

ORADIEX: A Big Data driven smart framework for
real-time surveillance and analysis of individual

exposure to radioactive pollution

Hadi Fadlallah
 Lebanese University

Beirut, Lebanon
Hadi.Fadlullah@gmail.com

Yehia Taher
Université de Versailles – Paris-Saclay

Versailles, France
yehia.taher@uvsq.fr

Rafiqul Haque

Intelligencia R&D
Paris, France

Rafiqul.Haque@intelligencia.fr

 Ali Jaber
 Lebanese University
 Beirut, Lebanon
 ali.jaber@ul.edu.lb

Abstract— Radiation pollution has been always a critical

concern, since it can cause a huge damage to humans and for
nature. To minimize the damage, governments are collecting
and monitoring radiation level using advanced systems. In the
past years, Big data technologies such as distributed file
systems, NoSQL databases and stream processing technologies
was implemented in the radiation monitoring systems to
improve their abilities to handle huge volume of data coming
from different sources in a high speed. As Big data technologies
are being improved frequently to handles the fast growth of the
data, these systems need to be updated and improved
periodically to adopt new technologies and to guarantee a
higher control over radiation exposure. In this paper, we
proposed a system called ORADIEX which is an improvement
of our previous published work RaDEn [2]. It has the ability to
(1) reading data from sensors and different sources, (2)
processing data in real-time, (3) stores raw radiation data as it
comes from sources, (4) clean data and stores it in a time-series
database, (5) visualize and monitor data in real-time, (6) send
alert when a high radiation level is detected and (7) allow
performing advanced data retrieval operations over raw and
processed data. In addition, this system was implemented and
tested using a real dataset provided by the Lebanese Atomic
Energy Commission (LAEC-CNRS).

Keywords—Radiation, data engineering, Big Data,

radiation monitoring, real-time processing

I. INTRODUCTION

Preventing and controlling radioactive exposures still one
of the most critical duties of governments and researchers,
since it has a catastrophic effect on every living beings [1].
Prevention activities can be classified into three main
categories: (1) physical protection, (2) radiation monitoring
and (3) handling exposures.

Radiation monitoring is considered as the most
challenging part, since it requires building intelligent systems
that are able to collect, analyze, visualize and raise alert
when an exposure is detected.
Due to the fast technology growth, collecting radiation data
can be done from a wider variety of data sources such as

small wireless sensors, mobile phones, smart watches. In
addition, the data management technologies are improved in
frequently to be able for handling the data sources growth.
To be able to handle data coming from multiple data sources
in real-time, radiation monitoring systems must adopt the
new data technologies and need to be improved periodically.

Several data engineering systems that relies on new data
technologies such as NoSQL databases, distributed file
system were proposed in literature such as [3][4][5][6][7]
and other solutions. These solutions have two main
limitations that (1) they cannot handle a huge volume of
data in real-time, (2) fault-tolerance and scalability are not
always guaranteed. As earlier, we proposed a radiation
engineering system called RaDEn [2] which is built using
Big Data technologies such as Hadoop 1 distributed file
system, and real-time data ingestion tools, this system
solved the problem related to reading and storing huge
radiation data but it still have many limitations as it cannot
(1) visualize data from different sources, (2) notification
system was not implemented,(3) historical data cannot be
visualized since it is saved in raw format,(4) historical alert
information are not stored, (5) real-time graph is very basic
and shows only last 30 measurements,(6) cleaned and
processed data was visualized without being saved and (7) it
doesn't have a user friendly interface.

In this paper, we are proposing a radiation monitoring
system called ORADIEX were we improved the old system
RaDEn [2] by (1) adding a distributed time-series NoSQL
database (InfluxDB2) to store data after being cleaned and
processed, (2) adopting a powerful real-time monitoring
framework (Grafana3) that has a user friendly interface and
allows drawing real-time graphs from different sources,
designing dashboards, visualizing data already stored,
saving historical information about exposures and sending
email alerts when a radiation exposure detected.

1 http://hadoop.apache.org
2 http://influxdata.com
3 http://grafana.com

52

Copyright © 2019 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

The rest of this paper is organized as follows. In Section 2,
we briefly introduce our solution called ORADIEX. The
data processing is described in section 3. The development
of ORADIEX will be detailed in Section 4. Section 5
demonstrates ORADIEX. We conclude our work in Section
9.

II. AN OVERVIEW OF ORADIEX

ORADIEX is a data engineering platform that has the
ability to read huge amounts of data from multiple sources
with different formats using a scalable and distributed
message broker, clean and process the collected data, store
data within a scalable storage, visualize data in real-time
graphs and raise alert when a high radiation level is detected.

ORADIEX stores data in its raw format within a scalable
and fault-tolerant data lake to insure data governance, and
stores processed and cleansed data in JSON format within a
scalable NoSQL time-series database that allows user to
perform data retrieval operations.

ORADIEX can handles data caught by sensors in real-
time, also it can handle data from other sources such as
databases or flat files.

ORADIEX architecture is composed of 6 layers as
shown in Figure-1:

Figure 1 - ORADIEX architecture

��Data Sources: data sources consist of data generated from
sensors, or data stored within flat files or relational
databases

��Data Ingestion: This layers consist of a scalable message

broker and other ingestion tools that allows reading data
generated from the different sources and send it at the same
time to the data processing and raw data storage layers.

��Raw Data Storage: This layer consists of a scalable data

lake built on the top of a distributed file system where data
is stored as it comes from the sources without editing.
Beside of the data lake, metadata is stored in a metadata
repository that allows users to perform data retrieval
operations.

��Data Processing: This layer relies mainly on a distributed

data processing framework that allows processing huge
volume of data. In this layer, data are cleansed and
transformed into JSON format to be stored within the
processed data storage layer.

��Processed Data Storage: This layer consists of a
distributed and scalable data warehouse that has the ability
to store a time series data having different attributes.

��Data Visualization: This layer allows user to create

dashboards that can visualize newly inserted data into the
processed data storage layer in real-time. Also, it gives the
ability to perform data retrieval operations and to send
email notifications when a radiation exposure is detected.

III. DATA PROCESSING

Since data comes from different data sources, the
incoming data quality must be assessed and improved. In the
data processing layer, we implemented a simple data
cleansing and quality assurance process using the following
steps:
1. The measurement date is validated; if it is not a valid date

time value the data is rejected, else it will be converted to
a universal date time format (yyyy-MM-ddTHH:mm:ss).

2. The other measurements are validated; if any
measurement cannot be parsed to a numeric value it will
be removed.

3. All empty strings are replaced with NULLs.
4. Data is converted to standard format (JSON4), to be stored

in the processed data storage layer.

IV. DEVELOPMENT OF ORADIEX
Each layer of ORADIEX was deployed on a separate

virtual machine where Ubuntu 5 16.04 LTS was used as
operating system.

For data ingestion, we have used one virtual machine
where we installed and configured an Apache Kafka6 broker
to read data from different sources. Beside of the message
broker, we installed an Apache Flume7 agent to send data to
the data lake directly when it is received by the message
broker. In addition, we installed Apache Sqoop 8 on the
ingestion layer, to give the user the ability to import archival
data from relational databases directly into the data lake.

We have chosen these technologies since they all
guarantee a high scalability and fault-tolerance.

For the raw data storage, we have built a 4-node Hadoop
3.1.0 cluster where we configured one virtual machine
(node) to act as a master node and the others as slaves (data
nodes). We have set the replication factor to 3, so when data
is sent to the Hadoop master node it will be replicated in all 3
data nodes. The Hadoop Distributed File System (HDFS)
guarantee a high level of scalability and fault-tolerance.

In addition, we have installed Apache Hive9 to store the
metadata so it can be used to perform data retrieval
operations using SQL-like language over the raw data.

For the data processing, we have deployed a single node
Apache Spark cluster on a separate virtual machine. Apache
Spark is a distributed, scalable and fault-tolerant processing

4 http://json.org
5 http://ubuntu.com
6 http://kafka.apache.org
7 http://flume.apache.org
8 http://sqoop.apache.org
9 http:/ /hive.apache.org

53

framework, that has the ability to process data at rest and in
real-time.

To implement the processing logic, we coded a Python10

script that uses PySpark library which is a wrapper of Spark.
The script listens to the message broker and read newly
added data, then it filters the bad rows as described in the
data cleansing section. After ensuring the data quality, the
data is transformed to a JSON format to be stored in the
processed data storage layer.

To store the processed data, we used a time-series
NoSQL database called InfluxDB which guarantee a high
scalability.The reason for using a time-series database is that
the main key in the data we are working on is the date and
time of measurement.

The data is stored in JSON format within InfluxDB. Each
JSON value is composed of 4 parts as shown Figure-2:

Figure 2 – Processed data JSON structure

• Measurement: The name of the table where data is stored

• Time: The date and time of the measurement

• Fields: A list of values that can be visualized (rain level,
radiation level, …)

• Tags: A list of values that can be used to filter data (station
name)

For visualization, we have installed a tool called Grafana
used for real-time monitoring. It allows designing
dashboards to visualize data, and querying the data stored
within the InfluxDB. In addition to this , it allows defining a
radiation level limit for each graph (we can define one for
each station since the radiation level is affected by the
weather and temperature factors which differs between
locations) and to send email alert when this limit is reached.
Grafana was installed on same machine of InfluxDB to
guarantee a real-time visualization.

V. DEMONSTRATION OF ORADIEX

In this section, we demonstrate ORADIEX. For our
demonstration we used a radiation dataset supplied by the
department of environmental radiation control at the
Lebanese Atomic Energy Commission (LAEC-CNRS).

10 http://python.org

A. Dataset
Accessing the sensors or the web server (relational

database) was not made due to confidentiality issues. The
dataset was provided as flat files with data collected from
2015-08-01 to 2016-08-01 from a testing sensor that was
installed in Beirut. The data set structure is described in
Table-1.

Column name Data Type Unit Description
Measurement_ti
me

Datetime Measurement date
and time

dose_rate Numeric nSv/h The radiation dose
rate

Temperature Numeric C Temperature
Rain_Level Numeric mm/h The rain level
Sensor_battery_
power

Numeric mV The sensor
internal battery
power

External_batter
y_power

Numeric mV The sensor
external battery
power

Station_Name Text The sensor station
name

Table 1 - Data set structure

B. Starting and Configuring ORADIEX
First of all, we started all virtual machines (Ingestion,

Processing, Raw Storage, Processed data storage). We
started the following services:
• Apache Kafka, Apache Flume services on the Ingestion

machine.
• Hadoop Cluster (Name node and data nodes) on the Raw

data storage machines.
• Apache Spark Cluster on the data processing machine.
• The python script on the data processing machine.
• InfluxDB and Grafana Services on the monitoring

machine.
To simulate data ingestion from sensors, we have created a

directory where we must copy data set provided, and we
created a terminal script that creates a listener on this folder.
When any file is inserted, the script loops over the lines and
send them one by one to the Apache Kafka producer.

Using Grafana, we created a dashboard that contains one
graph that visualize the radiation dose rate, the rain level
and the temperature data received from only Beirut Station
and we set the radiation limit to 45 as shown in Figure-3.

Figure 3 - Configuring Alert

54

Moreover, we have configured the email notification
settings where you can add many recipients and write the
custom message you want as shown in the Figure-4.

Figure 4 - Configring Email notification

C. Radiation Monitoring
After starting and configuring ORADIEX, we copied the

data set to the ingestion directory. The data was visualized
in real-time on the dashboard we created (Figure-5).

Figure 5 - Monitoring Dashboard

In addition, notification email was received when
radiation level as exceeded at the same time all alert was
recorded in the dashboard alert list as shown in Figure-6.

Figure 6 - Alert list

D. Retrieving Data
As shown in Figure-7, we can perform data retrieval

operations from the InfluxDB database using Grafana
interface, and the result is visualized as a graph.

Figure 7 - Data Retrieval from InfluxDB using Grafana

VI. CONCLUSION
In this paper, we designed a solution called ORADIEX

which is an improved version of our previous work RaDEn
[2]. In this version, we added a NoSQL database that stores
processed data as a time-series, and we replaced the old
visualization tool (Matplotlib python library) by a powerful
real-time monitoring tool called Grafana that has a user
friendly interface and allows real-time monitoring, data
retrieval and sending notification when a radiation exposure
occurs.

We tried to cover all the limitations we identified in
RaDEn at the beginning of our work but unfortunately, the
implementation we have made have some limitations due to
the following issues: (1) We did not get permissions to
access the sensors or the databases. (2) The research time
limit.

A list of works is lined up to be done in future. We can
enrich the data by integrating the free weather data offered
by online API's. Also, we can benefit from search engines
such as Solr 11, Elastic Search 12 to perform data retrieval
operations from raw data.

REFERENCES

[1] "Ionising Radiation and Human Health," Australian government -
department of health, 07 December 2012. [Online]. Available:
http://www.health.gov.au/internet/publications/publishing.nsf/Content
/ohp-radiological-toc~ohp-radiological-05-ionising. [Accessed 17
September 2018].

[2] Fadlallah H., Taher Y., Jaber A., "RaDEn: A Scalable and Efficient
Radiation Data Engineering", in International conference of Big Data
and Cyber Security Intelligence, 2018.

[3] Avram C., Folea S., Dan Radu & Astilean A., "WIRELESS
RADIATION MONITORING SYSTEM," in European Conference
on Modelling and Simulation, Romania.

[4] Baker, C., Davidson, G., Evans, T. M., Hamilton, S., Jarrell, J., &
Joubert, W., "High performance radiation transport simulations:
preparing for Titan," in International Conference on High
Performance Computing, Networking, Storage and Analysis, 2012.

[5] Jeong, M. H., Sullivan, C. J., & Wang, S., "Complex radiation sensor
network analysis with big data analytics," in In Nuclear Science
Symposium and Medical Imaging Conference, 2015.

11 http://lucene.apache.org/solr
12 http://elastic.io

55

[6] Liao, T. S., Wu, C. C., Chou, C. C., Hwang, C. H., Tang, Y. W., Tsai,
D. P., & Chen, T. Y., "Simplified algorithm of ionizing radiation
detecting based on image sensor," in Instrumentation and
Measurement Technology Conference Proceedings, 2016.

[7] Kim, K. S., Kojima, I., Suzuki, R., Naito, W., & Ogawa, H.,
"RALFIE: a life-logging system for reducing potential radiation
exposures," in the 1st ACM SIGSPATIAL International Workshop on
the Use of GIS in Emergency Management, 2015.

56

