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Abstract—Blockchain is an emerging technology that would 
possibly disrupt the existing centralized financial systems lead 
to the rise to a new technology era for the financial sector. 
Additionally, different new use cases such as healthcare, identity 
management, etc. suggest that Blockchain has much wider appli- 
cations. Blockchain is founded on distributed ledger technology 
that ensures trust through consensus between parties in a peer- 
to-peer network instead of the need to a third party or central 
authority. However, blockchain has several limitations such as 
scalability, latency, low throughput which are the main barriers 
for Blockchain being adopted by the industries. Of all, scalability 
is  the  most  critical  limitation  of  blockchain  that  needs  an 
efficient and effective solution. In this paper, we aim to enhance 
the  scalability  of  blockchain  by  designing  and  implementing 
a massively scalable architecture for private blockchain-based 
applications, called ElasticBloC. To  evaluate our  contribution, 
we conducted several experiments on ElasticBloC. The results 
showed that ElasticBloC is a high-performant architecture that 
scales massively. 

Index Terms—Blockchain, Performance, Scalability 
 

I.  INT RODUCTI O N 
 

Over the last few years, Blockchain has drawn huge atten- 
tion to industry experts, technology evangelists, and academic 
researchers due to its immense potentiality described in a large 
body of literature and other sources such as blogs, forums, 
etc. Many researchers and industry experts argued that it is 
a revolutionary technology like the Internet that will provide 
a highly efficient way to transact in a secure, immutable, 
transparent, and auditable manner. In 2016, it was one of the 
technologies that reached a peak in inflated expectation; since 
then the interests in blockchain have been soaring to different 
types of industries. In particular, the interest of Blockchain 
technology among the financial industry started to grow as 
it might be a potential one that would enable them to avoid 
financial debacles such as the Heartland Payment Systems data 
breach that had happened in 2008. 

Security is an ever-growing concern in the financial industry. 
With the advent of digital financial information systems and 
rich transaction technologies, the operations have become 
faster and the operational activities have spanned largely; at 
the same time, the risk of breaching information has been 
increased enormously. Although, there are advanced technolo- 
gies encryption technologies that enable cryptic transmission 
of financial data between financial actors (e.g., banks, insider 
intruder), security remain a problem because cryptographic 
algorithms are still weak to many attacks launched by the 
adversaries. Blockchain was deemed a major breakthrough 
technology that would prevent some unsolved security issues. 
Therefore, the huge adoption of Blockchain was forecasted by 
many such as Gartner within not only the financial industry 
but also the other industries. 

Furthermore, trust is critical when it is related to commu- 
nication between two or more parties. Historically and till 
now, trust is achieved mostly by the third party like banks or 
authorities, that holds our data. In other words, communicating 
parties rely on a common ledger which is held and managed 
by this third party. As a typical example, Clearing Households 
validates and  manages the  communication between trading 
parties. So Blockchain technology comes as a potential tech- 
nology. Its disruptive aspect is that it eliminates the need for 
intermediaries while performing transactions [7]. Hence, it can 
empower groups of parties to agree on events without needing 
the third party, such as the promise of this new technology [8]. 

Our study revealed several limitations of Blockchain tech- 
nologies, as mentioned in the earlier section. However, the 
major concerns of Blockchain technologies are two-fold: scal- 
ability and performance. Scalability is considered the critical 
drawback that stands against blockchain technology. In fact, 
it  is  the  first  limitation  that  must  be  addressed  to  make 
blockchain an acceptable technology. The reason is obvious. 
Consider  a  Walmart  payment  system  that  processes  more 
250  transactions  every  hour.  Since  Blockchain  technology 
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replicates blocks in different consensus servers hosted in dif- 
ferent locations to increase trust and guarantee security against 
any odd modification, Blockchain must require a scalable 
infrastructure not only at the operational level but also at the 
physical level. Because blockchain technologies are founded 
on immutability principle which means that every block cre- 
ated cannot be updated or replaced by a new block. All new 
blocks will be appended only which will require physical 
scalability especially for retail companies like Walmart, banks, 
and high-end manufacturing companies. 

In the existing blockchain protocols such as Ethereum, Bit- 
coin, Ripple, and Tendermint, each participating node should 
process every transaction in the network. In this case, nodes 
need  more  storage,  bandwidth,  and  computation  power  as 
the blockchain expands. Indeed, this technology will lose its 
decentralization, because the  blockchain will  reach  a  limit 
that only specific nodes can process a block [19]. According 
to Vitalik, with the current design of blockchain technology, 
scalability cannot be achieved because it focuses on decentral- 
ization and security, not scalability. While a decentralization 
consensus mechanism offers some critical benefits, such as 
fault tolerance, a strong guarantee of security, political neu- 
trality, and authenticity, it comes at the cost of scalability. 
Existing solutions, some as to be mentioned in Section 2, vary 
in their aspects. Some scale to a limit, another downgrade the 
performance [22], etc. 

Realizing the significance of a massively scalable infras- 
tructure of Blockchain technology which cannot be addressed 
by existing solutions, in this paper we developed a scalable 
Blockchain technology in which scalability is strongly corre- 
lated with the performance that has an impact on blockchain 
efficiency. 

The remainder of this paper is organized as follows. Section 
2 discusses works related to the core issue of this paper. We 
explained our solution ElasticBloc in section 3. We reported 
our experiments with ElasticBloc and discussed the results in 
Section 4. We present a conclusion in Section 5. 

 
II.  RELATED WORKS 

 
This research revolves around the scalability issue of 

blockchain technology. In this section, we described a review 
of works related to this issue. Ehmke et al. [10] proposed a 
solution based on the idea of Ethereum to keep the state of 
the system explicitly in the current block but further pursues 
this by including the relevant part of the current system state 
in new transactions as well. This enables other participants 
to validate incoming transactions without having to download 
the whole blockchain initially. The scalability in the proposed 
solution is the logical level that is, the authors’ developed 
techniques extending Merkle Patricia Tree [4]. In [9], Dorri et 
al. proposed a tiered Lightweight Scalable Blockchain (LSB) 
that is optimized for IoT requirements. The authors explored 
LSB  in  a  smart  home  setting  as  a  representative example 
of  broader IoT  applications. LSB  achieves decentralization 
by forming an overlay network where high resource devices 

jointly manage a public Blockchain (BC) that ensures end- 
to-end  privacy  and  security.  The  overlay  is  organized  as 
distinct clusters to reduce overheads and the cluster heads are 
responsible for managing the public BC. LSB incorporates 
several optimizations which include algorithms for lightweight 
consensus, distributed trust and throughput management. To 
ensure scalability, the overlay nodes are organized as clusters 
and only the cluster heads (CH) are responsible for managing 
the public BC. Technically speaking, this is a conventional 
approach to gain scalability which is very limited. However, 
it is not possible to gain massive scalability because it is not 
supported by underlying system-level technologies such as file 
system. 

Zamani et al. [26] developed a solution called RapidChain 
sharding-based public blockchain protocol that is resilient to 
Byzantine  faults  from  up  to  a  1/3  fraction  of  its  partici- 
pants and achieves complete sharding of the communication, 
computation, and storage overhead of processing transactions 
without assuming any trusted setup. RapidChain employs an 
optimal intra-committee consensus algorithm that can achieve 
very high throughputs via block pipelining, a novel gossiping 
protocol for large blocks, and a provably-secure reconfigu- 
ration mechanism to ensure robustness. Using an efficient 
cross-shard transaction verification technique, the proposed 
protocol avoids gossiping transactions to the entire network. 
The empirical evaluations suggest that RapidChain can pro- 
cess (and confirm) more than 7,300 tx/sec with an expected 
confirmation latency of roughly 8.7 seconds in a network of 
4,000 nodes with an overwhelming time-to-failure of more 
than 4,500 years. RapidChain is focused more on performance. 
A limited effort was put on scalability; not to mention that the 
scalability is logical like the one proposed in [9]. This does 
not address the massive scalability limitation. 

Eyal et al. [14] proposed a protocol called Bitcoin-NG that 
is  founded  on  several  novel  metrics  of  interest  in  quanti- 
fying the security and efficiency of Bitcoin-like blockchain 
protocols. We implement Bitcoin-NG and perform large-scale 
experiments at 15% the size of the operational Bitcoin system, 
using unchanged clients of both protocols. These experiments 
demonstrate that Bitcoin-NG scales optimally, with bandwidth 
limited  only  by  the  capacity  of  the  individual  nodes  and 
latency limited only by the propagation time of the network. 
The scalability yet again is achieved at logical, not at the 
physical level. Zhang and Jacobsen proposed DCS properties 
(Decentralization, Consistency, and Scalability) as an analogy 
to the CAP theorem. The authors provided a general structure 
of the blockchain platform which decomposes the distributed 
ledger into six layers: Application, Modeling, Contract, Sys- 
tem, Data, and Network. Finally, we classify research angles 
across three dimensions: DCS properties impacted, targeted 
applications, and related layers. The proposed solution is yet 
again limited in terms of scalability. Guo et al. [13] proposed 
a solution that relies on two key techniques: a fair contract 
partition algorithm leveraging integer linear programming to 
partition a set of smart contracts into multiple subsets, and 
a  random  assignment  protocol  assigning  subsets  randomly 
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to a subgroup of users. This is a logical model for gaining 
scalability as all the other authors proposed. 

To sum up, the research on Blockchain technology is still 
limited. Most of the research focuses on the performance of 
blockchain applications. The solutions concerning scalability 
proposed in the literature by far deals with logical scalability 
such as partitioning/sharding blocks. However, it is not ade- 
quate to gain massive scalability which needs physical level 
scalability that is achieved through system-level technologies 
such as distributed file systems. 

 
III.  ELASTICBLOC – THE MASSIVELY SCALABLE 

BLOCKCHAIN SOLUTION 
This section provides a detailed description of the core 

contribution of this paper. It begins with an overview of 
ElasticBloC, then a description of the high-level architecture 
of  ElasticBloC  is  provided  followed  by  a  presentation  of 
the solution workflow. The functionalities of ElasticBloC are 
briefly explained and finally, I explained the implementation 
of ElasticBloC. 

 
A. A Brief Overview of ElasticBloC 

ElasticBloC is a solution for developing blockchain appli- 
cations. It is a generic solution that aims to support building 
all types of blockchain-based applications such as asset man- 
agement, smart contract or notarization in a scalable manner. 
The users can deploy these applications on ElasticBloC which 
perform the internal blockchain functions such as generating 
blocks, adding blocks in the storage, retrieving the blocks, 
etc. ElasticBloC guarantees scalability at the physical level 
for blockchain applications. 

ElasticBloC relies on a cluster computing paradigm that 
underpins developing an ecosystem consisting of a massive 
number of physical nodes (servers). As mentioned earlier, the 
focus of  the  solution proposed in  this  paper is  to  achieve 
the  scalability of  the  physical  layer  instead  of  the  logical 
layer. The scalability at the logical layer can be achieved in 
many ways such as the logical partition of blocks and then 
store the partition in different nodes within the cluster which 
consists of the limited number of nodes. However, scalability 
at the physical level needs extensible architecture. ElasticBloC 
architecture is extensible which enables users to add physical 
nodes on the fly or offline to enhance the capability to store 
any number of blocks generated by transaction applications. In 
order to gain easy extensibility, it reuses an existing distributed 
file system that simplifies adding new nodes. This file system 
supports commodity hardware; therefore, building a large 
cluster using ElasticBloC is cost-effective. 

Performance is another issue dealt with by ElasticBloC. The 
file system adopted in blockchain support extreme parallelism 
as it underlies the MapReduce functional programming model 
used by the applications to read and write blocks. Furthermore, 
ElasticBloC adopted a technology that avoids computationally 
expensive proof of work [48]. Proof-of-work based consensus 
protocols are also slow, requiring up to an hour to reasonably 
confirm a payment to prevent double-spending. ElasticBloC 

used technology that relies on Byzantine Consensus Protocol 
which reduces the computational cost significantly. The core 
of this protocol Byzantine Fault Tolerance [5]. The extreme 
parallelism ensued by the file system and BFT based consensus 
protocol makes ElasticBloC high-performant. 
 
B. Architecture of ElasticBloC 
 

ElasticBloC is composed of several components. Fig. 1 
depicts the architecture of ElasticBloC. The components are 
briefly explained in the following: 

• Transaction Gateway: The transaction gateway is a con- 
nection component that enables to discover and connect 
with blockchain endpoint. It is also a channel through 
which users launch a transaction request. 

• Request Receiver: It is an upfront server that receives 
the HTTP requests. 

• Communication  Interface:  It  is  a  standard  interface 
for communication with Python applications. Since Elas- 
ticBloC is developed using Python programming lan- 
guage, this component is critical in communicating with 
Python applications 

• Operation Synthesizer: It handles various operations in- 
cluding scaling up complex applications, object-relational 
mapping, validation of a request, authentication checking, 
and upload handling, etc. 

• Blockchain Engine: It is one of the key components that 
perform a multitude of tasks including handling events, 
data modeling, and operation orchestration. 

 

 
 

Fig. 1.  ElasticBloC Architecture 
 

• Functional Interface: It is another important component 
of ElasticBloC. It allows for Byzantine Fault Tolerant 
replication of applications written in any programming 
language. The consensus engine communicates with the 
application via a socket protocol that satisfies the func- 
tional interface. This interface consists of 3 primary 
message types that get delivered from the core to the 
application. The application replies with corresponding 
response messages. It consists of three message types: 
– DeliverTx Messages: Each transaction in the 

blockchain is delivered with this message. 
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Class Method Parameters Description 
BigchainDB BigchainDB *nodes Creates            an 

instance of 
bigchaindb driver 
which is able to 
create, sign, and 
send transactions 
to several nodes 

BigchainDB api info Headers Retrieves 
the             HTTP 
API details 
provided          by 
the BigchainDB 
server 

BigchainDB Info Headers Retrieves 
information 
of the node 
connected        to 
via the root 
endpoint, such as 
sever version and 
overview   of   all 
the endpoints 

Transactions 
Endpoint 

Fulfill transaction, 
private keys 

Fulfills the given 
transaction 

Transactions 
Endpoint 

Get *, asset id, oper- 
ation, headers 

Retrieves a list of 
transactions that 
have the specified 
asset 

Transactions 
Endpoint 

Prepare *, operation 
(CREATE or 
TRANSFER), 
signers, 
recipients, assets, 
metadata, inputs 

Prepares a 
transaction 
payload, ready to 
be fulfilled 

Transactions 
Endpoint 

Retrieve transaction id, 
headers 

Retrieves the 
transaction of 
given id 

Transactions 
Endpoint 

Send transaction, 
mode, headers 

Sends  a  transac- 
tion  to  the  first 
specified nodes 

Outputs 
Endpoint 

Get public key, 
spent, headers 

Retrieves 
transaction 
outputs   by   the 
public key 

Assets Endpoint Get *,  search,  limit, 
headers 

Retrieves the as- 
sets   that   match 
the search text 

Crypto Generate keypair None Generates a 
cryptographic 
key pair 

 

– CheckTx Messages: The CheckTx message is similar 
to DeliverTx, but it is only for validating transactions. 

– Commit Messages: The Commit message is used to 
compute a cryptographic commitment to the current 
application state, to be placed into the next block 
header. 

• Broadcasting Interface: It receives HTTP post request 
from blockchain engine and broadcast it blockchain 
repository. 

• Blockchain Repository: It securely and consistently 
replicates an application on many nodes. It works even 
if up to 1/3 of machines fail in arbitrary ways [1]. Every 
machine that is not faulty sees the same transaction log 
and computes the same state. Secure and consistent repli- 
cation is a fundamental problem in distributed systems; 
it plays a critical role in the fault tolerance of a broad 
range of applications, from currencies, to elections, to 
infrastructure orchestration, and beyond. 
The ability to tolerate machines failing in arbitrary ways, 
including becoming malicious, is known as Byzantine 
fault tolerance (BFT) [5]. 

• Blockchain Database Network: It is a network of four 
or more nodes. 

• Scalable Block Storage Cluster: This is the most im- 
portant component that enhances physical infrastructure 
to a massive number of nodes. It enormously increases 
the capability of storing blocks as records. It is founded 
on column-oriented databases that are supported by a dis- 
tributed file system that can support building a blockchain 
lake consisting of thousands of nodes. The cluster consists 
of  one  or  more  master  nodes  and  hundreds  of  data 
nodes that essentially store the blocks. It is highly faulted 
tolerant because each block is replicated into three nodes 
(can be more depending on users’ preference). If any node 
is not functioning two other nodes are available. 
In fact, it is not only a storage cluster, but the column- 
oriented database also enables querying and managing 
blocks. 

 

C. ElasticBloC Operational Methods 
ElasticBloC enables us to perform different blockchain 

operations  using  various  methods  that  are  described  into 
two categories: BigchainDB methods that are provided by 
BigchainDB server and HBase connection methods for estab- 
lishing a connection with BigchainDB and performing various 
operations. I implemented all HBase connection methods 
within the scope of this paper. These methods are presented 
in the following subsections. 

a) BigchainDB Methods 
ElasticBloC    provides    a    library    that    allows    the 
client      to      perform      ElasticBloC     functionalities. 
This    library    is    called    “bigchaindb driver”.    The 
table  below  lists  the  major  methods  that  a   client 
can   use   to   transact   or   operate   in   ElasticBloC. 

 

TABLE I 
BI G C H A I N DB D R I V E R M A I N M E T H O D S 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The  above  table  represents  the  interface  of  functions 
that a client can use to communicate with ElasticBloC. 
This facilitates dealing with such modular architecture. 
The reason behind this facilitation is that once a client 
transacts  or  operates  via  these  functions,  the  rest  of 
the flow is automated i.e. the operation flows through 
the required components automatically. So, the client 
communicates with one component. 
BigchainDB driver calls in its method’s implementation 
the methods of the BigchainDB-HBase connector, that 
will be explained in the successive section, to perform 
any operation that accesses HBase, such as retrieving data 
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Method Parameters Description 
connect backend, host, 

port,  name,  con- 
nection timeout 

Creates a new connection 
to  the  backend  database 
(HBase) 

create tables connection, 
dbname 

Creates tables in HBase to 
be used by BigchainDB 

delete tables connection, 
dbname 

Deletes the created tables 
in HBase 

store transaction connection, 
signed transaction 

Stores   a   transaction   in 
Transactions table 

store transactions connection, 
signed transactions 

Stores  a  list  of  transac- 
tions in Transaction table 

get transaction connection, 
transaction id 

Gets  a  transaction  from 
Transactions table 

get transactions connection, 
transaction ids 

Gets a list of transactions 
from Transactions table 

store metadatas connection, 
metadata 

Stores metadata in Meta- 
data table 

get metadata connection, 
transaction ids 

Gets metadata from Meta- 
data table 

store asset connection, asset Stores asset in Assets ta- 
ble 

store assets connection, 
assets 

Stores a  list of  assets in 
Assets table 

get asset connection, 
asset id 

Gets an asset from Assets 
table 

get assets connection, 
asset ids 

Gets a list of assets from 
Assets table 

store block connection, block Stores a block in Blocks 
table 

get block connection, 
block id 

Gets a block from Blocks 
table 

get spent connection, 
transaction id, 
output index 

Check if a transaction id 
was    already    used    as 
an   input.  A   transaction 
can  be  used  as  an  input 
for another transaction. 
Bigchain needs to make 
sure that a given txid is 
only used once Gets the 
spending transaction 

get latest block Connection Gets the latest committed 
block 

get txids filtered connection, 
asset id, 
operation 

Gets  all  transactions  for 
a  particular  asset  id  and 
optional operation 

get owned ids connection, 
owner 

Gets a list of transactions 
ids we can use which has 
inputs 

get spending 
transactions 

connection, 
inputs 

Gets   transactions   which 
spend given inputs 

get block with 
transaction 

connection, 
transaction id 

Gets block holding a spe- 
cific transaction 

delete transaction connection, 
transaction id 

Deletes a transaction from 
database  and  its  relevant 
asset and metadata 

delete transactions connection, 
transaction ids 

Deletes transactions from 
database and their relevant 
assets and metadata 

delete latest block connection Delete the latest commited 
block 

store unspent 
outputs 

connection, 
unspent outputs 

Stores unspent outputs in 
utxos table 

get unspent 
outputs 

connection, *, 
query 

Gets unspent outputs 

delete unspent 
outputs 

connection, 
unspent outputs 

Deletes   unspent   outputs 
from utxos table 

store pre commit 
state 

Connection, state Stores pre commit state 

get pre commit 
state 

Connection, 
commit id 

Gets pre commit state of 
a commit id 

 

(transactions, assets, metadata, etc.), checking the pre- 
existence of a newly submitted transaction, or storing of 
committed block with its details. 

b) BigchainDB-HBase Connector 
BigchainDB-HBase connector is considered the core of 
our contribution. In this connector, I implemented a group 
of methods that BigchainDB can expose in order to 
connect and operate with HBase as a backend database. 
The following table describes the methods implemented 
with the connector. 
Hence  the  preceding  methods  represent  the  interface 
of the connector that integrates BigchainDB sever with 
HBase. 

D. Solution Workflow 
ElasticBloC has a unique general workflow. In fact, this 

workflow differs in its small parts according to the submitted 
transaction mode or the nature of the desired operation. The 
diagram below shows the general workflow of ElasticBloC. 
Once the  client has  a  valid transaction i.e.  the  transaction 

 

 
 

Fig. 2.  ElasticBloC Workflow 
 

conforms to the BigchainDB Transactions Specification, he 
submits it to one or more ElasticBloC nodes through the 
BigchainDB HTTP API [17]. In particular, it embeds the 
transaction in an HTTP request and specifies one of the 
predefined ends points to send through. These endpoints are: 

• POST /API/v1/transactions 
• POST /API/v1/transactions?mode=async 
• POST /API/v1/transactions?mode=sync 
• POST /API/v1/transactions?mode=commit 
After that, the HTTP request holding the transaction arrives 

at  the  BigchainDB node  at  the  Gunicorn [16]  web  server 
in  that node. Then Gunicorn forwards the request towards 
the BigchainDB server using its exposed Web Server Gate- 
way Interface (WSGI). The request reaches the BigchainDB 
server through the Flask web application development frame- 
work which simplifies working with WSGI/Gunicorn. The 
BigchainDB server uses a Python method to check the trans- 
action’s validity. If the transaction is not valid, then the HTTP 
response status code is 400 which means error. Otherwise, it 
is put into a new JSON string and sent to the local Tendermint 
instance via Tendermint Broadcast API. 

 

TABLE II 
BI G C H A I N DB-HBA S E C O N N E C TO R F U N C T I O NA L I T I E S M E T H O D S 
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Now,  the  operations  between  the  local  Tendermint  in- 
stance  and  BigchainDB  are  established  by  the  Applica- 
tion Blockchain Interface (ABCI) which is an integral part 
of  Tendermint  and  implemented  also  at  the  BigchainDB 
server side. In this case, Tendermint uses the broadcast 
endpoint which  is  relevant  to  the  initial  BigchainDB’s re- 
quest  chosen.  For  example,  if  a  client  sent  a  transaction 
through /API/v1/transactions?mode=commit endpoint, Tender- 
mint uses /broadcast tx commit endpoint respectively. Ten- 
dermint stores the initial validated transactions in its own 
mempool (memory pool). When it decides to create a block, 
Tendermint sends the creation request to BigchainDB by 
exposing a specific ABCI method. Then, it starts to send initial 
validated transactions that needed to be grouped in the desired 
block also using another ABCI method to BigchainDB which 
rechecks the validity of the transaction before it is added to 
the block. 

The proposed block is then broadcasted to the network by 
Tendermint. Then it makes sure that all the nodes agree on this 
block in a Byzantine fault tolerance way. When the network 
agrees on a new block, Tendermint appends the new block 
to the blockchain in its local LevelDB, and the BigchainDB 
server receives a commit message enforcing it to write the 
new block and the including transactions, assets, and metadata 
in a separate way to the HBase repository. HBase then writes 
these data into the Hadoop Distributed File System underlying 
it. The same process is done at each node in the ElasticBloC 
network. 

 

E. Implementation of ElasticBloC 
As mentioned earlier, my goal is to use existing technologies 

for building ElasticBloC. The reason is two-fold: avoiding 
reinventing the same technology that already exists and it 
would be impractically ambitious to develop a complex ar- 
chitecture  like  ElasticBloC. I  developed  ElasticBloC using 
the most advanced technologies. I briefly described the main 
technologies in the following: 

a) Tendermint 
Tendermint is a secure state-machine replication algo- 
rithm in  the  blockchain paradigm. It  provides a  form 
of BFT-ABC (Atomic Broadcast) that is furthermore 
accountable - if safety is violated, it is always possible 
to verify who acted maliciously [3]. 
Tendermint begins with a set of validators, identified by 
their public key, where each validator is responsible for 
maintaining a full copy of the replicated state, and for 
proposing new blocks (batches of transactions), and vot- 
ing on them [20]. Each block is assigned an incrementing 
index, or height, such that a valid blockchain has only 
one valid block at each height. At each height, validators 
take turns proposing new blocks in rounds, such that for 
any given round there is at most one valid proposer. It 
may take multiple rounds to commit a block at a given 
height due to the asynchrony of the network, and the 
network may halt altogether if one-third or more of the 
validators are offline or partitioned [3]. Validators engage 

in two phases of voting on a proposed block before it 
is committed, and follow a simple locking mechanism 
which prevents any malicious coalition of less than one- 
third of the validators from compromising safety [2]. 
In this, the broadcast interface and the Blockchain repos- 
itory (See in Fig. 1) are implemented using Tendermint. 

b) BigchainDB 
The Blockchain Engine of ElasticBloC is implemented 
using BigchainDB, which is for database-style decentral- 
ized storage: a blockchain database. BigchainDB com- 
bines  the  key  benefits  of  distributed  DBs  and  tradi- 
tional blockchains, with an emphasis on the scale [21]. 
BigchainDB  on  top  of  an  enterprise-grade  distributed 
DB, from which BigchainDB inherits high throughput, 
high capacity, low latency, a full-featured NoSQL query 
language, and permissioning. Nodes can be added to 
increase throughput and capacity. 

c) HBase 
The scalable block storage cluster (See Fig. 1) is imple- 
mented using HBase technology. Although BigchainDB 
aims  at  increasing  scalability,  yet  massive  scalability 
could not be achieved using BigchainDB. 
Therefore,  I  implemented  the  scalable  block  storage 
of using HBase. HBase [15] is modeled on Google’s 
BigTable  database  [6].  HBase  provides  a  distributed, 
fault-tolerant scalable database, built on top of the HDFS 
file system [24], with random real-time read/write access 
to data. Each HBase table is stored as a multidimensional 
sparse map, with rows and columns, each cell having a 
timestamp [6]. A cell value at a given row and column 
is uniquely identified by: 
(Table, Row, Column-Family: Column, Timestamp) 
⇒ 
Value 
HBase has its own Java client API, and tables in HBase 
can be used both as an input source and as an output 
target for MapReduce jobs through Table Input and Table 
Output Format. There is no HBase single point of failure. 
HBase uses Zookeeper [27], another Hadoop subproject, 
for the management of partial failures. 
The  HBase  connector  which  is  the  primary  contribu- 
tion of this paper was implemented using Python. The 
first step of building the connector was to indicate the 
tables that are needed to store the architecture data 
(blocks, transactions, assets . . . ). The second step was 
to write a file that opens a connection to Hbase, based 
on the connection parameters and values given by the 
BigchainDB configuration file, and return an instance of 
this connection. 
In the next, the schema file was written. The schema 
file defines and creates the database schema at HBase 
once BigchainDB is initialized. After that, the required 
querying methods were implemented. Some of these 
methods are for retrieving data, others for storing, up- 
dating or deleting data. In addition to the above, some 
web application development tools have been used in 
developing. 
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F. Experiments & Results 
 

This section describes some experiments that we conducted 
on ElasticBloC and discusses its results. The goal of the 
experiments is to evaluate two characteristics of ElasticBloC: 
scalability and performance. I conducted the following exper- 
iments are: Initial loading experiment, functionality experi- 
ment, and its result, scalability experiment and its result, and 
the ElasticBloC performance evaluation. 

a) Initial Loading Experiment 
• Purpose: 

Testing the start-up running and initializing of the 
whole architecture. 

• Requirements: 
The required steps are to run the ElasticBloC com- 
ponents and check the connectivity between these 
components. The following summarizes these steps: 
– Run the Hadoop cluster and HBase. 
– Run the BigchainDB server. 
– Run Tendermint instance. 

• Results: 
The architecture components run successfully and the 
connection between the components is established. 
Once  established, BigchainDB executed the  schema 
file in the implemented connector and created the 
needed tables in HBase. The following screenshots 
represent some results of the successful initial start-up. 

 

 
 

Fig. 3.  BigchainDB Start-up. 
 

As we can see above, the components ran success- 
fully and Tendermint opened the required sockets and 
established the ABCI Handshaking. It compares the 
application’s highest height and the application hash 

 
 

Fig. 4.  BigchainDB Web Interface After Startup. 

 

 
 

Fig. 5.  Tendermint Start-up. 
 
 

to that stored in HBase in order to confirm that the 
data is the same. 

b) Functionality Experiment 
• Purpose: Test if ElasticBloC performs operations nor- 

mally. 
• Required Steps: Testing the functionality of Elas- 

ticBloC is done through writing and executing a Python 
script that gets uses of the bigchaindb driver library. 
The steps below show the required steps: 
– Run ElasticBloc components. 
– Write a Python script that creates a transaction, 

fulfills it with the sender private key, sends the 
transaction in a commit mode. The following Fig- 
ure represents the testing Python script. 

 
 

 
 

Fig. 6.  The Experiment’s Python Script 
 

• Results 
The transactions are successfully created and sent. 
Because the  sent  transactions are  in  commit mode, 
so directly BigchainDB created a block for the trans- 
action. This block was appended to the Tendermint 
local copy of the blockchain, and the block, including 
transaction, assets, and metadata are stored in their 
specific tables at HBase. 
Fig. 7 shows the created block in the blockchain stored 
at Tendermint. 
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Fig. 7.  The Appended Block in Tendermint Blockchain. 

 
 

 
 

Fig. 8.  The Appended Block and Its Details in HBase. 
 
 

Fig. 8 shows the result of the submitted transaction 
with its details retrieved from HBase. 

• Discussion 
The experiment is conducted successfully and the 
architecture is working finely. 
One of the positive aspects of the architecture is that 
creation, fulfillment, sending, and validating of the 
transaction, with the block creation and appending to 
the blockchain, and its storage in HBase took around 
only one second. 
One major limitation of the experiment is that these 
experiments were conducted on a limited blockchain 
dataset. The reason behind this is that there was neither 
possibility to access a large blockchain dataset nor time 
to build our own large dataset. Instead, we take into 
consideration previous benchmarks and experiments 
were done using huge bulks of data in which it helps 
us to evaluate our architecture. 

c) Scalability Experiment 
• Purpose 

Test if ElasticBloC can scale massively. 
• Required Steps 

Massive scalability means that ElasticBloC has the 
ability to scale as much as it needs on its physical layer. 
This could be ensured if we succeeded in adding new 
data nodes to the ElasticBloC node. To do that we tried 
to add new Hadoop nodes to the Hadoop cluster either 
while ElasticBloC is running or when it is offline. 

• Results 
The previous experiment is conducted successfully and 

Fig. 9.  The New Data nodes Cluster. 
 
 
 

ElasticBloC runs normally. 
• Discussion 

As ElasticBloC scales by adding a new server to the 
Hadoop cluster, it is feasible to add data nodes either 
on fly or offline. This means that ElasticBloC has the 
ability to scales massively. 

d) Performance Evaluation 
Concerning the large blockchain dataset, we were not able 
to access a large blockchain dataset rather than building it. 
For that, we could not test ElasticBloC on a massive scale 
dataset. Accordingly, we rely on this section on some 
previously conducted experiments and workbenches that 
give us, theoretically, a clear idea on the performance of 
the overall architecture. 
The overall performance of ElasticBloC is evaluated by 
its components, in particular, the performance of Ten- 
dermint as a consensus engine and HBase as a backend 
database. 
Tendermint acts as a high-performant in a large dis- 
tributed environment. According to Cosmos white paper 
[18]: 
“Despite its strong guarantees, Tendermint provides ex- 
ceptional performance. In benchmarks of 64 nodes dis- 
tributed across 7 data centers on 5 continents, on com- 
modity cloud instances, Tendermint consensus can pro- 
cess thousands of transactions per second, with commit 
latencies on the order of one to two seconds. Notably, the 
performance of well over thousands of transactions per 
second is maintained even in harsh adversarial conditions, 
with validators crashing on broadcasting maliciously 
crafted votes.” 
On the other side, building MongoDB on the top of HDFS 
is less efficient than building HBase on the top of the 
mention file system. The reason behind this argument is 
that HBase is natively developed to run on the top of 
HDFS, while MongoDB needs a connector as the third 
party to be built on the top of HDFS. 
Moreover, based on several benchmarks, such as [11] and 
[12], HBase acts more efficiently than MongoDB in large 
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Number 
of 
Nodes 

HBase 
(operation/sec) 

MongoDB 
(operation/sec) 

1 269.30 939.01 
2 333.12 30.96 
4 1228.61 10.55 
8 2151.74 39.28 
16 5986.65 337.4 
32 8936.18 227.80 

 
Number 
of 
Nodes 

HBase 
(operation/sec) 

MongoDB 
(operation/sec) 

1 15617.98 8368.44 
2 23373.93 13462.51 
4 38991.82 18038.49 
8 74405.64 34305.30 
16 143553.41 73335.62 
32 296857.36 134968.87 

 

Number 
of 
Nodes 

HBase 
(operation/sec) 

MongoDB 
(operation/sec) 

1 324.8 1261.94 
2 961.01 1480.72 
4 2749.35 1754.30 
8 4582.67 2028.06 
16 10259.63 1114.13 
32 16739.51 2363.69 

 

clusters. For instance, End Point [23] performed a series 
of tests for the performance of several NoSQL databases 
including HBase and MongoDB. The following are some 
comparison results for ‘the performance of HBase and 
MongoDB in different tests based on [11]. 

 
 

TABLE III 
TH RO U G H P U T CO M PA R I S O N W H I L E LOA D I N G DATA 

 

TABLE VII 
TH RO U G H P U T CO M PA R I S O N I N MI X E D OP E R AT I O NA L A N D ANA LY T I C A L 

WO R K L OA D 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE IV 
TH RO U G H P U T CO M PA R I S O N W H I L E RE T R I E V I N G DATA 

 
Number 
of 
Nodes 

HBase 
(operation/sec) 

MongoDB 
(operation/sec) 

1 428.12 2149.08 
2 1381.06 2588.04 
4 3955.03 2752.40 
8 6817.14 2165.17 
16 16542.11 7782.36 
32 20020.73 6983.82 

 
 
 
 

TABLE V 
TH RO U G H P U T I N BA L A N C E D RE A D /WR I T E 

 
Number 
of 
Nodes 

HBase 
(operation/sec) 

MongoDB 
(operation/sec) 

1 527.47 1278.81 
2 1503.09 1441.32 
4 4175.8 1501.06 
8 7725.94 2195.92 
16 16381.78 1230.96 
32 20177.71 2335.14 

 
 
 
 

TABLE VI 
TH RO U G H P U T I N RE A D /UP DAT E /WR I T E OP E R AT I O N S . 

The above experiment is tangible evidence of how HBase 
is more efficient than MongoDB. 
Hence, according to theory and pre-existing experiments, 
HBase would also enhance the overall performance of 
ElasticBloC. However, in its worth case, replacing Mon- 
goDB with HBase will not downgrade the performance 
of ElasticBloC. 

 
G. Conclusion & Future Work 
 

Blockchain has not been adopted widely until now except 
for cryptocurrency applications, however, it has been identified 
as potential technologies for several areas that need trust and 
security. 

It is relatively a new technology that needs various improve- 
ments to reach to a maturity level. It has several limitations that 
are the main barriers to the wider adoption of this technology. 
Of all, scalability and performance are the major limitations 
that must be addressed. 

This  research  primarily  aims  at  addressing  the  scalabil- 
ity problem. There are some solutions that offer techniques 
methods, and guidelines for scalable blockchain. However, we 
found that state-of-the-art technologies focus on scalability at 
the logical level which is an inadequate approach if scalability 
at  the  physical  level  is  to  be  guaranteed.  In  this  paper, 
we designed and implement a scalable architecture called 
ElasticBloC which enables users to build a highly scalable 
blockchain-based ecosystem consisting of tens or more of 
physical nodes. 

In this paper, we proposed a solution for the scalability 
limitation of blockchain technology. We discussed our solution 
ElasticBloC which is a scalable architecture for building 
blockchain-based applications such as payment system, no- 
tarization, the smart contract can be implemented by ensur- 
ing scalability. ElasticBloC is a built on cluster computing 
paradigm that  building infrastructure with  a  massive num- 
ber of nodes. We presented the components with a detailed 
description. We discussed the workflow of ElasticBloc. We 
discussed technologies that we used in implementing the 
proposed solution. 

We tested ElasticBloc to evaluate the scalability. Our exper- 
iment shows that ElasticBloc has the ability to scale up; it is 
flexible for adding as many servers. We discussed the results 
of our experiments in this paper. Additionally, we provided 
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some previous workbenches to provide a comparative view of 
the abilities of ElasticBloc. 

Several works are lined up for a future extension of Elas- 
ticBloC. However, to the best of our knowledge, the imminent 
critical  task  that  must  be  accomplished in  the  near  future 
is extending the functional capabilities of our solution. We 
planned to enhance add new modules to ElasticBloC to enable 
users to develop permission-less blockchain-based applications 
or for permission blockchain-based applications. 
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