga, Portugal, March 2007. EASST.

12. Torbjörn Lundkvist. Diagram Reconciliation and Interchange in a Modeling Tool. Master’s
Thesis in Computer Science, Department of Computer Science, Åbo Akademi University,
Turku, Finland, November 2005.

13. Object Management Group website. http://www.omg.org/.
14. OMG. MOF model view to diagram request for proposals. OMG Document ad/2006-11-07.

Available at www.omg.org.
15. OMG. UML 2.0 Superstructure Specification, August 2003. Document ptc/03-08-02, avail-

able at http://www.omg.org/.
16. OMG. Diagram Interchange version 1.0, April 2006. OMG document formal/06-04-04.

Available at http://www.omg.org.
17. OMG. Meta Object Facility (MOF) Core Specification, version 2.0, January 2006. Document

formal/06-01-01, available at http://www.omg.org/.


