
Multi-level Semantic Representation Model for code search
Donzhen Wen

sewen@mail.dlut.edu.cn
Dalian University of Technology

Dalian, China

Liang Yang
liang@dlut.edu.cn

Dalian University of Technology
Dalian, China

Yingying Zhang
zhangyingying@mail.dlut.edu.cn
Dalian University of Technology

Dalian, China

Yuan Lin
zhlin@dlut.edu.cn

Dalian University of Technology
Dalian, China

Kan Xu
xukan@dlut.edu.cn

Dalian University of Technology
Dalian, China

Hongfei Lin*
hflin@dlut.edu.cn

Dalian University of Technology
Dalian, China

ABSTRACT
With the huge amount of open-source software is publicly avail-
able today, code search has become more and more important to
software development. Matching natural language(NL) between
programming language(PL) cross the semantic gap is the key to
the code search problem. In this paper, we introduce a word-based
Multi-level Semantic Representation (MSR) model from the per-
spective of text representation to maximum semantic matching.
Then we perform a series of experiments to find the significance of
different parts in code snippets when modeling semantic relevance
between natural language and programming language. The conclu-
sion can be used to support further study on semantic matching
modeling between PL and NL like the neural matching model.

KEYWORDS
text representation, source code search, software engineering

1 INTRODUCTION
The developer would reuse a huge amount of well designed and
fully tested code snippets when developing a new software project.
However, there are two main difficulties for the developer to find
proper code snippets. First, it is hard to get access to these code
snippets for those are distributed on different platforms, e.g., Github,
personal blogs, online communities, and so on. Second, the devel-
oper’s needs are always expressed in natural language form. How
to model the relevance between natural language and programming
language is our main challenge.

As Figure 1 shows, a code snippet contains a different domain
for code search. Some parts like method names and code comments
give more natural language contributions than code body, whereas
source code body gives runtime functional information in instruc-
tion form. How the different parts of the code snippet contribute to
the retrieval task is our main focus.

In this paper, we mainly focus on how natural language words
contribute to the search task. The main contributions of this paper
are as follows:

• We propose a word-based Multi-level Semantic Represen-
tation (MSR) model to jointly model natural language and
programming language.

• Based on theMSRmodel, we combine learning to rankmodel
to find the contribution of different parts of code snippets.

"Copyright © 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0)."

Figure 1: Code search framework. While sub-figure on the
left side has shown different parts for a code snippet.

• By leveraging the sequential encoding ability of the neural
model, we verify the natural language words’ contribution
to the code search task.

2 RELATEDWORK
A code search task can be seen as a text-based information retrieval
task. Early in 1993 Chang et al.[4] proposed a keyword-based code
search system SMART, which enhances the keyword search effect
by processing source code identifiers and extracting code element
information. They gave developers the ability to access source code
by matching full words in a software project. While other tools such
as Debian code search, Google code search tool, StackOverFlow and
Github enhance the code search system by adding regex technique
support.

On the basis of the full-match based text match, the semantic-
based text match has been proposed for a better understanding of
the developer’s intent. Lv et al.[16] proposed a code search tech-
nique that can recognize potential APIs that a user query refers to.
Bajracharya et al.[3] proposed the Structural Semantic Indexing
model to construct the connection between words and source code
entities in natural language. Steven [18] built a semantic search
engine by filtering out irrelevant code snippets according to de-
scription and test, their search engine can provide users with more
accurate results. Lucia et al.[1]use the vector space model (VSM) to

https://codesearch.debian.net
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trace the source code document basing on the source code identi-
fier processing. Clarke et al.[7] proposed a text-based code search
framework, which improved the source code pre-processing and
source code storage management, divided the source code into mul-
tiple domains, and combined the text retrieval method to retrieve
the code.

Marcus et al.[17] proposed a concept located in the source code
file combined with latent semantic analysis (LSI) technique. Arwan
et al.[2] introduce the topic model to enhance the effect of the code
search system by applying the latent Dirichlet distribution (LDA)
model into the code search task. Jiang et al.[13] combineword-based
semantic feature extraction with learn to rank algorithm which
inspires us combining the different levels of semantic feature for
a better understanding the relationship between natural language
and programming language.

As the neural model has achieved huge success in natural lan-
guage processing, some techniques were introduced to represent
programming language. Jiang et al.[15] proposed the Word2API
model, which uses word vectors to represent code text. Hongyu
Li et al.[19] researched neural code search. They train the word
vector to perform a document level representation of the code
segment and calculate the vector cosine similarity between code
snippets and natural language queries. Gu et al.[11] proposed a
new code search framework by encoding token sequences to get
high-dimensional representations of the code snippet. Chen et al.[5]
introduce variational Auto Encoders(VAEs) to code search and code
summarization tasks. The bert model proposed in 2018 by Devlin
et al.[9] completely change the paradigm of word embedding and
natural language workflow. Then Kanade et al.[14] present the first
attempt at pre-training a BERT contextual embedding of source
code. Their results show that the fine-tuned models outperform the
baseline LSTM models supported by Word2Vec embeddings, and
Transformers trained from scratch. Basing on Clark et el.[6] Zhang
et al.[10] propose a new variant of Bert-like source code pre-train
model.

For better understanding the role which natural language words
play in the source code search task, we propose three research
questions for semantic modeling research:

• RQ1: How to model the semantic correlation between the
programming language and natural language?

• RQ2: How different parts of code snippet contribute to code
search task?

• RQ3: The advantage and disadvantage of word-based se-
mantic modeling.

3 METHODOLOGY
3.1 Multi-level Semantic Representation
Our main framework for the code search task is shown in Figure
2. The source code fragment and the user query text are first re-
encoded by the text cleaning step. The code text and user query
after cleaning are processed into the MSR model by code element
extraction and text normalization, and the text features, implicit se-
mantic features, deep semantic features, and other related features
are extracted. Finally a learning-to-rank model can give code snip-
pet sorting by their semantic relevance based on our representation
model.

Figure 2: Multi-level semantic feature construction process.

A specific definition of multilevel semantic features can be seen
in Table 1.We classify the semantic representation feature into three
levels: text feature, Latent semantic feature, and deep semantic
feature, and they are named as T-series, S-series, and D-series.
A more detailed description of the multilevel semantic relevance
feature can be seen in Table 2.

T1 mainly describes the editing distance between the query and
the code text. The code text and the query text are expressed in the
form of Unigram, and the editing distance of the two is calculated
as the interactive feature in combination with the text sequence
represented by the Unigram.

T2 analyzes the co-occurrence index between the texts. The
code text and query text are represented as a collection of words by
combining 1,2,3-grams and BOW models. Then, a co-occurrence
of words between two ends of texts is calculated by combining the
Jaccard index and the Dice index. In addition, the Jaccard index can
be modified by introducing the word weight by the TFIDF model,
and the weighted Jaccard index information is calculated.

T3 mainly calculates the vector distance between the texts. The
vectorization method selects the 1,2,3-gram and TFIDF method
to convert the code text and query text into vectors. The vector
interaction part uses the cosine distance, the Euclidean distance,
the Chebyshev distance and the Manhattan distance to calculate
the distance feature between the texts.

S1 performs implicit semantic analysis (LSA) based on text vec-
torization and combines singular value decomposition (SVD) and
non-negative matrix factorization (NMF) based on TFIDF text vec-
torization to perform latent semantics. After analysis, the similarity
between the code text and the query text is calculated by combining
the cosine distance and Euclidean distance formula.

S2 calculates the similarity feature between the code text and
the query text from the subject angle. The vectorization method
is still based on the text processing of 1,2,3-gram, and the text
vectorization is performed by TFIDF, and then the theme vector is
extracted by combining LDA. After obtaining the subject vector of
the code text and the query text, the similarity feature is calculated
by the pre-selected distance and the Euclidean distance calculation
formula.

D1 leveraging word embedding technique to get the document
representation. The vectorized representation of the entire docu-
ment would be constructed by the word vector of each word. The
word vector pre-training process is performed by the word2vector
and the glove method on cleaned code corpus. Suppose that the
total number of words in a piece of text is N, the dimension of the
word vector obtained by pre-training is P, and the 𝑗𝑡ℎ dimension of
the 𝑖𝑡ℎ word in the vocabulary is recorded as𝑤𝑖, 𝑗 . The correspond-
ing document indicates that the component corresponding to the
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Table 1: Multilevel semantic representation

ID Category Feature set name Description
T1

Text feature
Edit distance Edit distance

T2 Co-occurrence index Word co-occurrence
T3 Vector distance TF-IDF vector distance
S1 Latent semantic feature Latent semantic LSI vector distance
S2 Topic feature Topic vector distance
D1 Deep semantic feature Word2vec Word vector for source code
D2 Weighted Word2vec Weighted word vector for source code

Table 2: Multilevel semantic interaction

ID Representation model Interaction model
T1 Unigram Levenshtein
T2 1,2,3-gram+bow+tfidf Jaccard, Dice, etc.
T3 1,2,3-gram+tfidf Cosine, Euler, etc.
S1 1,2,3-gram+tfidf+svd Cosine, Euler, etc.
S2 1,2,3-gram+tfidf+lda Cosine, Euler, etc.
D1 Unigram+word2vec/glove Cosine, Euler, etc.
D2 1,2,3-gram+tfidf+word2vec Cosine, Euler, etc.

𝑗𝑡ℎ dimension in the vector D is recorded as 𝑑 𝑗 . The formula for
vector representation of documents using word vectors is:

𝐷 = [𝑑 𝑗 | 𝑗 : 0 → 𝑃 − 1] (1)

𝑑 𝑗 =

𝑁−1∑
𝑖=0

𝑤𝑖, 𝑗 (2)

D2 introduces word weight information on the basis of D1 to
integrate the document. In D1, there is no difference in the word
vectors of all words. There is no information that can take into
account the importance of the different words in the text. Many
large but unimportant words (such as partial adverbs, auxiliary
words, articles, etc.) correspond to the word vector; Additionally,
there will be a huge impact on the overall document expression.

𝐷𝑝 = [𝑑 𝑗 | 𝑗 : 0 → 𝑃 − 1] (3)

𝑑 𝑗 =

𝑁−1∑
𝑖=0

𝑡𝑞,𝑖 ∗𝑤𝑖, 𝑗 (4)

In D2 method, the TFIDF representation of the document is in-
troduced on the basis of 1,2,3-gram, and the result is corrected by
combining the TFIDF weight information of the word in the docu-
ment when the word vector is added. The word vector and the doc-
ument vector definition are the same as D1. Here, the TFIDF weight
of the 𝑖𝑡ℎ word in the 𝑞𝑡ℎ document in the document is 𝑡 ( (𝑞, 𝑖)),
and the weighted word vector is used to perform the document
vectorization representation formula corresponding to Equation 3
and Equation 4.

4 EVALUATION
Here we uses NDCG@K and MAP to evaluate the code search task.
For the dataset we use ROSF[13]. ROSF contains 35 most frequently

asked development questions as natural language queries. Each
query has about one hundred labeled relevance Android code snip-
pets which relevance score from 1 to 4. While score 1 and 2 will be
considered irrelevant and 3,4 mean relevant . Besides the labeled
data, ROSF contains about half a million unlabeled Android code
snippets which will be used for LDA and word2vec language model
training.

5 EXPERIMENTS
In this part, we focus on the three research questions mentioned
above. Parameters for the MSR model are shown in Table ??. Here,
the feature size of TFIDF is set to 5000 since a larger vocabulary size
will consume too much memory resources with few performance
gain. For another reason, we do statistics on the total number of
tokens in our code search dataset then choose the first 95 % tokens
to make a vocabulary table. Then we get about 5000 different tokens.
On this basis, the topicmodel and the latent semantic analysis model
dimensions are selected in 200 dimensions. Finally, we train word
embedding on 50, 150, 300, and 500 dimensions for deep semantic
representation.

Table 3: Hyperparameter of feature extraction object

Feature Type Parameter
TFIDF VSM feature 1-gram; Feature size 5000
LDA Topic feature Dim 200
PCA Latent semantic feature Dim 200
NMF Dim 200
Word2vec Deep semantics feature Dim: 50,150,300,500
Glove Dim: 50,150,300,500

5.1 Experiment Settings
In order to find out the importance of different parts in code snip-
pets when modeling semantic relevance between natural language
query, we divide the code snippet into four parts: method name,
API sequence, code token texts, code comment texts. For the code
method name, we do nothing but using the raw code method name
as target texts. For API sequence, we use the java parser tools to
get the parse tree of the whole code snippet. As for those snippets,
which can not be parsed, we use a regex pattern for extracting
the API call sequence. For code token text, we combine the API
sequence, method input parameter, and method output parameter
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Table 4: Evaluation on different code search domain for MSR

Metric NDCG@10 P@10
Ranking method Method API Token Comment ALL Method API Token Comment ALL
ROSF —- —- —- —- 0.4370 —- —- —- —- 0.5250
MSR+LR 0.4144 0.4306 0.4313 0.4470 0.4106 0.4400 0.4800 0.4350 0.5050 0.4950
MSR+RF 0.4167 0.4428 0.4462 0.4223 0.4865 0.4150 0.4700 0.5150 0.5100 0.4900
MSR+GNB 0.3909 0.4472 0.3974 0.4340 0.4357 0.4600 0.4350 0.4300 0.5100 0.4300
MSR+LGB 0.4000 0.4490 0.4285 0.4143 0.4517 0.4350 0.5250 0.6050 0.4950 0.4950
MSR+AdaRank 0.379 0.3642 0.3778 0.3949 0.4188 0.3900 0.3750 0.3450 0.4550 0.5200
MSR+LambdaMart 0.3871 0.4517 0.4631 0.4432 0.4616 0.4450 0.4700 0.5400 0.5450 0.4800
MSR+ListNet 0.3647 0.3644 0.3653 0.4355 0.3681 0.3850 0.4550 0.280 0.4900 0.4550
MSR+MART 0.3853 0.4327 0.4815 0.4429 0.4549 0.4400 0.4950 0.5250 0.5300 0.5650

to get the raw token text. Then we wash out stop words (keywords
in java language) from token text and split apart the identifier that
in the form of the Camel case. Finally, we can get the code comment
texts by concatenating all comment text in the code snippet.

In our experiment, we combine MSR with multiple learning to
rank algorithm which implemented by Dang V.[8] in Ranklib. For
model comparison, we re-implement the ROSF[13] model which
combines text vector distance, topic vector distance with a linear
model for code search. We also combine MSR with classification al-
gorithms like logistic regression, random forest classifier, Gaussian
Bayes classifier, and lightgbm classifier for comparison. f Finally we
use lightgbm to output feature importance. Lightgbm is an efficient
implementation of the GBDT algorithm, introduced by Microsoft
Corporation. Guided by labels, lightgbm can output the importance
score of the input features. We evaluate the validity of different
semantic levels in MSR model by the scores given by the algorithm.

5.2 Results
Table 4 shows the evaluation of MSR method on different code
search domains inNDCG and P@10metrics comparingwith ROSF[13]
at the first line. Full set of word-based semantic features are used
in each search domain when notation ALL means full feature set
on all four search domain. Here we notice that scores for ROSF are
lower than the original paper shows. Two reasons are responsible
for this phenomenon: First, the original paper uses a linear model
for ranking. We do not know how they implement this linear model,
so we use a logistic regression model to replace them. Second, the
original paper uses a two-stage method to evaluate their model:
they recall the relevance code snippets for a huge code base then
re-rank the candidate snippets. In comparison, we directly apply
the ROSF feature extraction and re-ranking method on test data.

Table 4 compares eight ranking models on MSR method from
where we can see some general conclusions on roles that different
search domains playing part in the search task. Compared to the
scores in other domains, the method name domain seems always
lower. While Gu et al.[12] report the importance of API sequence in
the search task we achieve a relatively lower score in the ranking
process. According to our analysis, it is mainly a compounded
identifier that causes a lower score when ranking on these two
domains. The word-based semantic feature will suffer a lot from
word mismatch problem. In MSR we use 5000 size vocabulary for
TF-IDF where compounded identifier in method name and API

Figure 3: Multi semantic representation feature importance
in different code search domain

Table 5: Feature importance among different semantic series

NDCG@10
Ranking method T-series S-series D-series ALL
LR 0.459 0.4074 0.4438 0.4105
RF 0.4512 0.4528 0.4094 0.4211
GNB 0.432 0.4372 0.4385 0.4357
LGB 0.4421 0.4389 0.4164 0.4517
AdaRank 0.4188 0.3586 0.3527 0.4188
LambdaMart 0.4739 0.4489 0.4772 0.4616
Listnet 0.3612 0.4025 0.3802 0.3681
Mart 0.448 0.4992 0.439 0.4549

sequence do not include in this. Token and comment show relatively
high scores in eight ranking method while the token and comment
forms are closer to natural language words.

Figure 3 shows feature importance among different semantic
feature sets and different search domains. Table 5 shows the ranking
score at a single series of features. Combine Figure 3 with Table5
we can see the latent semantic feature and deep semantic feature
achieve the highest two importance among other features.

Now we can answer the three research questions. For RQ1, we
propose a word-based Multi-level semantic representation model
by combining text features, latent semantic features, and deep se-
mantic features. For RQ2, according to Figure 3 we can see different
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search domains have different adaptability with multi-level seman-
tic representation. For RQ3, Table 4 shows that word based semantic
model suffers from a compounded identifier. In further research we
can model compounded identifiers by dividing them into affixes.

6 CONCLUSION
In this paper, we propose a word-based Multi-level semantic repre-
sentation model to jointly modeling natural language and program-
ming language. Starts with three research questions we investigate
how different levels of semantic construct the complete represen-
tation of code text. The high contribution of the latent semantic
feature shows that synonyms words play an important part in se-
mantic modeling between NL and PL where the deep semantic
feature also confirms this. Through experiments it can be seen that
processed code token texts give a high contribution to code search
tasks where identifiers that compounded by multiple natural lan-
guage words give less contribution to the task. This inspired us to
use the affix embedding for neural models in our future work.
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