
Fault Tolerant Distributed Join
Algorithm in RDBMS

Arsen Nasibullin

Saint-Petersburg State University
nevskyarseny@yandex.ru

Abstract. Many of applications use vast volume of data for computing
in business intelligence applications. Mostly, these applications handle
queries with such operators as aggregation and join. State-of-the-art dis-
tributed RDBMS get over these tasks in assumption no errors occur.
Unfortunately, distributed database management systems suffer from
failures. Failures causes queries with joining large tables re-execute so
that enormous volume of resources must be leveraged.
In this paper we propose a new fault tolerant join algorithm for dis-
tributed RDBMS. The results which have been already obtained and a
detailed plan of further research are discussed.

Keywords: Databases · Join · Query processing · Fault tolerance ·
Replication.

1 Introduction

Nowadays, known RDBMS work with assumption that no any kind of failures
may occur. If a database fails, query should be re-executed. In this work, we
assume that a client runs query with join over enormous value of data of two
tables dispersed among many servers.

Distributed systems based on Map-Reduce were invented to assist handling
vast volume of data on unstable distributed systems. Such kind of systems do
not interrupt the execution of query. Instead, they re-execute a part of failed
sub-tasks. Unfortunately, Map-Reduce systems do not do it in the best way [1].

The goal of this research is to come up with and implement a fault tolerant
distributed join algorithm for unstable RDBMS. Existent RDBMS solutions do
not fit to be used because of queries have to be re-executed in case of failure oc-
currence. Map-Reduce solutions are capable of recovering failed tasks but do not
do it effectively. The main task of our work is to seek an intermediate solution.

This paper is organized as follows. Section 2 defines the key terms and nota-
tions used in this work. Problem statement and research questions are defined in
Section 3. Section 4 provides a review of state of the art related work. Research
process, results and further plans are described in Sections 5 and 6. This paper
is concluded by Section 7.

Raimundas Matulevicius
Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0)

Raimundas Matulevicius
33

2 The Key Terms and Notations Used

The following definitions and notations are used in this paper.
Consider the definition of distributed database systems. Distributed database
systems are database management systems, consisting of local database systems.
Each of these local databases has its disks. Databases are located and dispersed
over a network of interconnected computers. In this paper, the configuration of
system is based on shared-nothing architecture.
There is the single entry point named coordinator. It receives client queries and
returns an outcome of an executed query. Keepers are nodes where data is stored.
Workers are nodes where join operation is performed. |W | stands for amount of
workers in the configuration of a system. R,S are relations to be joined.
In this paper under classical algorithm will be often assumed classical, unstable,
distributed join algorithm.

3 Problem Statement

There are a few causes the classical distributed join may interrupt [2, 3].

– The coordinator became unreachable because of a communication or a sys-
tem failure.

– A media or system failure occurred at a keeper or a worker site.
– A site was suddenly turned off during the performing of query.

In this work, the main focus is on coming up with an algorithm which could de-
tect and properly handle causes listed above. The following algorithms of parallel
distributed join [4–7] for different sort of systems are used in assumption that
a system is fail-free. Examined works do not consider task of handling failures
from the list above. In contrast to fail-free RDBMS algorithm, there are many
research efforts [8] are dedicated to Hadoop for detecting and proper handling
of failures.

Based on the said above, the following research questions are defined in this
paper:

– Will doubling tasks increase execution time of query with join?
– What patterns and mechanisms exist for identifying and monitoring the

availability of a site?
– How effectively do existent fault tolerant algorithms of Hadoop do their

work?
– How data replication can be used in order to design and implement fault

tolerant join algorithm?

4 State of the Art

Two main parts of this work to be considered - join algorithms in Map-Reduce
and RDBMS, and mechanisms ensuring fault-tolerance.

Raimundas Matulevicius
34

4.1 Join algorithms

The competitive analysis and description of join algorithms of Map-Reduce are
presented in works [9, 10].
Repartition join is a simple algorithm which performs data pre-processing in
Map phase, and direct join is done during the Reduce phase. The algorithm has
several drawbacks: the algorithm is more time consuming and it requires a lot
of memory during the reduce phase. Repartition join is widely used in [11].
Broadcast join does the following. It populates the smaller input and proceeds
joining during map phase. The disadvantage of this algorithm is that if a smaller
input does not fit into memory to build a hash-table, an additional joining phase
must be performed [10]. This algorithm is used in Hadoop Pig [12].
Semi-join algorithm is used to prevent transferring data that does not take part
in join phase. Approach of deleting unused tuples reduces amount of data to be
submitted and joined. The disadvantage of this algorithm is that an extra phase
is required to perform joining. Moreover, additional scanning is needed to drop
out unwanted data.

4.2 Fault-tolerance mechanisms

In work [13] authors proposed a strategy of doubling each task during the query
execution. This stands for if one of the tasks fails, the second backup task will
end up on time. It reduces the job completion time by using larger amounts of
resources. Tasks are doubled at map and reduce phases. Readers may guess that
doubling the tasks leads to approximately doubling the resources.

Haopeng Chen and Hao Zhu proposed two strategies to improve the failure
detection in Hadoop via heartbeat messages in the worker side [14]. The first
strategy is an adaptive interval which dynamically configures the expiry time
adapted to the various sizes of jobs. The second strategy is to evaluate the
reputation of each worker according the reports of the failed fetch-errors from
each worker. If a worker failures, it lows its reputation. Once the reputation
becomes equal to some bound, the master node marks this worker as failed.
Another taking research [15] proposes a solution based on consensus algorithm
Raft. The key point of a system is that each node periodically transfers messages
with metadata to other sites. During the execution of a client query, a quorum
must take place to handle a client query fully. Raft algorithm is successfully
applied in well-known distributed system CockroachDB [16].

To remove single point of failure in Hadoop, a new approach of a metadata
replication was proposed in [17]. The solution involves three major phases. In
initialization phase, each secondary node is registered to primary node and its
initial metadata is caught up with active/primary node. At replication phase,
such metadata as outstanding operations and lease states are replicated across
all sites. During the fail-over phase, standby/new elected primary node takes
over all communications.

To defend stored data from being crashed or lost, mechanism of full data
replication has to used. Initially, data can be horizontally partitioned. As ex-
ample, PostgreSQL [18] provides model of streaming replication. There are two

Raimundas Matulevicius
35

roles defined in replication mechanism. The first role is master. The master server
receives client queries, gathers data from others servers and populates WAL en-
tries across involved servers. The second role is standby. It receives replicated
data and stores them in its own disks.

5 Evaluation Plan and Preliminary Results

Given the problem and research questions, the following plan has been per-
formed:

1. Conducted a survey of academic works made in this field. Reviewed abilities
of state of the art RDBMS and NoSQL solutions. We checked out how these
solutions handle fault occurrences.

2. Reviewed distributed hash-join algorithms. Outlined a cost model and then
evaluated the distributed algorithm by applying the cost model to reviewed
algorithms. Highlighted possible emerging faults during the execution of join
algorithms.

3. Come up with the fault tolerant join algorithm. Applied cost model and
conducted a comparison of our algorithm with an unstable distributed join
algorithm.

5.1 Fault Tolerant Distributed Join Algorithm

As the basement, classical distributed hash-join algorithm has been taken from
work [19]. The fault tolerant distributed hash-join algorithm is similar to classical
hash-join for distributed database systems in a shared-nothing architecture.

1. Building. A coordinator receives a client query. To initiate a build phase, it
populates messages with a client query across all nodes. Once messages are
sent, the coordinator sets the status of performing a client query as processing
for all keepers.

2. Each keeper reads its partitions of relation R, applies a hash function h1 to
the join attribute of each attribute. Hash function h1 has its range of values
0...|W |−1. If a tuple hashes to value i, then it goes to i mod |W | and (i+1)
mod |W | workers. For the latter, a message has to contain message reserved
data. Once a keeper ends up reading its partitions of relation R, it notifies
the coordinator about the status of work.

3. Each worker builds a hash table, allocated in memory, and fills in it with
tuples received from step 2. In this step, each worker uses a different hash
function h2 than the one used in step 2.

4. Once all keepers stopped reading their partitions of relation R, the coordi-
nator initiates a probing phase by sending notifications to keepers.

5. Probing. Each keeper reads its partitions of relation S, applies a hash function
h1 to the join attribute of each attribute as it does in step 2. If a tuple hashes
to value i, then it goes to i mod |W | and (i + 1) mod |W | workers.

Raimundas Matulevicius
36

6. Worker i mod |W | receives a tuple of relation S, probes the hash table built
in step 2. If so, tuples join and an outcome tuple is generated. The other
worker (i + 1) mod |W | puts reserved data into its disk.

7. Once an outcome tuple is generated, a worker sends a heartbeat message
to the following worker. In this message, it points a position of the last
successfully joined tuple of relation S.

C

K1

K2 KM

...

W3

W2

W1

WN

RC

K3 ...

Fig. 1. Scheme of working of fault tolerant distributed join

In the Figure 1 shown a scheme of working of fault tolerant distributed join
algorithm. There is added a reserved coordinator RC. It synchronizes with the
primary coordinator C. Workers and keepers comprise a ring of nodes. Each site
is aware of the following node. It facilitates a site submits info about proceeded
work during the join to the following node. In case of i mod |W | worker is failed,
(i+ 1) mod |W | worker takes over tasks of a failed worker. If keeper i mod |K|
fails, site i mod |K + 1| takes over jobs of the failed keeper.

5.2 Comparison and Evaluation

In multi-objective query optimization distributed database systems process find-
ing Pareto set of solutions or the best possible trade-offs among the objective
functions [20]. Objective functions might be total time of query execution, I/O
operations, CPU instructions and a number of messages to be transmitted. In
this work we found trade-off between the least time of the execution in case
of failure occurrence and extra resources needed to recover failed tasks. In dis-
tributed database systems the total time of query execution is expressed through

Raimundas Matulevicius
37

mathematical model of weighted average. This model consists of sum of time to
perform I/O operations, CPU instructions and time to exchange a number of
messages among involved sites. Our work consider evaluating cost of total time
of the query execution.

Figures 2, 3 depict time of the execution both algorithms in different cases.
The first case is fail-free. Other cases simulate a keeper failed situation, a worker
failed and case with failed both keeper and worker. In fail-free case, classical
algorithm has benefit in front of fault tolerant algorithm. As for the rest cases,
on the average 9% fault tolerant algorithm takes less time to perform a client
query even if at least one of site is down.

Normal
work

Keeper
failed

Worker
failed

Both
failed

1,800

1,900

2,000

2,100

2,200

1,966 1,966 1,966

2,143

1,998

1,848
1,820

1,869

T
im

e
o
f

th
e

ex
ec

u
ti

o
n

in
m

s

Classical distributed join Fault tolerant join

Fig. 2. Comparison of time execution of both algorithms for four cases. T(R) = T(S)
= 256

6 Future work

Based on obtained results, our further plans look like the following:

– Design and implement distributed fault tolerant hash-join algorithm. Con-
duct experiments with other solutions.

– Perform comparison of the performance of our extension with Hadoop. Make
use of different volumes of data.

– Evaluate and compare I/O, CPU, and memory costs.
– Consider combining the developed fault-tolerant algorithm with other join

algorithms.

Raimundas Matulevicius
38

Normal
work

Keeper
failed

Worker
failed

Both
failed

7

7.5

8

·105

7.34 7.34 7.34

8

7.36

6.81
6.73

7.14

T
im

e
o
f

th
e

ex
ec

u
ti

o
n

in
m

s

Classical distributed join Fault tolerant join

Fig. 3. Comparison of time execution of both algorithms for four cases. T(R) = T(S)
= 100.000

– Define benchmarks to evaluate and compare developed fault tolerant algo-
rithms with existent solutions.

As example, developed algorithms might be compared with Hadoop Map-
Reduce Join algorithms. Evaluation should be performed with different volume
of data.

7 Summary

In this paper the fault tolerant distributed join algorithm has been proposed.
Results of comparison demonstrates that proposed algorithm lead to less time
to re-execute a failed task at a failed site than time needed to re-execute the
query using classical algorithm. Also future work is provided.

Acknowlegements. Author thanks Boris Novikov for his helpful comments
that have significantly improved this paper.

References

1. Christos Doulkeridis and Kjetil Norvaag. A survey of large-scale analytical query
processing in mapreduce. The VLDB Journal, 23(3):355–380, June 2014.

Raimundas Matulevicius
39

2. Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Ba-
sic concepts and taxonomy of dependable and secure computing. IEEE Trans.
Dependable Secur. Comput., 1(1):11–33, January 2004.

3. Jim Gray, Paul McJones, Mike Blasgen, Bruce Lindsay, Raymond Lorie, Tom Price,
Franco Putzolu, and Irving Traiger. The recovery manager of the system r database
manager. ACM Comput. Surv., 13(2):223–242, June 1981.

4. Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer Özsu. Multi-core,
main-memory joins: Sort vs. hash revisited. Proc. VLDB Endow., 7(1):85–96,
September 2013.

5. Claude Barthels, Ingo Müller, Timo Schneider, Gustavo Alonso, and Torsten Hoe-
fler. Distributed join algorithms on thousands of cores. Proc. VLDB Endow.,
10(5):517–528, January 2017.

6. Georges Gardarin and Patrick Valduriez. Join and semijoin algorithms for a multi-
processor database machine. ACM Transactions on Database Systems, 9, 03 1984.

7. J. Teubner and G. Alonso. Main-memory hash joins on modern processor architec-
tures. IEEE Transactions on Knowledge and Data Engineering, 27(7):1754–1766,
July 2015.

8. Bunjamin Memishi, Shadi Ibrahim, Maŕıa Pérez, and Gabriel Antoniu. Fault Tol-
erance in MapReduce: A Survey, pages 205–240. 10 2016.

9. Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao, Eugene J. Shekita, and
Yuanyuan Tian. A comparison of join algorithms for log processing in mapreduce.
In Proceedings of the 2010 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’10, page 975–986, New York, NY, USA, 2010. Association
for Computing Machinery.

10. A. Pigul. Comparative study parallel join algorithms for mapreduce environment.
Proceedings of the Institute for System Programming of RAS, 23:285–306, 01 2012.

11. APACHE HIVE, 2020.
12. APACHE PIG, 2020.
13. Pedro Costa, Marcelo Pasin, Alysson Bessani, and Miguel Correia. Byzantine

fault-tolerant mapreduce: Faults are not just crashes. pages 32–39, 11 2011.
14. Hao Zhu and Haopeng Chen. Adaptive failure detection via heartbeat under

hadoop. pages 231–238, 12 2011.
15. Diego Ongaro and John Ousterhout. In search of an understandable consensus

algorithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference, USENIX ATC’14, pages 305–320, Berkeley, CA, USA, 2014.
USENIX Association.

16. CockroachDB official website, 2020.
17. Feng Wang, Jie Qiu, Jie Yang, Bo Dong, Xinhui Li, and Ying Li. Hadoop high

availability through metadata replication. In Proceedings of the First International
Workshop on Cloud Data Management, CloudDB ’09, pages 37–44, New York, NY,
USA, 2009. ACM.

18. PostgreSQL official website, 2020.
19. David J. DeWitt, Jeffrey F. Naughton, Donovan A. Schneider, and S. Seshadri.

Practical skew handling in parallel joins. In Proceedings of the 18th International
Conference on Very Large Data Bases, VLDB ’92, pages 27–40, San Francisco, CA,
USA, 1992. Morgan Kaufmann Publishers Inc.

20. Vikram Singh. Multi-objective parametric query optimization for distributed
database systems. In Millie Pant, Kusum Deep, Jagdish Chand Bansal, Atulya
Nagar, and Kedar Nath Das, editors, Proceedings of Fifth International Conference
on Soft Computing for Problem Solving, pages 219–233, Singapore, 2016. Springer
Singapore.

Raimundas Matulevicius
40

