
ElasticBloC: A Massively Scalable Architecture For
Blockchain Based Applications

Hadi Jibbawi

Lebanese University
Beirut, Lebanon

hadi.jibbawi@gmail.com

Yehia Taher
Université de Versailles – Paris-

Saclay
Versailles, France

yehia.taher@uvsq.fr

Rafiqul Haque
Intelligencia R&D

Paris, France
Rafiqul.Haque@intelligencia.fr

Ali Jaber

Lebanese University
Beirut, Lebanon

ali.jaber@ul.edu.lb

Abstract—Blockchain is an emerging technology that would
possibly disrupt the existing centralized financial systems lead
to the rise to a new technology era for the financial sector.
Additionally, different new use cases such as healthcare, identity
management, etc. suggest that Blockchain has much wider appli-
cations. Blockchain is founded on distributed ledger technology
that ensures trust through consensus between parties in a peer-
to-peer network instead of the need to a third party or central
authority. However, blockchain has several limitations such as
scalability, latency, low throughput which are the main barriers
for Blockchain being adopted by the industries. Of all, scalability
is the most critical limitation of blockchain that needs an
efficient and effective solution. In this paper, we aim to enhance
the scalability of blockchain by designing and implementing
a massively scalable architecture for private blockchain-based
applications, called ElasticBloC. To evaluate our contribution,
we conducted several experiments on ElasticBloC. The results
showed that ElasticBloC is a high-performant architecture that
scales massively.

Index Terms—Blockchain, Performance, Scalability

I. INT RODUCTI O N

Over the last few years, Blockchain has drawn huge atten-
tion to industry experts, technology evangelists, and academic
researchers due to its immense potentiality described in a large
body of literature and other sources such as blogs, forums,
etc. Many researchers and industry experts argued that it is
a revolutionary technology like the Internet that will provide
a highly efficient way to transact in a secure, immutable,
transparent, and auditable manner. In 2016, it was one of the
technologies that reached a peak in inflated expectation; since
then the interests in blockchain have been soaring to different
types of industries. In particular, the interest of Blockchain
technology among the financial industry started to grow as
it might be a potential one that would enable them to avoid
financial debacles such as the Heartland Payment Systems data
breach that had happened in 2008.

Security is an ever-growing concern in the financial industry.
With the advent of digital financial information systems and
rich transaction technologies, the operations have become
faster and the operational activities have spanned largely; at
the same time, the risk of breaching information has been
increased enormously. Although, there are advanced technolo-
gies encryption technologies that enable cryptic transmission
of financial data between financial actors (e.g., banks, insider
intruder), security remain a problem because cryptographic
algorithms are still weak to many attacks launched by the
adversaries. Blockchain was deemed a major breakthrough
technology that would prevent some unsolved security issues.
Therefore, the huge adoption of Blockchain was forecasted by
many such as Gartner within not only the financial industry
but also the other industries.

Furthermore, trust is critical when it is related to commu-
nication between two or more parties. Historically and till
now, trust is achieved mostly by the third party like banks or
authorities, that holds our data. In other words, communicating
parties rely on a common ledger which is held and managed
by this third party. As a typical example, Clearing Households
validates and manages the communication between trading
parties. So Blockchain technology comes as a potential tech-
nology. Its disruptive aspect is that it eliminates the need for
intermediaries while performing transactions [7]. Hence, it can
empower groups of parties to agree on events without needing
the third party, such as the promise of this new technology [8].

Our study revealed several limitations of Blockchain tech-
nologies, as mentioned in the earlier section. However, the
major concerns of Blockchain technologies are two-fold: scal-
ability and performance. Scalability is considered the critical
drawback that stands against blockchain technology. In fact,
it is the first limitation that must be addressed to make
blockchain an acceptable technology. The reason is obvious.
Consider a Walmart payment system that processes more
250 transactions every hour. Since Blockchain technology

73

Copyright © 2019 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

replicates blocks in different consensus servers hosted in dif-
ferent locations to increase trust and guarantee security against
any odd modification, Blockchain must require a scalable
infrastructure not only at the operational level but also at the
physical level. Because blockchain technologies are founded
on immutability principle which means that every block cre-
ated cannot be updated or replaced by a new block. All new
blocks will be appended only which will require physical
scalability especially for retail companies like Walmart, banks,
and high-end manufacturing companies.

In the existing blockchain protocols such as Ethereum, Bit-
coin, Ripple, and Tendermint, each participating node should
process every transaction in the network. In this case, nodes
need more storage, bandwidth, and computation power as
the blockchain expands. Indeed, this technology will lose its
decentralization, because the blockchain will reach a limit
that only specific nodes can process a block [19]. According
to Vitalik, with the current design of blockchain technology,
scalability cannot be achieved because it focuses on decentral-
ization and security, not scalability. While a decentralization
consensus mechanism offers some critical benefits, such as
fault tolerance, a strong guarantee of security, political neu-
trality, and authenticity, it comes at the cost of scalability.
Existing solutions, some as to be mentioned in Section 2, vary
in their aspects. Some scale to a limit, another downgrade the
performance [22], etc.

Realizing the significance of a massively scalable infras-
tructure of Blockchain technology which cannot be addressed
by existing solutions, in this paper we developed a scalable
Blockchain technology in which scalability is strongly corre-
lated with the performance that has an impact on blockchain
efficiency.

The remainder of this paper is organized as follows. Section
2 discusses works related to the core issue of this paper. We
explained our solution ElasticBloc in section 3. We reported
our experiments with ElasticBloc and discussed the results in
Section 4. We present a conclusion in Section 5.

II. RELATED WORKS

This research revolves around the scalability issue of

blockchain technology. In this section, we described a review
of works related to this issue. Ehmke et al. [10] proposed a
solution based on the idea of Ethereum to keep the state of
the system explicitly in the current block but further pursues
this by including the relevant part of the current system state
in new transactions as well. This enables other participants
to validate incoming transactions without having to download
the whole blockchain initially. The scalability in the proposed
solution is the logical level that is, the authors’ developed
techniques extending Merkle Patricia Tree [4]. In [9], Dorri et
al. proposed a tiered Lightweight Scalable Blockchain (LSB)
that is optimized for IoT requirements. The authors explored
LSB in a smart home setting as a representative example
of broader IoT applications. LSB achieves decentralization
by forming an overlay network where high resource devices

jointly manage a public Blockchain (BC) that ensures end-
to-end privacy and security. The overlay is organized as
distinct clusters to reduce overheads and the cluster heads are
responsible for managing the public BC. LSB incorporates
several optimizations which include algorithms for lightweight
consensus, distributed trust and throughput management. To
ensure scalability, the overlay nodes are organized as clusters
and only the cluster heads (CH) are responsible for managing
the public BC. Technically speaking, this is a conventional
approach to gain scalability which is very limited. However,
it is not possible to gain massive scalability because it is not
supported by underlying system-level technologies such as file
system.

Zamani et al. [26] developed a solution called RapidChain
sharding-based public blockchain protocol that is resilient to
Byzantine faults from up to a 1/3 fraction of its partici-
pants and achieves complete sharding of the communication,
computation, and storage overhead of processing transactions
without assuming any trusted setup. RapidChain employs an
optimal intra-committee consensus algorithm that can achieve
very high throughputs via block pipelining, a novel gossiping
protocol for large blocks, and a provably-secure reconfigu-
ration mechanism to ensure robustness. Using an efficient
cross-shard transaction verification technique, the proposed
protocol avoids gossiping transactions to the entire network.
The empirical evaluations suggest that RapidChain can pro-
cess (and confirm) more than 7,300 tx/sec with an expected
confirmation latency of roughly 8.7 seconds in a network of
4,000 nodes with an overwhelming time-to-failure of more
than 4,500 years. RapidChain is focused more on performance.
A limited effort was put on scalability; not to mention that the
scalability is logical like the one proposed in [9]. This does
not address the massive scalability limitation.

Eyal et al. [14] proposed a protocol called Bitcoin-NG that
is founded on several novel metrics of interest in quanti-
fying the security and efficiency of Bitcoin-like blockchain
protocols. We implement Bitcoin-NG and perform large-scale
experiments at 15% the size of the operational Bitcoin system,
using unchanged clients of both protocols. These experiments
demonstrate that Bitcoin-NG scales optimally, with bandwidth
limited only by the capacity of the individual nodes and
latency limited only by the propagation time of the network.
The scalability yet again is achieved at logical, not at the
physical level. Zhang and Jacobsen proposed DCS properties
(Decentralization, Consistency, and Scalability) as an analogy
to the CAP theorem. The authors provided a general structure
of the blockchain platform which decomposes the distributed
ledger into six layers: Application, Modeling, Contract, Sys-
tem, Data, and Network. Finally, we classify research angles
across three dimensions: DCS properties impacted, targeted
applications, and related layers. The proposed solution is yet
again limited in terms of scalability. Guo et al. [13] proposed
a solution that relies on two key techniques: a fair contract
partition algorithm leveraging integer linear programming to
partition a set of smart contracts into multiple subsets, and
a random assignment protocol assigning subsets randomly

74

to a subgroup of users. This is a logical model for gaining
scalability as all the other authors proposed.

To sum up, the research on Blockchain technology is still
limited. Most of the research focuses on the performance of
blockchain applications. The solutions concerning scalability
proposed in the literature by far deals with logical scalability
such as partitioning/sharding blocks. However, it is not ade-
quate to gain massive scalability which needs physical level
scalability that is achieved through system-level technologies
such as distributed file systems.

III. ELASTICBLOC – THE MASSIVELY SCALABLE

BLOCKCHAIN SOLUTION
This section provides a detailed description of the core

contribution of this paper. It begins with an overview of
ElasticBloC, then a description of the high-level architecture
of ElasticBloC is provided followed by a presentation of
the solution workflow. The functionalities of ElasticBloC are
briefly explained and finally, I explained the implementation
of ElasticBloC.

A. A Brief Overview of ElasticBloC

ElasticBloC is a solution for developing blockchain appli-
cations. It is a generic solution that aims to support building
all types of blockchain-based applications such as asset man-
agement, smart contract or notarization in a scalable manner.
The users can deploy these applications on ElasticBloC which
perform the internal blockchain functions such as generating
blocks, adding blocks in the storage, retrieving the blocks,
etc. ElasticBloC guarantees scalability at the physical level
for blockchain applications.

ElasticBloC relies on a cluster computing paradigm that
underpins developing an ecosystem consisting of a massive
number of physical nodes (servers). As mentioned earlier, the
focus of the solution proposed in this paper is to achieve
the scalability of the physical layer instead of the logical
layer. The scalability at the logical layer can be achieved in
many ways such as the logical partition of blocks and then
store the partition in different nodes within the cluster which
consists of the limited number of nodes. However, scalability
at the physical level needs extensible architecture. ElasticBloC
architecture is extensible which enables users to add physical
nodes on the fly or offline to enhance the capability to store
any number of blocks generated by transaction applications. In
order to gain easy extensibility, it reuses an existing distributed
file system that simplifies adding new nodes. This file system
supports commodity hardware; therefore, building a large
cluster using ElasticBloC is cost-effective.

Performance is another issue dealt with by ElasticBloC. The
file system adopted in blockchain support extreme parallelism
as it underlies the MapReduce functional programming model
used by the applications to read and write blocks. Furthermore,
ElasticBloC adopted a technology that avoids computationally
expensive proof of work [48]. Proof-of-work based consensus
protocols are also slow, requiring up to an hour to reasonably
confirm a payment to prevent double-spending. ElasticBloC

used technology that relies on Byzantine Consensus Protocol
which reduces the computational cost significantly. The core
of this protocol Byzantine Fault Tolerance [5]. The extreme
parallelism ensued by the file system and BFT based consensus
protocol makes ElasticBloC high-performant.

B. Architecture of ElasticBloC

ElasticBloC is composed of several components. Fig. 1
depicts the architecture of ElasticBloC. The components are
briefly explained in the following:

• Transaction Gateway: The transaction gateway is a con-
nection component that enables to discover and connect
with blockchain endpoint. It is also a channel through
which users launch a transaction request.

• Request Receiver: It is an upfront server that receives
the HTTP requests.

• Communication Interface: It is a standard interface
for communication with Python applications. Since Elas-
ticBloC is developed using Python programming lan-
guage, this component is critical in communicating with
Python applications

• Operation Synthesizer: It handles various operations in-
cluding scaling up complex applications, object-relational
mapping, validation of a request, authentication checking,
and upload handling, etc.

• Blockchain Engine: It is one of the key components that
perform a multitude of tasks including handling events,
data modeling, and operation orchestration.

Fig. 1. ElasticBloC Architecture

• Functional Interface: It is another important component
of ElasticBloC. It allows for Byzantine Fault Tolerant
replication of applications written in any programming
language. The consensus engine communicates with the
application via a socket protocol that satisfies the func-
tional interface. This interface consists of 3 primary
message types that get delivered from the core to the
application. The application replies with corresponding
response messages. It consists of three message types:
– DeliverTx Messages: Each transaction in the

blockchain is delivered with this message.

75

Class Method Parameters Description
BigchainDB BigchainDB *nodes Creates an

instance of
bigchaindb driver
which is able to
create, sign, and
send transactions
to several nodes

BigchainDB api info Headers Retrieves
the HTTP
API details
provided by
the BigchainDB
server

BigchainDB Info Headers Retrieves
information
of the node
connected to
via the root
endpoint, such as
sever version and
overview of all
the endpoints

Transactions
Endpoint

Fulfill transaction,
private keys

Fulfills the given
transaction

Transactions
Endpoint

Get *, asset id, oper-
ation, headers

Retrieves a list of
transactions that
have the specified
asset

Transactions
Endpoint

Prepare *, operation
(CREATE or
TRANSFER),
signers,
recipients, assets,
metadata, inputs

Prepares a
transaction
payload, ready to
be fulfilled

Transactions
Endpoint

Retrieve transaction id,
headers

Retrieves the
transaction of
given id

Transactions
Endpoint

Send transaction,
mode, headers

Sends a transac-
tion to the first
specified nodes

Outputs
Endpoint

Get public key,
spent, headers

Retrieves
transaction
outputs by the
public key

Assets Endpoint Get *, search, limit,
headers

Retrieves the as-
sets that match
the search text

Crypto Generate keypair None Generates a
cryptographic
key pair

– CheckTx Messages: The CheckTx message is similar
to DeliverTx, but it is only for validating transactions.

– Commit Messages: The Commit message is used to
compute a cryptographic commitment to the current
application state, to be placed into the next block
header.

• Broadcasting Interface: It receives HTTP post request
from blockchain engine and broadcast it blockchain
repository.

• Blockchain Repository: It securely and consistently
replicates an application on many nodes. It works even
if up to 1/3 of machines fail in arbitrary ways [1]. Every
machine that is not faulty sees the same transaction log
and computes the same state. Secure and consistent repli-
cation is a fundamental problem in distributed systems;
it plays a critical role in the fault tolerance of a broad
range of applications, from currencies, to elections, to
infrastructure orchestration, and beyond.
The ability to tolerate machines failing in arbitrary ways,
including becoming malicious, is known as Byzantine
fault tolerance (BFT) [5].

• Blockchain Database Network: It is a network of four
or more nodes.

• Scalable Block Storage Cluster: This is the most im-
portant component that enhances physical infrastructure
to a massive number of nodes. It enormously increases
the capability of storing blocks as records. It is founded
on column-oriented databases that are supported by a dis-
tributed file system that can support building a blockchain
lake consisting of thousands of nodes. The cluster consists
of one or more master nodes and hundreds of data
nodes that essentially store the blocks. It is highly faulted
tolerant because each block is replicated into three nodes
(can be more depending on users’ preference). If any node
is not functioning two other nodes are available.
In fact, it is not only a storage cluster, but the column-
oriented database also enables querying and managing
blocks.

C. ElasticBloC Operational Methods
ElasticBloC enables us to perform different blockchain

operations using various methods that are described into
two categories: BigchainDB methods that are provided by
BigchainDB server and HBase connection methods for estab-
lishing a connection with BigchainDB and performing various
operations. I implemented all HBase connection methods
within the scope of this paper. These methods are presented
in the following subsections.

a) BigchainDB Methods
ElasticBloC provides a library that allows the
client to perform ElasticBloC functionalities.
This library is called “bigchaindb driver”. The
table below lists the major methods that a client
can use to transact or operate in ElasticBloC.

TABLE I
BI G C H A I N DB D R I V E R M A I N M E T H O D S

The above table represents the interface of functions
that a client can use to communicate with ElasticBloC.
This facilitates dealing with such modular architecture.
The reason behind this facilitation is that once a client
transacts or operates via these functions, the rest of
the flow is automated i.e. the operation flows through
the required components automatically. So, the client
communicates with one component.
BigchainDB driver calls in its method’s implementation
the methods of the BigchainDB-HBase connector, that
will be explained in the successive section, to perform
any operation that accesses HBase, such as retrieving data

76

Method Parameters Description
connect backend, host,

port, name, con-
nection timeout

Creates a new connection
to the backend database
(HBase)

create tables connection,
dbname

Creates tables in HBase to
be used by BigchainDB

delete tables connection,
dbname

Deletes the created tables
in HBase

store transaction connection,
signed transaction

Stores a transaction in
Transactions table

store transactions connection,
signed transactions

Stores a list of transac-
tions in Transaction table

get transaction connection,
transaction id

Gets a transaction from
Transactions table

get transactions connection,
transaction ids

Gets a list of transactions
from Transactions table

store metadatas connection,
metadata

Stores metadata in Meta-
data table

get metadata connection,
transaction ids

Gets metadata from Meta-
data table

store asset connection, asset Stores asset in Assets ta-
ble

store assets connection,
assets

Stores a list of assets in
Assets table

get asset connection,
asset id

Gets an asset from Assets
table

get assets connection,
asset ids

Gets a list of assets from
Assets table

store block connection, block Stores a block in Blocks
table

get block connection,
block id

Gets a block from Blocks
table

get spent connection,
transaction id,
output index

Check if a transaction id
was already used as
an input. A transaction
can be used as an input
for another transaction.
Bigchain needs to make
sure that a given txid is
only used once Gets the
spending transaction

get latest block Connection Gets the latest committed
block

get txids filtered connection,
asset id,
operation

Gets all transactions for
a particular asset id and
optional operation

get owned ids connection,
owner

Gets a list of transactions
ids we can use which has
inputs

get spending
transactions

connection,
inputs

Gets transactions which
spend given inputs

get block with
transaction

connection,
transaction id

Gets block holding a spe-
cific transaction

delete transaction connection,
transaction id

Deletes a transaction from
database and its relevant
asset and metadata

delete transactions connection,
transaction ids

Deletes transactions from
database and their relevant
assets and metadata

delete latest block connection Delete the latest commited
block

store unspent
outputs

connection,
unspent outputs

Stores unspent outputs in
utxos table

get unspent
outputs

connection, *,
query

Gets unspent outputs

delete unspent
outputs

connection,
unspent outputs

Deletes unspent outputs
from utxos table

store pre commit
state

Connection, state Stores pre commit state

get pre commit
state

Connection,
commit id

Gets pre commit state of
a commit id

(transactions, assets, metadata, etc.), checking the pre-
existence of a newly submitted transaction, or storing of
committed block with its details.

b) BigchainDB-HBase Connector
BigchainDB-HBase connector is considered the core of
our contribution. In this connector, I implemented a group
of methods that BigchainDB can expose in order to
connect and operate with HBase as a backend database.
The following table describes the methods implemented
with the connector.
Hence the preceding methods represent the interface
of the connector that integrates BigchainDB sever with
HBase.

D. Solution Workflow
ElasticBloC has a unique general workflow. In fact, this

workflow differs in its small parts according to the submitted
transaction mode or the nature of the desired operation. The
diagram below shows the general workflow of ElasticBloC.
Once the client has a valid transaction i.e. the transaction

Fig. 2. ElasticBloC Workflow

conforms to the BigchainDB Transactions Specification, he
submits it to one or more ElasticBloC nodes through the
BigchainDB HTTP API [17]. In particular, it embeds the
transaction in an HTTP request and specifies one of the
predefined ends points to send through. These endpoints are:

• POST /API/v1/transactions
• POST /API/v1/transactions?mode=async
• POST /API/v1/transactions?mode=sync
• POST /API/v1/transactions?mode=commit
After that, the HTTP request holding the transaction arrives

at the BigchainDB node at the Gunicorn [16] web server
in that node. Then Gunicorn forwards the request towards
the BigchainDB server using its exposed Web Server Gate-
way Interface (WSGI). The request reaches the BigchainDB
server through the Flask web application development frame-
work which simplifies working with WSGI/Gunicorn. The
BigchainDB server uses a Python method to check the trans-
action’s validity. If the transaction is not valid, then the HTTP
response status code is 400 which means error. Otherwise, it
is put into a new JSON string and sent to the local Tendermint
instance via Tendermint Broadcast API.

TABLE II
BI G C H A I N DB-HBA S E C O N N E C TO R F U N C T I O NA L I T I E S M E T H O D S

77

Now, the operations between the local Tendermint in-
stance and BigchainDB are established by the Applica-
tion Blockchain Interface (ABCI) which is an integral part
of Tendermint and implemented also at the BigchainDB
server side. In this case, Tendermint uses the broadcast
endpoint which is relevant to the initial BigchainDB’s re-
quest chosen. For example, if a client sent a transaction
through /API/v1/transactions?mode=commit endpoint, Tender-
mint uses /broadcast tx commit endpoint respectively. Ten-
dermint stores the initial validated transactions in its own
mempool (memory pool). When it decides to create a block,
Tendermint sends the creation request to BigchainDB by
exposing a specific ABCI method. Then, it starts to send initial
validated transactions that needed to be grouped in the desired
block also using another ABCI method to BigchainDB which
rechecks the validity of the transaction before it is added to
the block.

The proposed block is then broadcasted to the network by
Tendermint. Then it makes sure that all the nodes agree on this
block in a Byzantine fault tolerance way. When the network
agrees on a new block, Tendermint appends the new block
to the blockchain in its local LevelDB, and the BigchainDB
server receives a commit message enforcing it to write the
new block and the including transactions, assets, and metadata
in a separate way to the HBase repository. HBase then writes
these data into the Hadoop Distributed File System underlying
it. The same process is done at each node in the ElasticBloC
network.

E. Implementation of ElasticBloC
As mentioned earlier, my goal is to use existing technologies

for building ElasticBloC. The reason is two-fold: avoiding
reinventing the same technology that already exists and it
would be impractically ambitious to develop a complex ar-
chitecture like ElasticBloC. I developed ElasticBloC using
the most advanced technologies. I briefly described the main
technologies in the following:

a) Tendermint
Tendermint is a secure state-machine replication algo-
rithm in the blockchain paradigm. It provides a form
of BFT-ABC (Atomic Broadcast) that is furthermore
accountable - if safety is violated, it is always possible
to verify who acted maliciously [3].
Tendermint begins with a set of validators, identified by
their public key, where each validator is responsible for
maintaining a full copy of the replicated state, and for
proposing new blocks (batches of transactions), and vot-
ing on them [20]. Each block is assigned an incrementing
index, or height, such that a valid blockchain has only
one valid block at each height. At each height, validators
take turns proposing new blocks in rounds, such that for
any given round there is at most one valid proposer. It
may take multiple rounds to commit a block at a given
height due to the asynchrony of the network, and the
network may halt altogether if one-third or more of the
validators are offline or partitioned [3]. Validators engage

in two phases of voting on a proposed block before it
is committed, and follow a simple locking mechanism
which prevents any malicious coalition of less than one-
third of the validators from compromising safety [2].
In this, the broadcast interface and the Blockchain repos-
itory (See in Fig. 1) are implemented using Tendermint.

b) BigchainDB
The Blockchain Engine of ElasticBloC is implemented
using BigchainDB, which is for database-style decentral-
ized storage: a blockchain database. BigchainDB com-
bines the key benefits of distributed DBs and tradi-
tional blockchains, with an emphasis on the scale [21].
BigchainDB on top of an enterprise-grade distributed
DB, from which BigchainDB inherits high throughput,
high capacity, low latency, a full-featured NoSQL query
language, and permissioning. Nodes can be added to
increase throughput and capacity.

c) HBase
The scalable block storage cluster (See Fig. 1) is imple-
mented using HBase technology. Although BigchainDB
aims at increasing scalability, yet massive scalability
could not be achieved using BigchainDB.
Therefore, I implemented the scalable block storage
of using HBase. HBase [15] is modeled on Google’s
BigTable database [6]. HBase provides a distributed,
fault-tolerant scalable database, built on top of the HDFS
file system [24], with random real-time read/write access
to data. Each HBase table is stored as a multidimensional
sparse map, with rows and columns, each cell having a
timestamp [6]. A cell value at a given row and column
is uniquely identified by:
(Table, Row, Column-Family: Column, Timestamp)
⇒
Value
HBase has its own Java client API, and tables in HBase
can be used both as an input source and as an output
target for MapReduce jobs through Table Input and Table
Output Format. There is no HBase single point of failure.
HBase uses Zookeeper [27], another Hadoop subproject,
for the management of partial failures.
The HBase connector which is the primary contribu-
tion of this paper was implemented using Python. The
first step of building the connector was to indicate the
tables that are needed to store the architecture data
(blocks, transactions, assets . . .). The second step was
to write a file that opens a connection to Hbase, based
on the connection parameters and values given by the
BigchainDB configuration file, and return an instance of
this connection.
In the next, the schema file was written. The schema
file defines and creates the database schema at HBase
once BigchainDB is initialized. After that, the required
querying methods were implemented. Some of these
methods are for retrieving data, others for storing, up-
dating or deleting data. In addition to the above, some
web application development tools have been used in
developing.

78

F. Experiments & Results

This section describes some experiments that we conducted
on ElasticBloC and discusses its results. The goal of the
experiments is to evaluate two characteristics of ElasticBloC:
scalability and performance. I conducted the following exper-
iments are: Initial loading experiment, functionality experi-
ment, and its result, scalability experiment and its result, and
the ElasticBloC performance evaluation.

a) Initial Loading Experiment
• Purpose:

Testing the start-up running and initializing of the
whole architecture.

• Requirements:
The required steps are to run the ElasticBloC com-
ponents and check the connectivity between these
components. The following summarizes these steps:
– Run the Hadoop cluster and HBase.
– Run the BigchainDB server.
– Run Tendermint instance.

• Results:
The architecture components run successfully and the
connection between the components is established.
Once established, BigchainDB executed the schema
file in the implemented connector and created the
needed tables in HBase. The following screenshots
represent some results of the successful initial start-up.

Fig. 3. BigchainDB Start-up.

As we can see above, the components ran success-
fully and Tendermint opened the required sockets and
established the ABCI Handshaking. It compares the
application’s highest height and the application hash

Fig. 4. BigchainDB Web Interface After Startup.

Fig. 5. Tendermint Start-up.

to that stored in HBase in order to confirm that the
data is the same.

b) Functionality Experiment
• Purpose: Test if ElasticBloC performs operations nor-

mally.
• Required Steps: Testing the functionality of Elas-

ticBloC is done through writing and executing a Python
script that gets uses of the bigchaindb driver library.
The steps below show the required steps:
– Run ElasticBloc components.
– Write a Python script that creates a transaction,

fulfills it with the sender private key, sends the
transaction in a commit mode. The following Fig-
ure represents the testing Python script.

Fig. 6. The Experiment’s Python Script

• Results
The transactions are successfully created and sent.
Because the sent transactions are in commit mode,
so directly BigchainDB created a block for the trans-
action. This block was appended to the Tendermint
local copy of the blockchain, and the block, including
transaction, assets, and metadata are stored in their
specific tables at HBase.
Fig. 7 shows the created block in the blockchain stored
at Tendermint.

79

Fig. 7. The Appended Block in Tendermint Blockchain.

Fig. 8. The Appended Block and Its Details in HBase.

Fig. 8 shows the result of the submitted transaction
with its details retrieved from HBase.

• Discussion
The experiment is conducted successfully and the
architecture is working finely.
One of the positive aspects of the architecture is that
creation, fulfillment, sending, and validating of the
transaction, with the block creation and appending to
the blockchain, and its storage in HBase took around
only one second.
One major limitation of the experiment is that these
experiments were conducted on a limited blockchain
dataset. The reason behind this is that there was neither
possibility to access a large blockchain dataset nor time
to build our own large dataset. Instead, we take into
consideration previous benchmarks and experiments
were done using huge bulks of data in which it helps
us to evaluate our architecture.

c) Scalability Experiment
• Purpose

Test if ElasticBloC can scale massively.
• Required Steps

Massive scalability means that ElasticBloC has the
ability to scale as much as it needs on its physical layer.
This could be ensured if we succeeded in adding new
data nodes to the ElasticBloC node. To do that we tried
to add new Hadoop nodes to the Hadoop cluster either
while ElasticBloC is running or when it is offline.

• Results
The previous experiment is conducted successfully and

Fig. 9. The New Data nodes Cluster.

ElasticBloC runs normally.
• Discussion

As ElasticBloC scales by adding a new server to the
Hadoop cluster, it is feasible to add data nodes either
on fly or offline. This means that ElasticBloC has the
ability to scales massively.

d) Performance Evaluation
Concerning the large blockchain dataset, we were not able
to access a large blockchain dataset rather than building it.
For that, we could not test ElasticBloC on a massive scale
dataset. Accordingly, we rely on this section on some
previously conducted experiments and workbenches that
give us, theoretically, a clear idea on the performance of
the overall architecture.
The overall performance of ElasticBloC is evaluated by
its components, in particular, the performance of Ten-
dermint as a consensus engine and HBase as a backend
database.
Tendermint acts as a high-performant in a large dis-
tributed environment. According to Cosmos white paper
[18]:
“Despite its strong guarantees, Tendermint provides ex-
ceptional performance. In benchmarks of 64 nodes dis-
tributed across 7 data centers on 5 continents, on com-
modity cloud instances, Tendermint consensus can pro-
cess thousands of transactions per second, with commit
latencies on the order of one to two seconds. Notably, the
performance of well over thousands of transactions per
second is maintained even in harsh adversarial conditions,
with validators crashing on broadcasting maliciously
crafted votes.”
On the other side, building MongoDB on the top of HDFS
is less efficient than building HBase on the top of the
mention file system. The reason behind this argument is
that HBase is natively developed to run on the top of
HDFS, while MongoDB needs a connector as the third
party to be built on the top of HDFS.
Moreover, based on several benchmarks, such as [11] and
[12], HBase acts more efficiently than MongoDB in large

80

Number
of
Nodes

HBase
(operation/sec)

MongoDB
(operation/sec)

1 269.30 939.01
2 333.12 30.96
4 1228.61 10.55
8 2151.74 39.28
16 5986.65 337.4
32 8936.18 227.80

Number
of
Nodes

HBase
(operation/sec)

MongoDB
(operation/sec)

1 15617.98 8368.44
2 23373.93 13462.51
4 38991.82 18038.49
8 74405.64 34305.30
16 143553.41 73335.62
32 296857.36 134968.87

Number
of
Nodes

HBase
(operation/sec)

MongoDB
(operation/sec)

1 324.8 1261.94
2 961.01 1480.72
4 2749.35 1754.30
8 4582.67 2028.06
16 10259.63 1114.13
32 16739.51 2363.69

clusters. For instance, End Point [23] performed a series
of tests for the performance of several NoSQL databases
including HBase and MongoDB. The following are some
comparison results for ‘the performance of HBase and
MongoDB in different tests based on [11].

TABLE III
TH RO U G H P U T CO M PA R I S O N W H I L E LOA D I N G DATA

TABLE VII
TH RO U G H P U T CO M PA R I S O N I N MI X E D OP E R AT I O NA L A N D ANA LY T I C A L

WO R K L OA D

TABLE IV
TH RO U G H P U T CO M PA R I S O N W H I L E RE T R I E V I N G DATA

Number
of
Nodes

HBase
(operation/sec)

MongoDB
(operation/sec)

1 428.12 2149.08
2 1381.06 2588.04
4 3955.03 2752.40
8 6817.14 2165.17
16 16542.11 7782.36
32 20020.73 6983.82

TABLE V
TH RO U G H P U T I N BA L A N C E D RE A D /WR I T E

Number
of
Nodes

HBase
(operation/sec)

MongoDB
(operation/sec)

1 527.47 1278.81
2 1503.09 1441.32
4 4175.8 1501.06
8 7725.94 2195.92
16 16381.78 1230.96
32 20177.71 2335.14

TABLE VI
TH RO U G H P U T I N RE A D /UP DAT E /WR I T E OP E R AT I O N S .

The above experiment is tangible evidence of how HBase
is more efficient than MongoDB.
Hence, according to theory and pre-existing experiments,
HBase would also enhance the overall performance of
ElasticBloC. However, in its worth case, replacing Mon-
goDB with HBase will not downgrade the performance
of ElasticBloC.

G. Conclusion & Future Work

Blockchain has not been adopted widely until now except
for cryptocurrency applications, however, it has been identified
as potential technologies for several areas that need trust and
security.

It is relatively a new technology that needs various improve-
ments to reach to a maturity level. It has several limitations that
are the main barriers to the wider adoption of this technology.
Of all, scalability and performance are the major limitations
that must be addressed.

This research primarily aims at addressing the scalabil-
ity problem. There are some solutions that offer techniques
methods, and guidelines for scalable blockchain. However, we
found that state-of-the-art technologies focus on scalability at
the logical level which is an inadequate approach if scalability
at the physical level is to be guaranteed. In this paper,
we designed and implement a scalable architecture called
ElasticBloC which enables users to build a highly scalable
blockchain-based ecosystem consisting of tens or more of
physical nodes.

In this paper, we proposed a solution for the scalability
limitation of blockchain technology. We discussed our solution
ElasticBloC which is a scalable architecture for building
blockchain-based applications such as payment system, no-
tarization, the smart contract can be implemented by ensur-
ing scalability. ElasticBloC is a built on cluster computing
paradigm that building infrastructure with a massive num-
ber of nodes. We presented the components with a detailed
description. We discussed the workflow of ElasticBloc. We
discussed technologies that we used in implementing the
proposed solution.

We tested ElasticBloc to evaluate the scalability. Our exper-
iment shows that ElasticBloc has the ability to scale up; it is
flexible for adding as many servers. We discussed the results
of our experiments in this paper. Additionally, we provided

81

some previous workbenches to provide a comparative view of
the abilities of ElasticBloc.

Several works are lined up for a future extension of Elas-
ticBloC. However, to the best of our knowledge, the imminent
critical task that must be accomplished in the near future
is extending the functional capabilities of our solution. We
planned to enhance add new modules to ElasticBloC to enable
users to develop permission-less blockchain-based applications
or for permission blockchain-based applications.

REFE RE NCES

[1] Anonymous. Available Retrieved from

https://tendermint.readthedocs.io/en/latest/introduction.html.
[2] Branden, J. V. Building a Performance Model of the Tendermint Con-

census Algorithm.
[3] Buchman, E. (2016). Tendermint: Byzantine fault tolerance in the age

of blockchains (Doctoral dissertation).
[4] Buterin, V. (2014). A next-generation smart contract and decentralized

application platform.
[5] Castro, M., & Liskov, B. (2003). U.S. Patent No. 6,671,821. Washington,

DC: U.S. Patent and Trademark Office.
[6] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A.,

Burrows, M., ... & Gruber, R. E. (2008). Bigtable: A distributed storage
system for structured data. ACM Transactions on Computer Systems
(TOCS), 26(2), 4.

[7] Condos, J., Sorrell, W. H., & Donegan, S. L. (2016). Blockchain
technology: Opportunities and risks.

[8] DBS Group Research. (2016). Understanding blockchain technology and
what it means for your business.

[9] Dorri, A., Kanhere, S. S., Jurdak, R., & Gauravaram, P. (2017). LSB: A
Lightweight Scalable BlockChain for IoT Security and Privacy. arXiv
preprint arXiv:1712.02969.

[10] Ehmke, C., Wessling, F., & Friedrich, M. C. (2018). Proof-of-property: a
lightweight and scalable blockchain protocol. In Proceedings of the 1st
International Workshop on Emerging Trends in Software Engineering
for Blockchain. (pp. 48-51). ACM.

[11] End Point. (2015). Benchmarking Top NoSQL Databases: Apache
Cassandra, Couchbase, Hbase, and MongoDB.

[12] Gandini, A., Knottenbelt, W. J., Osman, R., & Piazolla, P. (n.d.).
Performance evaluation of NoSQL databases.

[13] Gao, Z., Xu, L., Chen, L., Shah, N., Lu, Y., & Shi, W. (2017, December).
Scalable blockchain based smart contract execution. In Parallel and Dis-
tributed Systems (ICPADS), 2017 IEEE 23rd International Conference
on (pp. 352-359). IEEE.

[14] Gencer, E. A., Sirer, G. E., Van Renesse, R., & Eyal, I. (2016). Bitcoin-
NG: A Scalable Blockchain Protocol. In NSDI.

[15] George, L. (2011). HBase: the definitive guide: random access to your
planet-size data. ” O’Reilly Media, Inc.”.

[16] Gunicorn - Python WSGI HTTP Server for UNIX. (n.d.). Retrieved from
https://gunicorn.org.

[17] The HTTP Client-Server API — BigchainDB
Server 0.8.2 documentation. (n.d.). Retrieved from
http://docs.bigchaindb.com/projects/server/en/v0.8.2/drivers-clients/http-
client-server-api.html.

[18] Internet of Blockchains - Cosmos Network. (n.d.). Retrieved from
https://cosmos.network/resources/whitepaper.

[19] James-Lubin, K. (2015, January 22). Blockchain scalability. Retrieved
from https://www.oreilly.com/ideas/blockchain-scalability.

[20] Kwon, J. (2014). Tendermint: Consensus without Mining.
[21] McConaghy, T., Marques, R., Mü ller, A., De Jonghe, D., McConaghy,

T., McMullen, G., ... & Granzotto, A. (2016). BigchainDB: a scalable
blockchain database. white paper, BigChainDB.

[22] Out of Asia. (2017, December 27). Five Issues Preventing
Blockchain From Going Mainstream: The Insanely Popular
Crypto Game Etheremon Is One Of Them. Retrieved from
https://www.forbes.com/sites/outofasia/2017/12/22/five-issues-
preventing-blockchain-from-going-mainstream-the-insanely-popular-
crypto-game-etheremon-is-one-of-them/#6d364bb66fad.

[23] Secure Business Solutions — End Point. (n.d.). Retrieved from
http://www.endpoint.com/.

[24] Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010, May). The

hadoop distributed file system. In Mass storage systems and technologies
(MSST), 2010 IEEE 26th symposium on (pp. 1-10). Ieee.

[25] Vukolić, M. (2015, October). The quest for scalable blockchain fabric:
Proof-of-work vs. BFT replication. In International Workshop on Open
Problems in Network Security (pp. 112-125). Springer, Cham.

[26] Zamani, M., Movahedi, M., & Raykova, M. (n.d.). RapidChain: A Fast
Blockchain Protocol via Full Sharding.

[27] ZooKeeper, A. (2017). The Apache Software Foundation. Accessed
December, 29, 2017.

82

