
Extracting Attribute-Based Access Control Rules
From Business Process Event Logs

Amani Abou Rida
Computer Science Department

Lebanese University - Faculty of sciences

Beirut, Lebanon
amani.abourida96@gmail.com

Nour Assy
Computer Science Department

Lebanese International University

Beirut, Lebanon
nour.assy@liu.edu.lb

Walid Gaaloul
Computer Science Department

Telecom sudParis

Paris, France
walid.gaaloul@telecom-sudparis.eu

Abstract—Protecting sensitive information from unauthorized

access is recognized as a crucial issue for today’s organizations.

Identity and Access Management is one of the best practices

techniques that ensure that the right people have access to the

right systems at the right time. In particular, Attribute-Based

Access Control (ABAC) models have recently gained popularity

because of their capability to provide fine-grained and contextual

access control that is not based on the user but on the attributes

of every component in the system. Despite the benefits of adopting

ABAC, it is commonly agreed that deploying an ABAC system

is a complicated, time-consuming and challenging task. This is

because all attributes of the system must be defined, and acess

rules must not only be created, but also regularly monitored

and reviewed. In this paper, we propose an automated approach

to extract ABAC rules from event logs which record the actual

execution of business processes. Event logs capture which tasks

are performed by whom and at what point in time, and what

data are taken as input and output. Therefore, they provide

rich information on task and data access policies. Concretely, we

propose to use (i) process mining techniques in order to analyze

the event log and extract useful attributes and (ii) data mining

techniques in order to learn the ABAC rules. To validate our

approach, we (i) developed a java application, and (ii) performed

experiments on a real-life event log. Experimental results show

that our approach is efficient and feasible.

Index Terms—Process mining, Attribute Based Access Control

Model, Event logs, Association Rule Mining.

I. INTRODUCTION

Organizations are increasingly becoming dependent on in-
formation technology to perform their business operations,
thereby meeting their business objectives. In order to en-
sure reliable execution of business processes and protect
data from unauthorized access, security measures need to be
implemented. Identity and Access Management (a.k.a access
control) is considered as a crucial security measure and a
strong driving force for protecting the data, employees, and
property of an organization. Roughly speaking, the purpose
of access management is to grant authorized users access to
appropriate data and deny access to unauthorized users.

Recently, there has been a growing interest in Attribute-
Based Access Control (ABAC) models [7] which define access
control rules based on the attributes of every component
in an information system. In an ABAC system, any type
of attribute such as user attributes (a.k.a subject attributes),
resource attributes and other relevant contextual attributes,

such as date-time, are used to determine access. For instance,
the rule “Permit managers to access financial data provided

they are from finance department” would allow users with
attributes of “Role=Manager” and “Department=Finance” to
access data with the attributes of “Category=Financial”. This
makes ABAC a flexible and fine-grained strategy to manage
users’ access operations.

In order to deploy ABAC, one has to manually define all
the attributes of the system, assign attributes to each system
component and create and maintain policies (a.k.a rules)
according to the security requirements. This makes ABAC
systems complicated and hard to deploy. This paper addresses
the aforementioned issue by proposing an automated approach
to learn ABAC rules from business process event logs. Event
logs [1] record the actual execution of business processes in
an organization. They capture which tasks are performed by
whom and at what point in time, and what data are taken
as input and output. Therefore, they provide rich information
on task and data access policies. The extracted ABAC rules
depict the “current state” permissions within an organization.
In case of an existing ABAC model, our extracted rules can
be used to monitor and review the granted permissions. In the
other case, they serve as starting point for further refinement
and customization to derive “target state” ABAC models
that represent the tailored permissions to execute business
processes. Concretely, our approach is divided into two main
steps. In the first step, we automatically extract from the event
log the attributes and relations that are required for mining
the ABAC rules. In the second step we use Association Rule
Mining to learn ABAC rules from the event log.

The remainder of the paper is organized as follows. In Sec-
tion II, we present an example that will be used throughout the
paper to illustrate our approach. Section III formalizes some
concepts and definitions that are required for our approach.
In Section IV, we detail our approach for extracting ABAC
rules from event logs. Our implementation and experimental
results are reported in Section V. In Section VI, we discuss
some related works before we conclude in Section VII.

II. RUNNING EXAMPLE

We consider a scenario that describes a process for handling
a request for ticket compensation within an airline. To handle

38

Copyright © 2019 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

this ticket, the process should be secured so that each worker
should know his work and if he can access the request
or not. In general this process is shared between different
process users. It will be accessed according to specific rules.
These rules are complicated in the process if a company
decided to do them manually. For that we should improve
information sharing by maintaining control of that information.
In order to ease the process security experience, the process
provider decides to provide attribute based access control rules
that relies upon the evaluation of attributes of the subject,
attributes of the object, environment attributes, and the formal
relationship or access control rule or policy that can define the
allowable operations for subject-object attribute combinations.
These attributes needed in an ABAC model are to be extracted
from the event logs. For example consider an event log where
every row in it corresponds to an event.These events have
different properties, for example we can see in the first column
the PID which is the case ID. The second column refers to
the time-stamp in which the activity is being executed by the
resource. The third column, refers to the activity that is being
executed. Then there is a column referring to the resource
which is the person executing the corresponding activity. And
we can have all kinds of other columns with other data
like role, cost, department, location, and status. Using the
event log shown in figure 1 we can extract a rule with A
resource.role == ”Manager” AND resource.status == “2” AND
environmental.dateTime == “10/2/2105 13:20” if object.cost
== “8” can do action == ”decide” AND object.customerID
== ”1718” will lead for Ellen to have an access for the
object while Sara can’t have access to it. For this reason the
above event log should be analyzed in order to (i) classify the
attributes according to the ABAC model and (ii) infer the set of
ABAC rules. However, doing this manually is an incredibly
tedious and error-prone task. Therefore, we propose in this
work an automated approach for extracting ABAC rules from
an event log.

Figure 1. Shows an excerpt of the event log

III. PRELIMINARIES

This section presents two main ingredients of our approach:
event logs which are used as input of our approach (detailed
in Section III-A) and attribute-based access control models

which represent the output of our approach (detailed in Sec-
tion III-B).

A. Event Logs

An event log contains the execution data of a business
process and is recorded by the information system. Event
logs are used by process mining techniques to discover
process models, to check the conformance of a-priori process
models, to detect execution errors or to observe social
behaviors [1]. The structure of an event log is defined by the
XES standard which defines an event log as a set of traces [5].

Figure 2 shows the class diagram of an event log 1. A log
consists of traces and a trace consists of events. The events
within a case are ordered and they can also have attributes.
Examples of typical attribute names are activity, Contextual
Attribute (e.g. time), Object Data (e.g. costs), and resource. An
event log accumulates the execution history of one process. A
log case corresponds to one process instance execution. The
list of the most common attributes in event logs are:

• Case ID: which is the process instance id of the event.
• Activity: name of the action performed in the event.
• Event Type: which refers to the event state such as started,

paused, resumed, and completed.
• Time-stamp: date and the time at which the event has

been executed, establishing an order between the events.
• Resource: name of the resource that initiates the event.

Data: data attribute related to the event.

Trace

Event

EventAttribute

Case

Activity

Resource

Role

TimeStamp

ObjectData

Cost

...

...

...

Log

ContextualAttribute

1 has 1*

Figure 2. Class diagram for an event log

Definition 1 (Trace, Event log, Event Attribute) [11]. Let
E be the event universe, i.e., the set of all possible event
identifiers [11]. An event log is a set of traces and each trace
contains number of events, a trace < e1, e2, . . ., en > 2 T
is a sequence of events.
Events may be characterized by various attributes, e.g., an
event may have a time-stamp, that refers to an activity, which
is performed by a specific person, has associated costs, etc.

1This diagram is a slightly modified version of the diagram presented in [1]

39

Let AN be a set of attribute names. For any event e 2 E and
name n 2 AN, #n(e) is the value of attribute n in event e. If
event e does not have an attribute named n, then #n(e) = ?
(null value) [11].
Each event ei 2 E has event attribute. These event attributes
corresponds to activity #activity (e) = a 2 A, and resource
#resource (e) = r 2 R, and #time(e) = t 2 D is the time-stamp
of event e. For convenience we assume the following standard
attributes:

• #activity (e) is the activity associated to event e.
• #time (e) is the time-stamp of event e.
• #resource (e) is the resource (user) associated to event e.
We can also have another attributes that can be classified

according to contextual attributes (time, location ...) and object
attributes (Data type, cost, status . . .). Let CA be set of
contextual attributes where CA = D,L . . . and OA be a set
of object attributes where OA= DT, S, CS.

B. Attribute Based Access Control Model

ABAC model leads to grant or deny user requests according
to the arbitrary conditions of the user, attributes of the object,
and environment conditions that can be recognized and more
similar to the policies at hand. As owners of the objects,
they have the permission to establish a policy that can relates
what operations may be performed upon those objects, by
whom, and in what context those subjects may perform those
operations.

Attribute

ObjectSubject

Operation

subject
object

Rule

Policy

SubjectAttribute ObjectAttribute

EnvironmentalAttribute

1 *

Has

1

1 *

Has

1

Performs on

has

has
has

has

has

has

Figure 3. Class diagram for attribute based access control model

The main elements in ABAC model is the attributes that
can be about anything and anyone. These attributes are likely
to fall into 4 different categories or functions (as in gram-
matical function). Figure 3 shows a class diagram for ABAC
model that contains main categories. These categories are the
following:

• Subject attributes: That describes the attributes in which
they express the user who wants to access e.g. age, status,
role, job title. . .

• Operation attributes: They present the action or activity
being done e.g. read, delete, view, approve. . .

• Object attributes: attributes that express the object (or
resource) being accessed e.g. the object type, the depart-
ment, the location, the cost. . .

• Contextual (environment) attributes: attributes that deal
with time, location or dynamic aspects of the access
control scenario.

ABAC is also concerned with the policy and rules. These
rules are based on the privileges of subjects and how resources
or objects are to be protected under which environmental
conditions in order to determine if access is allowed or not.

Definition 2 (ABAC relation) We also define the following
relation: A subject - operation - object SOPO permission tuple
is a tuple <s, op, o > containing a subject s 2 S, an operation
op 2 OP, and an object o 2 O. This tuple means that subject
s has permission to perform operation op on object o. For
convenience we assume the following standard attributes:

• #SubjectAttribute (s) is a function that returns a set of
pair (attribute name, value) of the subject.

• #ObjectAttribute (o) is a function that returns a set of pair
(attribute name, value) of the object.

• #EnvironmentalAttribute (<s, op, o >) is a function
that returns a set of pair (attribute name, value) of the
environmental attributes.

Definition 3 (ABAC rule) A rule ABAC-R is a tuple <
#SubjectAttribute (s), SOPO , #ObjectAttribute (o), #Environ-
mentalAttribute (<s, op, o >) >. The ABAC rule is defined
as follow: #SubjectAttribute(s) ^ SOPO ^ #EnvironmentalAt-
tribute (<s, op, o >)) #ObjectAttribute(e).

IV. MINING ABAC RULES

A. Approach overview

In this section, we present an overview of our automated
approach for extracting ABAC rules from event logs. The
input here is an event log that contains attributes defined in
Definition 1. The output of this algorithm generate ABAC rules
needed for an ABAC model.

Algorithm 1 Building an attribute based access control guid-
ance model

1) Input: E

2) Output: ABAC-R

3) for e E
4) E-attributes = get-Attributes (e)
5) E-relations = get-Relations (e, E-attributes)
6) ABAC-attributes = get-Attributes (e)
7) ABAC-relations = get-Attributes (e)
8) Mapping (E-attributes, E-relations, ABAC-attributes,

ABAC-relations)
9) E-saved = Save-To-ARFF (E-attributes)

10) end for

11) ABAC-R = Apriori (E-saved, minS, minC)

40

The algorithm proceeds in four main steps. In the first step,
the event log is analyzed to extract attributes and relations
needed in our model that are stored in E-attributes and E-
relations respectively (lines 4, 5). Then, in the second step,
the attribute based access control model is also analyzed to
extract main attributes and relations to be stored in ABAC-
attributes and ABAC-relations respectively (lines 6,7). The
third step consists of mapping between the attributes and
relations of event logs to the attributes and relations of attribute
based access control (step 8). Finally, the last step consists of
generating the set of attribute based access control rules (step
11).

B. Extracting attribute based access control rules from busi-

ness process event logs

In this section we present the approach in two main steps
as following: In the first step, we show a mapping between
event logs and ABAC models by analyzing the event log and
mapping the event logs’ attributes to ABAC models’ attributes.
In the second step, we applied apriori algorithm to extract
ABAC rules.

C. Mapping between event logs and ABAC models:

In this section, we present two main parts to have the
mapping between an event log and an ABAC model. In the
first part, we analyze the event log to extract the attributes
needed. In the second part, we map the attributes extracted
from the event log to ABAC model attributes.

1) Analyzing the event log:
In this section we analyzed the event log given as input.
In this step, we aim to show how we can benefit from the
event log to extract the attributes needed for creating an
ABAC model. The class diagram in figure 3 summarizes
the analysis for any event log. We extended the original
event log so that we can benefit from the attributes in
creating ABAC model. An event log is decomposed of
traces that contain a number of events. Each event has
a set of attributes and we modified some of them as
follow:

• Resource: name of the resource that initiates the
event. It can also contain the role of the resource,
age, and the status.

• Contextual attributes: can be: Time-stamp: date and
the time at which the event has been executed,
establishing an order between the events. It can also
contain location, and department . . .

• Object Data: data attributes related to the event. It
can contain cost, and type . . .

After analyzing the event log we can realize that any
attribute can be classified into these categories. The
main thing is to extract attributes that match the above
elements so that any event should have at least the
following attributes (activity, object data, contextual
attribute, resource).

Table I
SHOWS MAPPING BETWEEN EVENT LOGS’ ATTRIBUTES AND ABAC

MODELS’ ATTRIBUTES

Event Log Attribute Based Access Control
Resources Subject Attribute
Object Data Object Attribute
Contextual Attribute Environmental Attribute
Activity Operation
Resource-Activity-Object Data (RAO) Subject-Operation-Object (SOPO)

Moreover, we can infer a Resource-Activity-ObjectData
relation from these attributes which is defined as follow-
ing:
Definition 4 (Event relation) Resource-Activity-
ObjectData (RAO) assignments: The relation RAO is
defined as RAO = { (r, a, od) 2 R × A x OD 9 e 2
E , #resource(e) = r ^ #activity(e) = a ^ #objectData(e)
= od }. RAO relation holds if at least one event e 2 E
with resource r 2 R that executes activity a 2 A and
ObjectData od 2 OD is recorded in the event log. We
say that we assign resource r to activity a that can be
accessed by object data od .

2) Mapping event logs’ attributes to ABAC models’ at-
tributes:
Table 1 shows a mapping where a resource is said to be
subject attribute, an object data is the object attribute,
contextual attribute is the environmental attribute, and
the activity is the operation.

D. Apriori-based approach for extracting ABAC rules:

The goal here is to find associations of items that occur
together more often than one would expect from a random
sampling of all possibilities. Apriori starts by selecting the
frequent single attribute, then generates the candidate pairs of
attributes in the event from the frequent singles and so on, until
it finds all possible attributes according to all the events in the
event log. It uses Support, a well-known metric to compute
the frequency of a set of correlated attributes in the event log.
The support is defined as the fraction of correlated attributes
of each event in the event log in which they always appear
together.

S =
| Ae |
| E | (1)

Where | Ae | is the number of correlated attributes in an
event and | E | is the number of events in an event log. A
support is equal to 1 if all the events in the event log repository
contain the correlated attributes. A support is equal to 0 if
none of the events in the event log contain the corresponding
attributes together. A set of correlated attributes is frequent if
its support is above a given threshold mSupp.

In the second step of the algorithm, the set of relevant
attribute based access control rules in the form of LHS)
RHS are derived from the frequent correlated attributes. In
order to keep only relevant rules, the confidence metric is
computed to evaluate the probability of occurrence of a rule.
The confidence of an attribute based access control rule tt:

41

LHS) RHS is defined as the probability of occurrence
of the attributes in the right-hand side RHS given that the
configurations in the left-hand side LHS are selected. In order
to have ABAC rule as in definition 3 we should apply filtering
on the attributes to the derived rules. In this definition we
should be sure that the attributes in the left side contains the
subject attribute, environmental attribute, and the operation
that the user is doing whereas the right side should contain the
object attribute that describe the data that is accessed. Rules:
#SubjectAttribute(s) ^ SOPO ^ #EnvironmentalAttribute(<s,
op, o >)) #ObjectAttribute (o) .

C =
Sup(RHS [LHS)

SupRHS
(2)

Where Sup(RHS LHS) is the support of the attributes (Sub-
ject Attributes, Environmental Attribute, Object Attributes, and
Operation) in the right-hand and left- hand sides of Rule and
SupRHS is the support of the attributes in the right-hand side
(Object Attribute).

When applying appriori algorithm on these events, we
can recognize in-frequent rules since the time in these
rules contain numerical values and each event contains
different time. The discretization on time-stamp is defined
in our work is the ability to specify that certain event
needs to be executed at a specified date. Time might be
absolute or relative and the granularity needs to be considered.

Definition 4 (Absolute interval time-stamp) it is a time-
stamp pattern constraint that defines a punctual temporal
structure and refer to start and finish times of an activity [8]:

1) Must Start On (MSO), Must Finish On (MFO): indicates
the exact time, in which an activity must be scheduled
to begin or complete;

2) Start No Earlier Than (SNET), Finish No Earlier Than
(FNET): indicate the earliest possible time that an ac-
tivity can begin or complete;

3) Start No Later Than (SNLT), Finish No Later Than
(FNLT): indicate the latest possible time that this activity
is to begin or complete

4) Start No Earlier Than (SNET), Finish No Later Than
(FNLT): indicate the earliest possible time that this
activity is to begin and the latest possible time that this
activity is to complete.

In our approach we decided to use the concept of (4)
where SNET indicates the minimum time and FNLT indicates
the maximum time. Each event e 2 E has event attributes
#timestamp(e), #resource(e), #activity(e), and #object(e). We
compare #timestamp(e) in each event e that have the same
#resource(e), #activity(e), and #object(e) so that we can have
the min Time-stamp(e) between all the events. We then change
all the #timestamp(e) to min Time-stamp(e) . This is similarly
done to calculate the max Time-stamp(e).

Definition 5 (Relative time-stamp) It is a time-stamp pattern
constraint that refers to a dependency between the activities.
This dependency is a relationship between two activities, aq

and al where q is not equal to l, in which one activity depends
on the start or finish of another in order to begin or end [6].
In our approach this relationship depends on the start event of
each trace compared with the other events in the same trace.
This is defined by the following: For each trace T 2 E in event
log and each event e 2 T in the trace we obtain start event
se 2 T which is the first event in each trace. The time-stamp
here is splitted to years, day, hours, minutes, and seconds.
We compare #timestamp(se) - #timestamp(e) in each event e
in same trace T. We then see the events e that have same
#resource(e), #activity(e), and #object(e) so that we can have
the min Years(e), Day(e), Hours(e) , Minutes(e) , Seconds(e)
between all the events. We then change all the #timestamp(e)
to min Years(e), Day(e), Hours(e) , Minutes(e) , Seconds(e)
that have same #resource(e), #activity(e), and #object(e).

V. EVALUATION AND VALIDATION

We implemented our approach as a java application to gen-
erate ABAC rules. We integrated ProM libraries 2 in order to
import and extract information from an event log. We also used
“filter events” in ProM to reduce the noise impact on the data.
ProM is an open source framework for implementing process
mining techniques. Moreover, we integrated Weka software
that contains a group of visualization tools and algorithms for
data analysis and predictive modeling to generate rules using
apriori algorithm [9]. The user can choose different values of
the support and confidence to apply apriori algorithm so that
we can generate the ABAC rules.

To evaluate our approach, we used a real life event log
provided from BPI challenge 2018 [12]. The data set consists
of real business processes for EU direct payments for German
farmers. The event log consists of 43809 traces over a period
of three years. Tables II and III show some statistics about the
number of traces, events, and the number of values in each
attribute before and after filtering the event log from the noise
respectively. The attributes that are used in the event log are
Resource, Activity, Document Type, Time-stamp. These are
classified into ABAC attributes as following:

• Subject Attribute: Resource
• Object Attribute: Document Type
• Environmental Attributes: Time-stamp

The Activity is the operation used to perform an access by
the subject on the object according to the following attributes.
Moreover, Table III shows the attributes Absolute Time-stamp,
years, minutes, seconds, days, and hours are observed after
applying both Relative and Absolute Time-stamp that are
defined in the approach.

In the first experiment, we evaluate the quality of the
approach by calculating the complexity of the extracted rules.
This is studied by counting the number of rules that are
derived before and after filtering the attributes to derive ABAC
rules and by analyzing the impact of the Apriori support
and confidence values (detailed in Section V-A). In the
second experiment, we evaluate the quality of the approach

2http://www.promtools.org/

42

Table II
STATISTICS ON THE BPI CHALLENGE 2018 EVENT LOG

Traces 43809
Events 2514266
values in Activity 41
values in Resource 165
values in Document Type 8

Table III
STATISTICS ON THE BPI CHALLENGE 2018 EVENT LOG AFTER FILTERING

Traces 108
Events 6183
values in Activity 34
values in Resource 102
values in Document Type 8
values in Absolute Time-stamp 25
values in Years 3
values in Minutes 38
values in seconds 47
values in Days 7
values in Hours 21

by measuring the completeness of the extracted rules. This is
studied by counting the average number of values extracted
for the different attributes (detailed in Section V-B).

A. Complexity of the rules and parameter impact

In this experiment, we study the complexity of our approach
which is expressed in term of the number of extracted rules.
The higher the number of extracted rules, the more the
complexity increases. Our objective is to study the impact of
the different support and confidence values on the number
of extracted rules. To do so, we compute (1) the number of
extracted rules before filtering which includes all the rules
that are generated by applying the apriori algorithm and (2)
the number of extracted rules after filtering which includes the
rules that contain the selected attributes for the ABAC. The
average number of extracted configuration rules with different
support and confidence values are shown in Figure 4.

First, the results clearly show that the number of rules
decrease when the support values increase. The same applies
for the confidence values. However, the effect of the support
values is much more noticeable than that of the confidence
values. This means that frequency plays an import role in the
context of access control. Highly frequent rules may refer to
access control rules that are respected in an organization while
less frequent rules may indicate a violation of permissions
and therefore need a closer inspection by experts. Second, the
number of rules greatly decreases after filtering the attributes.
This is because an ABAC rule is valid only if it includes
the following mandatory attributes: the name attribute of the
activity, at least one attribute of the subject (e.g. name, role,
etc.), the timestamp attribute of the environmental attributes
and at least one attribute of the object. An ABAC rule should
also follow the following format (Subject attributes, Activity
attributes, Environmental attributes) Object attributes). By
imposing such constraints, we can decrease the complexity of
our approach by decreasing the high number of rules that are

generated by Apriori and that are less interesting in the context
of access control.

0

50

100

150

200

250

S=0.1
C=0.1

S=0.1
C=0.5

S=0.1
C=0.8

S=0.5
C=0.1

S=0.5
C=0.5

S=0.5
C=0.8

S=0.8
C=0.1

S=0.8
C=0.5

S=0.8
C=0.8

Number of rules before filtering Number of rules after filtering

Figure 4. Bar graph that shows the number of rules before and after filtering
the attributes according to different support and confidence values

B. Completeness of the rules and parameter impacts

In the second experiment, we target to study the complete-
ness of our approach which is expressed in terms of the
number of attribute values extracted in the rules compared
with the total number of attribute values in the event log. On
the one hand, a high number of attribute values per rule means
that we are able to cover the association between the attributes
of all ABAC elements from the event log. On the other hand,
a high percentage of retrieved values per attribute means that
our rules cover all possible elements in the event log choices
and that we are able to find all possible ABAC rules. Our
objective is to study the impact of the different support and
confidence values on the number of extracted attribute values.
To do so, We study (1) the number of extracted attribute
values per rule before filtering which includes all the rules
that are generated by applying the apriori algorithm and (2)
the number of extracted attribute values per rule after filtering
which includes the rules that contain the selected attributes
for the ABAC. Moreover, we study the relation between the
complexity and the completeness of the extracted attribute
based access control rules. We study the average number of
values of each attribute found in the extracted rules compared
to the total number of attribute values in the event log that
can be seen in table III. Figure 5 shows the average number
of attribute values after performing filtering to the attributes
so that the rules contains the selected attributes for the ABAC.

First, the results clearly show that the number of attribute
values in the rules before and after increases when the support
values decreases. The same applied for the confidence. How-
ever, the effect of the support values is much more noticeable
than that of the confidence values. This can be explained by
the fact that, in high frequency the rule is not shown. This
leads to the conclusion that the complexity of the ABAC
rules is positively correlated with their completeness (i.e.
when the complexity increases the completeness increases)
while both the completeness and complexity are negatively
correlated with the support threshold value (i.e. when the
support decreases, the completeness and complexity increase).

43

Therefore, one has to choose or to find a compromise between
the complexity and the completeness of the results.

0

5

10

15

20

25

30

35

Activity Resource Document
Type

Absolute Time-
stamp

Years days hours minutes seconds%
 o

f v
al

ue
s r

et
rie

ve
d

fo
r e

ac
h

at
tr

ib
ut

e

ABAC attributes extracted from the event log

S=0.1 C=0.1 S=0.1 C=0.5 S=0.1 C=0.8 S=0.5 C=0.1 S=0.5 C=0.5 S=0.5 C=0.8 S=0.8 C=0.1 S=0.8 C=0.5 S=0.8 C=0.8

Figure 5. Bar graph that shows the average number of values retrieved per
attribute according to different support and confidence values

As a conclusion the Experimental results showed that the
extracted attribute based access control rules are of good
quality in the mean of complexity and completeness.

VI. RELATED WORK

Our work is related to two research areas: access control
models (detailed in Section VI-A) and automated extraction
of access control models from event logs (detailed in Sec-
tion VI-B).

A. Access Control Model

Some access control mechanisms that the Computer security
architects and administrators have developed to protect their
object by mediating a request from subjects are defined in
this section. Each mechanism has its own advantages and
limitations but it is important to note the evolution of these
models to fully appreciate the flexibility and applicability of
the ABAC model. Some of these models are the following:

• MAC: Mandatory access control provides only the owner
and guardian management of the access controls. This
means the end user has no control over any settings that
provide any privileges to anyone [4].

• DAC: According to [13] the Discretionary access control
do not supply a high security assurance for two reasons:
First, the granting access is transitive. Second, DAC
policies are vulnerable to Trojan Horse attacks. A Trojan
Horse program is the one that looks to be doing one
thing on the surface but literally does something more
underneath without the cognizance of the user.

• IBAC: Identity Based access control captures the identity
of the subjects that want to access an object. This way is
considered hard to be managed.

• RBAC: Role Based Access Control model defines roles
that carry specific set of privilege that a subject request
and by the access for object owner when determining the
privilege associated with each role [3].The big issue with
this access control model is that if one requires access
to other files that he doesn’t has permission to, he has
to find another way to do it since the roles are only
associated with the position; otherwise, security managers
from other organizations could possibly get access to files
they are unauthorized for [2].

B. Extracting Access Control Models from Event Logs

Looking at the previous studies related to our topic, one
can see a closely related approach which is extracting Role-
Based Access Control (RBAC) from event logs [10]. This
approach consists of three main steps where the authors aim
to derive an RBAC model from an event log. In the first
step, called analysis, a process mining technique is used to
extract process-related data from an event log in XES format.
In the next step, extracted data can be transformed into an in-
memory RBAC model. Before that, minor adjustments could
be made to the extracted data, so that the data and relationships
would reflect actual settings of the business process. In the
final step, an RBAC model is exported to the XML-based
format in order to support the data exchange between different
applications, e.g., information systems could implement the
RBAC model or access policy management systems could be
used to enhance the RBAC model. ABAC models can be seen
as a generalization of RBAC models, i.e. the core element of
RBAC is “role” which becomes an attribute in ABAC.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an automated approach to
extract ABAC models from event logs which record the actual
execution of business process. Given an event log as an input,
we proposed to extract the attributes needed for an ABAC
model and to learn the ABAC rules automatically. We used
process mining and data mining techniques. The output of our
result is a set of ABAC rules in the form of SubjectAttribute
(s) ^ SOPO ^ EnvironmentalAttribute (<s, op, o >))
ObjectAttribute (o).

We validated our approach by implementing it as a java
application. We also performed experiments on a real life
event log from BPI Challenge 2018. Experimental results
showed that our approach is feasible and that the frequency is
an important factor in the context of access control. Highly
frequent rules may indicate that the right permissions are
respected in an organization. In case our approach is used to
create a new access control model, these rules help experts to
set up their access control model. On the other hand, infrequent
rules may indicate violation of permissions and need to be
closely inspected by experts.

We aim to extend our work in two different directions. First,
we plan to perform more experiments with real-life event logs
to validate and generalize our results. Secondly, recently there
has been a growing interest in cloud-based process mining
solutions. This has raised issues about privacy and the call
for cryptography techniques to secure event logs. Therefore,
we plan to extend our approach to extract ABAC rules from
secured event logs in order to check if the intended security
is actually respected.

REFERENCES

[1] Wil M. P. van der Aalst. Process Mining: Data Science

in Action. 2nd ed. Heidelberg: Springer, 2016. ISBN:
978-3-662-49850-7. DOI: 10.1007/978-3-662-49851-4.

44

[2] Mark Ciampa. Security+ guide to network security

fundamentals. Cengage Learning, 2012.
[3] DF Ferraiolo and DR Kuhn. “Natl Institute of Standards

and Tech., Dept. of Commerce, Maryland, Role-Based
Access Control”. In: Proceedings of 15th Natl Com-

puter Security Conference. 1992.
[4] Virginia Nunes Leal Franqueira. “Access control from

an intrusion detection perspective”. In: (2006).
[5] Christian W Günther and Eric Verbeek. “Standard defi-

nition”. In: Fluxicon Process Laboratories, XES Version

1 (2012).
[6] Rania Ben Halima et al. “Scheduling Business Process

Activities for Time-Aware Cloud Resource Allocation”.
In: OTM Confederated International Conferences” On

the Move to Meaningful Internet Systems”. Springer.
2018, pp. 445–462.

[7] Vincent C Hu et al. “Guide to attribute based access
control (ABAC) definition and considerations (draft)”.
In: NIST special publication 800.162 (2013).

[8] Cosmina Cristina Niculae. “Time patterns in workflow
management systems”. In: BPM Center Report BPM-

11-04, available online at http://bpmcenter. org/wp-

content/uploads/reports/2011/BPM-l l-04. pdf (2011).
[9] Weka Team. Use WEKA in your Java code. 2016.

[10] Taivo Teder. “Extracting Role-Based Access Control
Models from Business Process Event Logs”. In: ().

[11] Wil Van Der Aalst. Process mining: discovery, confor-

mance and enhancement of business processes. Vol. 2.
Springer, 2011.

[12] Van Dongen, B.F. (Boudewijn) and Borchert, F. (Flo-
rian). BPI Challenge 2018. 2018. DOI: 10.4121/UUID:
3301445F-95E8-4FF0-98A4-901F1F204972.

[13] Younis A Younis, Kashif Kifayat, and Madjid Merabti.
“An access control model for cloud computing”. In:
Journal of Information Security and Applications 19.1
(2014), pp. 45–60.

45

