
An Edge Centric Middleware for City
Surveillance Platform (CityPro)

Mariam Hakim
Faculty of Sciences - I
Lebanese University

Beirut, Lebanon
mariamhakim181@gmail.com

Ibrahim Tawbe
Faculty of Sciences - I
Lebanese University

Beirut, Lebanon
ibrahim.tawbe@gmail.com

Mohamed Dbouk
Faculty of Sciences - I
Lebanese University

Beirut, Lebanon
mdbouk@ul.edu.lb

Abstract—Smarter Cities provide better
management for city services, reporting problems, and
predicting future issues to enhance city protection. The
need for a robust and unified middleware platform in
Smart Cities is not yet a solved problem. Traditional
middleware that evolved in enterprise environments
can’t handle smart cities complexities. Therefore, a
platform -CityPro- that integrates multiple existing
systems into a collaborative environment to protect the
city is proposed. It highlights the concept of
“connectors” between different city systems and a
central “core” system. In this article we provide a new
middleware (architecture and framework) - called Edge
Centric Middleware- that adapts CityPro's architecture
to connect existing city systems to the core system. The
suggested solution tries to solve issues such as merging
heterogeneous systems, event processing, real-time data,
scalability, availability, and interoperability, while
exploring edge computing capabilities. We also provided
an implementation for this middleware to serve as an
open-source generic framework that can be extended
and customized.

Keywords—Smart Cities; Business Processing; Edge
Computing; Business Intelligence; Big Data; Smart Data

I. INTRODUCTION AND PROBLEM POSITION
In a typical modern city, multiple computerized

standalone systems exist, e.g. banks, hotels, and
hospitals. All of these systems work separately which
limits their powers to a specific business domain (e.g.
bank), specific area, etc. The amount of challenges a
city faces is increasing daily. Smart City paradigms
approach these challenges by using the city’s
resources efficiently to optimize services and
managements such as traffic control, electricity, public
safety, etc. It is worth to note that tackling these issues
using technological advancements is not for “modern”
cities only. Cities in developed countries can and
should take measures following Smart City paradigm
to solve challenges. Smart City is not a one-shot
solution; developed countries can gradually build up
their Smart City eco-system.

Public safety is not considered a luxurious service;
it’s an essential challenge for any city. Cities are
facing variety of risks such as natural disasters,
terrorists’ attacks, crimes, vehicle accidents, etc. What

triggers these risks is traditionally monitored by
different governmental agencies; the weather
monitoring agency differs from local police forces. On
the other hand, these risks put citizens in danger and
coordinating the emergency procedures is critical to
lower the losses. Furthermore, detecting and dealing
with an emergency is not enough, there is a need to
predict and act before things happen. That’s why
models are built and run to simulate real-world
scenarios using machine learning and artificial
intelligence. In addition to the models, early alarms
sometime come from the correlation between different
data sources. The data produced by these sources may
become gigantic over time; such data can be
considered as a valuable mine of information.
Therefore, a technique must be adapted to access this
data wisely in order to benefit the whole city.

These necessities nourished the idea of an
integrated platform of a collaborative surveillance
system, called CityPro [1].This system is intended to
protect and monitor people and public infrastructures.
It is expected to:

x Operate within live-mode by using the city
digital infrastructures

x Combine and inter-operate heterogeneous pre-
existing operational systems

A. CityPro; an overview
Ref [1] presents CityPro; a collaborative platform

for city protection tries to standardize the relation
between different systems with a centralized,
supervised control and data repository architecture
shown in Fig. 1. It defines data providers as domain-
specific independent (stand-alone) systems that
coexist within the considered territory such as police
departments, fire stations, banks, etc. In the context of
CityPro these systems are data producers. They are
accessed through “collaboration-links” or
“connectors”. CityPro defines a connector as
“Dedicated links that are materializing the
collaborative inter-relationships between CityPro
components. They mainly consist of ETL like
dedicated data exchange automated protocols based on
‘adapter pattern’.” CityPro delivered the general
architecture of the system, while we still need to

64

Copyright © 2019 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

investigate deeper into providing a standard and
uniform access to these heterogeneous distributed
systems with minimum effort at the data provider side.

Fig. 1. CityPro's General Architecture

To address the need for city surveillance, CityPro
defines two data flows: periodically where data
continually arrives from data providers and on-
demand where the central system asks providers for
instant detailed data. We need to define the standard
protocols for this data exchange.

Highly distributed systems of this kind may
produce gigantic amounts of data. A pure central
system might struggle in handling all this data flow
and delivering value, especially in the case of near
real-time alerts. That’s why it’s tempting to use the
distributed computation environment along the
process of detecting anomalies and preparing the data
for analysis.

Privacy and security are always an issue in any
collaborative and network-based solution. In today's
world the approach to this issue is a mix between
political or governmental policies and technical
implementations. From the technical side we should
take these issues into consideration from early stages,
starting from the design of the system.

Applying our concept to CityPro, provides a
middleware between data providers such as (banks,
customs, hospitals…), the existing information
systems, and the “Core” system of the city. Although
we started by challenges raised by CityPro, we
designed and implemented the middleware to be
generic, opensource, and customizable so it can be
applicable in many scenarios.

B. Problem position and proposed approach
CityPro intends to combine and inter-operate (in a

supervised mode), heterogeneous pre-existing
operational systems; e.g., banks, hospitals,
cellular/landline phone management engines, police-
stations, video surveillance networks, etc. The
proposed architecture should provide insights to
protect the city and some events should trigger real-
time alerts. Yet we are faced with major challenges.
The data providers are heterogeneous distributed
systems, where each provider has implemented its
own technological stack (Hardware-OS-Database-App

layer). In addition most data providers hold big data
volumes. In its architecture the core system which
holds the federated data repository is responsible for
analysis and decision making.

This article is dedicated to finding a feasible
solution that uses edge computing concepts to
optimize data transfer and delegate some core system
operations and computations to near-source
components especially in the case of real-time alerts,
while maintaining the security when moving and
accessing remote data from other parties. These
operations should scale accordingly and should be
done reliably where the system should guarantee high
availability and fault tolerance.

In the later sections of this paper, we are going to
introduce an architecture that adopts edge computing
concepts and incorporate techniques to access
distributed heterogeneous information systems. By
creating a middle layer between the Core System and
the data providers such as banks, police, airports,
customs, etc. The proposed architecture is expected to
enhance the interoperability within the system itself
and the city systems. It is also expected to maintain a
high availability and create a scalable cache for
messages from various providers.

 In this paper, Section II covers the previous works
and technologies. The work and solution we are
adapting for the smart repository in section III. Section
 IV presents a basic implementation and evaluation of
the work. Finally, Section V concludes and states
some future works.

II. TECHNOLOGIES AND STATE OF THE ART
Traditional middlewares aren't fit to play the role

of CityPro’s connectors. Additional criteria and
functionalities are required. Therefore, reviewing
traditional middlewares in the edge computing era
opens a door for more options and facilities.

A. Edge and Fog Computing
Ref [2] refers to edge computing as the enabling

technology that performs computation at the edge of
the network, on downstream data on behalf of cloud
services and upstream data on behalf of IoT services.
Another technical trend is Fog Computing a term
created by Cisco. While many interchange it with edge
computing, Cisco states that “Fog computing is a
standard that defines how edge computing should
work” [3].

B. Middleware in the Context of Cities &
Surveillance

Before edge computing and smarty city era,
“Embedded Middleware on Distributed Smart
Cameras” [4] designed and implemented a middleware
for distributed embedded image processing on a
network of smart cameras. They embedded the

65

middleware in the camera device. In our case CityPro,
instead of the camera or device there is a complete
information system – the data provider. Unlike the
embedded middleware used in [4] where they
interchange data between cameras, in CityPro data
partners don’t interact with each other. Furthermore, in
CityPro an embedded middleware can’t handle big-
data, scalability, availability, and other processing
tasks. That is why we evolved the concept of
embedding to an edge device.

1) Civitas
Ref [5] highlighted that traditional middleware

technologies are designed for enterprise environments
and can’t address issues of heterogeneity and
scalability in a Smart City. They connected different
entities such as citizens, governmental institutions, and
companies to the “Civitas” platform which is
considered as the core of the IT infrastructure in the
Smart City. The connection is through a device called
“Civitas Plug”, these devices can be smartphones,
company servers, residential gateways…

Another key point in the Civitas platform is the
“Core Nodes”. They are servers that host different
kind of services to the city entities. They consider that
heterogeneity and inter-operability is solved by the
distributed object-oriented middleware, where each
entity is an object with a set of defined standard
interfaces. It also supports event-based communication
through publish-subscribe pattern.

Fig. 2. Civitas Platform ‎[5]

We share the idea of the plug device, but this
device can’t alone solve the availability and scalability
issue, that’s why we added a broker layer between our
“edge device” and the “core system”. Moreover, we
needed a deeper study of the inner-design and inner-
workings of the plug device.

2) InterSCity
Ref [6] noted that there is no agreed middleware

platform for SmartCities' platforms. They listed three
factors for this challenge: security and privacy
policies, the lack of scientific and practical validation,
and the “extensive use of development of non-

opensource software” which is causing inter-
operability issues and limits the collaboration among
researchers. They applied the micro-service paradigm
to provide a modular and scalable middleware.
InterSCity microservices architecture is shown in
Figure 4. The abstraction is through “city resource” a
logical concept that resembles a physical entity such
as cars, traffic lights, etc.

Each resource has attributes and functions to
provide data and receive commands. For
communication protocols, microservices use
synchronous HTTP Rest API and asynchronous
message bus using RabbitMQ. Their work adopts
many open source projects such as PostgreSQL and
Redis. In CityPro context the distributed existing
information systems are more data producers that
service providers. Furthermore, to some extent,
middlewares and micro-services solve different
problems. Micro-services architecture takes the whole
application (Smart City) and de-couples it into
independent services.

C. Accessing Distributed Heterogeneous
Database Systems

Today's computing and analysis techniques are
tempting to integrate different Information Systems to
provide additional insights. On the other hand, many
international enterprises are providing services that
span different subjects in different locations. In
CityPro project which tries to maximize the benefit of
the distributed operating systems, there is a clear case
for this challenge.

Ref [7] highlights the need to “combine and
analyze the distributed data along with contextual
factors”. The authors list the current solutions and
technologies in the cloud computing infrastructure
stack (Azure, Amazon, private stacks) in three main
domains: managing distributed clusters, distributed
data processing models (such as MapReduce), and the
data management service across datacenters which
“integrated different cloud data storage services by
providing a transparent interface” such as Simple
Cloud API , PDC@KTH’s proxy service, Open Grid
Services Architecture Data Access and Integration
OGSA-DAI).

1) MUSYOP
Ref [8] provided “a federated approach - a

mediator server - that allows users to query access to
multiple heterogeneous data sources” for relational
databases, Triplestore, NoSQL databases, and XML
with a management layer using SPARQL and
mapping different databases to RDF.

2) Apache Spark
One more interesting solution for accessing

different datasets is Apache Spark. Apache Spark is a

66

“unified analytics engine for large-scale data
processing” [9]. The unified part is baked into the
Spark SQL module. Spark SQL Layer is built on top
of two interfaces Data Frame API and Data Source
API which supports schema understanding, reading
data with filters, and writing custom aggregations.

Custom drivers for different database engines will use
these interfaces to support those functionalities.
Currently drivers for most database engines (MySQL,
MongoDB, HBase, Cassandra, HDFS ...) are already
implemented and ready for production use.

There are two important sides of this topic:
distribution and heterogeneity. For the heterogeneity
part there are two trends: use ontology-based solutions
or build custom interface layer. It’s also important to
note that whatever the integration solution. SQL is the
preferred language to query these distributed datasets.
The SQL layer is used for the unified access with the
added benefit that it can easily integrate with upper
layer tools and technologies such as BI tools. Often
suggested solutions tackle the whole process from
accessing the data to integrating it, but my focus is on
providing the interface to different database systems
and the integration part will be solved in later phases
of CityPro.

D. Message Broker
A Message Oriented Middleware (MOM) is

responsible for sending and receiving data
encapsulated in messages between different
distributed systems. A MOM can be with a broker or
broker-less. TIBCO Inc. [10] defines a message broker
as a discrete service that provides data marshaling,
routing, persistence, and delivery to all appropriate
consumers.

We will highlight different technologies and
researches with respect to important features we are
interested in persistent cache, high availability and
fault tolerance, scalability, with added value features
such as message formats optimizations for binary
messages and compression. First we consider current
production-grade technologies. The state of art in
persistence is to use a journaling file system write-
ahead commit log backed by operating system page
cache this is implemented in Apache Kafka [11] and
Apache ActiveMQ Artemis [12] or delegate this to a
database that uses this implementation. For high
availability and fault tolerance, a replication set of 3
brokers is recommended for production. Scalability is
done horizontally by adding more nodes as brokers,
but a consensus and management service is needed to
keep track of nodes and data index in the cluster. One
of the well-known and heavily used software that
implements this functionality is Apache Zookeeper
 [13] which itself can be replicated. Ref [14] introduced
“EQS: an Elastic and Scalable Message Queue for the
Cloud”. They discuss automatic scaling and load
balancing in message queues to optimize the
throughput along systems by layering additional
components for monitoring, rules, and scaling
management.

E. Complex Event Processing (CEP)
With various systems and sensors generating and

sending data, there is a need to detect interesting
patterns along the data streams. CEP paradigm has an
opposing concept to regular databases. Instead of
executing a query on a dataset, the data is executed on
a well-defined query. This technology has been
deployed and heavily used in the financial sector
especially for fraud detection.

Ref [15] introduced the concept back in 1998. It
was a hot topic again in the research community in
2006-2009 where it was discussed in the context of
big-data and adding machine learning for prediction of
events. Many commercial and open-source CEP
systems are available such as Apache Flink [16],
Siddhi.io [17], and Esper [18].

III. PROPOSED SOLUTION; AN EDGE CENTRIC
MIDDLEWARE FOR CITYPRO

The "Edge Centric Middleware" consists of two
parts: edge devices distributed along with the data
providers' systems and a broker between edge devices
and the "City Core System". We delegate some
computation tasks to the distributed edge devices
which provide a uniform and standard interface to the
variety of existing systems. The edge devices follow
the concept of black box to tackle privacy and security
concerns. While the broker handles the scalability and
availability of message queues from a distributed
network of edge devices.

A. General Architecture
There are two main parts for the Edge Centric

Middleware: the edge device and the broker as shown
in Fig. 3.

The Edge Device - It’s a software and hardware
package deployed at the edge network of the data
provider and connected to the existing system via
computer network communications. It can scale up
from a simple computer board such as Raspberry-Pi
 [19] to a rack of servers. The main roles of the edge
device are:

x Provide an interface to access different
databases at rest at the provider side according
to a schema contract required by the
government agency

x Consume live data from the provider side
according to a schema contract

67

x Provide the required computation resources to
host and execute data summary and ETL-like
operations

x Send batches of data according to the
configured time interval and schema contract

x Detect and propagate real-time alerts specified
by a defined list of triggers

x Enabler for the confidentiality and integrity of
the data and business rules in question

Fig. 3. Proposed Solution General Architecture

The Broker - It is between the network of
distributed edge devices and the core system. Only
our certified edge devices can connect to the broker,
this enhances the privacy and quality of data flowing
through the middleware. From the broker point of
view edge devices are data producers and the “Core
System” is a data consumer. The broker roles are:

x A message queue that supports high volume
and speed of data

x Support publish-subscribe pattern

x Support high availability in case of systems
failures and high traffic

x Support horizontal scalability to handle
existing and new systems

While we invested more on the edge device part to
propose a new framework, we opted to rely on
existing technologies for the broker side. In addition to

realizing the above criteria, where traditional message
queues support producer and consumer, some brokers
also support a logic- processing endpoint such as
Apache Kafka's [11] Processing API which can be
used for data integration at this stage before
consuming the data.

B. Edge Device Software Framework
The edge device framework is a software &

hardware package. In this section, we will describe the
software stack of the edge device (Fig. 4). We
decomposed the framework into subcomponents with
decoupled functionalities. We used a file-based
configuration for some settings and standard
communication protocols for inter-component
communications and for the outer interfaces whether
with the data provider or the core system.

Fig. 4. Edge Device Inner Components

68

Schema Contract: States the required (selected) fields
and fields’ types from the data provider.

Live Data Module: Consumes live data from the
provider and validates the raw data according to the
schema contract.

Complex Event Processing Module: Works on a
stream of data and filter events that match the required
query. The query uses standard language SQL. Any
matching result should be sent to the broker immediately.

Detailed Data Module: Provides an interface to query
heterogeneous databases and files. It also generates
dynamic reports of the results using the reports templates.
This module provides a unified standard query interface
language SQL.

Data Storage: Stores temp data between batch
intervals. It’s optimized for high-performance sequential
operations.

Batch Module: Queries the cache according to the
defined time interval and sends them to the broker.

Admin Module: Receives commands and direct
queries from the core system and replies with the result.

C. Data Flow in the Edge Centric Middleware
Edge Centric Middleware supports three data flow

modes:

x A defined event pattern can trigger sending data
near real-time to the core system

x The core system requests detailed data on a
specific subject. The request is fulfilled by the
edge device which sends back a reply message.

x Data is collected from the provider, prepared, and
then sent in batches to the core system

1) Live Dataflow
This is considered as the regular periodic scenario (Fig.

5) that is always tracking familiar patterns from within the
data to register any possible anomalies.

Fig. 5. Live Data Flow

1. Data is streamed from the data provider live over a
network connection to the live data module which
accepts data at a specific open TCP port.

2. Live Data Module uses the schema contract to
validate and apply light computation on the incoming
data whether it’s as simple as attribute selection or
ETL-like operations.

3. Live Data Module forwards processed data to the
Complex Event Processing (CEP) module and to the
cache storage in parallel at the same time via internal
memory.

4. In the CEP module the stream of data is executed on
the event pattern query. Upon any match, the event is

forwarded at real-time to the broker via network
connection. CEP publishes to a specific broker topic
to avoid real-time alerts delays.

5. The batch module runs at custom time intervals,
collects cached data, and sends them in a batch to the
broker via a network connection

2) On-Demand Data Flow
This scenario (Fig. 6) is initiated whenever the

platform requires immediate and detailed data, especially
in the cases of alerts. In this case the platform directly
connects to the provider's edge without the need of an
intermediate broker.

Fig. 6. On-Demand Data Flow

69

1. CityPro Core initiates this process by sending a
request, which is a detailed query about a specific
subject, to the admin module which awaits
connections and commands.

2. The admin module initiates a new instance of the
detailed data module with the proper report
parameters such as the exact datastore query and the
report template.

3. The detailed data module has the capability of
querying different types of databases whether SQL or
NoSQL. After querying the provider’s database at
rest and getting the result, the detailed data module
will build the report and forward it to the admin
module via inter-process communication.

4. The admin module will send back the report to the
CityPro Core.

3) Provider Live Data Source
Two modes operate while getting live data from the

provider. To achieve this, we studied two paradigms at the
abstract level.

First Paradigm (Two-Tier Systems): We consider the
database as the source of “live” data. So, we must detect
and forward any data changes at the database level and
forward the changes to a live data stream.

Second Paradigm (Three-Tier Systems): We can
stream data live from the business logic layer or we can
use the database layer in a similar way to the first case.

IV. IMPLEMENTATION AND EVALUATION
To test the “Edge Centric Middleware” the inner

workings and how the data flows we considered the case of
Telecom Call Detail Records (CDR). We generated live
phone calls and used Microsoft SQL Server as a database
solution at the provider side. Our edge part of the
middleware was deployed on a RaspberryPi [19] board and
connected to the simulated database. The edge device
detected alerting patterns and sent them to the broker, in
addition to sending batches of data. We configured a Kafka
broker with two topics and validated the data flow.
Furthermore, we simulated a city core system panel to test
the admin channel.

A. Telecom Test Case
Preparing a DataSet - Due to privacy concerns, there

are no real data sets for telecom CDR. So, we generated
random CDR records. The CDR schema includes ID,
CALLING_NUM, CALLED_NUM, START_TIME,
END_TIME, CALL_TYPE, CHARGE, and
CALL_RESULT

We wrote a NodeJS [20] script to randomize the values
while keeping the numbers in Lebanese format. This script
keeps running emulating current phone calls that are taking
place right now.

Database Engine and Notification Service - After
generating call detail records (CDR) we consider Telecom

as a data provider system. At the provider side we used
Microsoft SQL Server [21] as the database solution. To
establish live data from the telecom data provider system
to the edge framework we implemented a .NET service
that wraps an MS SQL Server feature called “query
notifications”. “Query Notifications” are best defined and
documented as “query notifications that allow applications
to be notified when data changes. This feature is
particularly useful for applications that provide a cache of
information from a database.” [22] Using query
notifications our .NET service streams any new data
inserted in SQL Server to our edge framework. This stream
is serialized using Apache Avro [23].

Edge Framework on RaspberryPi - The software stack
for the edge is a cross-platform so we don’t have a
problem in selecting the hosting operating system. For the
hardware, the edge software can scale from a small
computer board to a rack of enterprise servers according to
the load at each data provider. This makes it more efficient
in any budget planning. For testing, we deployed it on a
RaspberryPi [19] board (Fig. 7) with the following
specifications:

x Model 3 B+

x 1 GB RAM

x 32GB Storage

x Quad-core 64-bit processor clocked at 1.4GHz.

x 300Mbps Ethernet

Fig. 7. RaspberryPi 3 B+

Deploying and running the edge software framework
on limited resources such as the RaspberryPi board proved
the performance and the work that is done to optimize the
computing footprint.

Kafka Broker - The broker of the “Edge Centric
Middleware,” was tested with Apache Kafka [11]. For the
telecom (CDR) data case, we created two topics: one for
normal data batches, and one for alerts. The batch
component in the edge framework published messages to
the normal topic while the CEP module published
messages to the alert topic. This will guarantee fast
delivery for alerts and then the infrastructure supporting
each topic can be scaled and optimized accordingly.

Some of the implementations are shown in Fig. 8.

70

Fig. 8. Components Implementation: a) Report Template - b) Schema Contract - c) CEP Module

B. Assessment and evaluation
Although we didn't implement much security features,

we consider our solution as a security and privacy enabler.
For example, we deployed our framework on a separated
and dedicated hardware where we can add physical
tampering detection. In addition, only our certified edge
devices can send messages to the broker. Furthermore,
encryption on the network layer and on the device cache
storage can be added.

V. CONCLUSION, OBSERVATION AND FUTURE WORK
Smart cities tackle development obstacles and improve

the quality of life for citizens. CityPro system focuses on
city protection by supporting the collaboration of existing
operational systems. The need for a robust and standard
middleware is critical for any smart city platform.

However, due to challenges such as continuous big
data streams, heterogeneous systems, security, and privacy,
in-addition to non-opensource software solutions there is a
lack of such a middleware. This article proposes a new
architecture for a smart city middleware using emerging
edge computing trends and provides an open-source
implementation for the proposed framework.

The "Edge Centric Middleware" consists of two parts:
edge devices distributed along with the data providers'
systems and a broker between edge devices and the "City
Core System". We delegate some computation tasks to the
distributed edge devices which provide a uniform and
standard interface to the variety of existing systems. The
edge devices follow the concept of black box to tackle
privacy and security concerns. While the broker handles
the scalability and availability of message queues from a
distributed network of edge devices.

More metrics and experimental validations are needed.
We had very limited time to develop a PoC (Proof of
Concept) for this research. More experimentation should
stress test big data flows.

The software implementation is based on standard and
opensource technologies. Developing within an
opensource community helps in boosting the pace of
solving issues and adding features.

ACKNOWLEDGMENT
This work is supported and funded by the Department

of research at the Lebanese University, Lebanon.

REFERENCES
[1] M. Dbouk, M. Mcheick and I. Sbeity, "CityPro: city-surveillance

collaborative platform," Int. J. Big Data Intelligence, vol. 4, no. 3,
2017.

[2] W. Shi, J. Cao and Q. Zhang, "Edge Computing: Vision and
Challenges," IEEE Internet of Things Journal, vol. 3, no. 5, 2016.

[3] Cisco, "Edge computing vs. fog computing: Definitions and
enterprise uses," [Online]. Available:
https://www.cisco.com/c/en/us/solutions/enterprise-networks/edge-
computing.html.

[4] B. Rinner, M. Jovanovic and M. Quaritsch, "Embedded
Middleware on Distributed Smart Cameras," in 2007 IEEE
International Conference on Acoustics, Speech and Signal
Processing - ICASSP '07, 2007.

[5] F. J. Villanueva, M. J. Santofimia, D. Villa, J. Barba and J. C.
López, "Civitas: The Smart City Middleware, from Sensors to Big
Data," in 2013 Seventh International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing, 2013.

[6] A. d. M. D. Esposte, F. Kon, F. M. Costa and N. Lago, "InterSCity:
A Scalable Microservice-based Open Source Platform for," in 6th
International Conference on Smart Cities and Green ICT, 2017.

[7] L. Wang and R. Ranjan, "Processing Distributed Internet of Things
Data in Clouds," IEEE Cloud Computing, vol. 2, no. 1, 2015.

[8] Z. Liu, F. Cretton, A. L. Calvé, N. Glassey, A. Cotting and F.
Chapuis, "MUSYOP: Towards a Query Optimization for
Heterogeneous Distributed Database," in International conference
on Computing Technology and Information Management, Dubai,
2014.

[9] Apache Spark, [Online]. Available: https://spark.apache.org/.
[10] TIBCO Inc., "What is a Message Broker?," [Online]. Available:

https://www.tibco.com/reference-center/what-is-a-message-broker.
[11] "Apache Kafka," [Online]. Available: https://kafka.apache.org/.

71

[12] "Apache ActiveMQ Artemis," [Online]. Available:
https://activemq.apache.org/components/artemis/.

[13] A. Zookeeper. [Online]. Available: https://zookeeper.apache.org/.
[14] N.-L. Tran, S. Skhiri and E. Zim´nyi, "EQS: An Elastic and

Scalable Message Queue for the Cloud," in 2011 IEEE Third
International Conference on Cloud Computing Technology and
Science, 2011.

[15] D. Luckham and B. Frasca, "Complex Event Processing in
Distributed Systems," Stanford University, 1998.

[16] "Apache Flink," [Online]. Available:
https://flink.apache.org/news/2016/04/06/cep-monitoring.html.

[17] "Siddhi," [Online]. Available: https://siddhi.io/.
[18] "Esper," [Online]. Available: http://www.espertech.com/esper/.
[19] "RaspberryPi," [Online]. Available: https://www.raspberrypi.org.
[20] "NodeJS," [Online]. Available: https://nodejs.org/en/.
[21] "Microsoft SQL Server," [Online]. Available:

https://www.microsoft.com/en-us/sql-server/.
[22] Microsoft, "Query Notifications in SQL Server," [Online].

Available: https://docs.microsoft.com/en-
us/dotnet/framework/data/adonet/sql/query-notifications-in-sql-
server.

[23] "Apache Avro," [Online]. Available: https://avro.apache.org/.

72

